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Developmental origin of health and disease postulates that the footprints of early life

exposure are followed as an endowment of risk for adult diseases. Epidemiological and

experimental evidence suggest that an adverse fetal environment can affect the health

of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs)

during fetal development can affect the hormone system homeostasis, resulting in a

broad spectrum of adverse health outcomes. In the present review, we have described

the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available

epidemiological and experimental evidence. We also discuss the potential mechanisms

of their action, which include epigenetic changes, hormonal imprinting, loss of energy

homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on

cardio-metabolic-renal health, which is a complex condition of an altered biological

landscape, can be further examined in the case of other environmental stressors with

a similar mode of action.

Keywords: prenatal exposure, DOHAD, cardio-metabolic-renal health, endocrine disrupting chemicals,

cardiovascular disorder

INTRODUCTION

Environmental toxicants comprise a wide range of chemical agents released through natural
or anthropogenic sources. They contaminate the abiotic components of the ecosystem
and affect the health of the biotic components (Gore et al., 2015; Trasande et al.,
2016). Endocrine disrupting chemicals (EDCs) include phenols, phthalates, parabens, flame
retardants, heavy metals, pesticides, perfluorinated chemicals, UV filter components, triclosan,
and organochlorines. Among these, of particular concern are polychlorinated biphenyls
(PCBs), polybrominated biphenyls (PBBs), dioxins, bisphenols, dichlorodiphenyltrichloroethane
(DDT), vinclozolin, diethylstilbestrol (DES), and heavy metals, such as cadmium, mercury,
arsenic, lead, manganese, and zinc. On a daily basis, people could be exposed to EDCs
through packaged foods, plastics, cosmetics, and pharmaceuticals in multiple personal and
occupational settings (Tchounwou et al., 2012; Gore et al., 2015; Marcoccia et al., 2017).
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Cumulative exposure to mixtures of EDCs can lead to adverse
effects on the health of the exposed individuals (Crews et al.,
2003). Multiple studies, including the studies of the National
Health and Nutrition Examination Survey (NHANES), have
shown that about 75–97% of US and Asian adults have
detectable levels of phthalates and phenols [bisphenol A
(BPA) and polyfluoroalkyl chemicals] in their urine (Silva
et al., 2004; Calafat et al., 2007, 2008; Vandenberg et al.,
2010; Zhang et al., 2011; Husøy et al., 2019). Epidemiological
and experimental studies have also linked adult exposure to
EDCs with abnormal male and female reproductive health,
diabetes, obesity, cardiovascular andmetabolic disorders, thyroid
function, and hormone sensitive cancers (Howard and Lee, 2012;
Bodin et al., 2015; Heindel et al., 2015, 2017). Children are also
vulnerable to EDCs (Calafat et al., 2017; Hendryx and Luo, 2018),
making EDC exposure a major health concern for all age groups.

While adult exposure to EDCs has been proved to promote
adverse health effects, the developing fetus could have greater
susceptibility due to its higher rate of growth and cellular
differentiation (Barouki et al., 2012; Grandjean et al., 2015).
Adverse health effects can be highly pronounced in the
developing fetus at concentrations of EDCs much lower
than the permissible limits (Welshons et al., 2003). Multiple
epidemiological studies provide evidence that exposure to EDCs
in pregnant women is nearly universal (Woodruff et al., 2011;
Arbuckle et al., 2015; Lee et al., 2017; Rosofsky et al., 2017; Philips
et al., 2018). Gestational exposure to EDCs may occur by way
of daily care products, such as cosmetics, the use of electronic
devices, and consumption of the animal, plant, or processed
foods (Caserta et al., 2011; Rouillon et al., 2017).

Apart from gestation, childhood and adolescence are also
highly vulnerable periods. The kidney and liver of infants are
immature and have relatively poor glomerular filtration and
capacity to detoxify drugs and chemicals (Seely, 2017). A growing
body of evidence suggests that in utero exposure to EDCs, such
as BPA, phthalates, polyfluoroalkyl chemicals, and heavy metals,
is associated with preterm birth and fetal growth restrictions
(Wolff et al., 2008; Govarts et al., 2012; Bach et al., 2015; Veiga-
Lopez et al., 2015; Birks et al., 2016; Lenters et al., 2016; Lauritzen
et al., 2017). These two conditions are known risk factors for the
early onset of renal, cardiovascular, and metabolic dysfunction
(Woodruff et al., 2011; Barker, 2012; Mierzynski et al., 2016;
Martin et al., 2017).

In the present review, the effects of prenatal, perinatal, and
early-life exposure to EDCs on the cardio-metabolic-renal health
have been described based on epidemiological and experimental
evidence available. The common and unifying mechanisms,
which may be involved across multiple EDCs, are also discussed.

PRENATAL EXPOSURE TO EDCS AND
METABOLIC SYNDROME

Metabolic syndrome can be defined as the state of metabolic
perturbation, which includes at least three of the following five
symptoms: elevated waist circumference, elevated triglycerides,
reduced high-density lipoprotein cholesterol (HDL-C), elevated

fasting glucose, and hypertension (Alberti et al., 2009). Metabolic
syndrome (MetS) was reported to be associated with an increased
risk of chronic diseases, including type 2 diabetes (T2D), non-
alcoholic fatty liver disease (NAFLD), various cancer forms,
and cardiovascular diseases (Mendrick et al., 2018). As the
endocrine system homeostasis is crucial for normal development
and metabolism, the endocrine disrupting chemicals can also
be referred to as “metabolism disrupting chemicals.” The link
between developmental exposure to endocrine disruptors and
the onset of metabolic perturbations was pioneered by Grun and
Blumberg who described the obesogenic action of organotins
(Grün and Blumberg, 2006).

The epidemiological studies on maternal exposure to EDCs
and the risk of metabolic disorders have been summarized in
Table 1. The experimental studies on this are summarized in
Table 2. Prenatal exposure to BPA causes hyperleptinemia, high
blood pressure, and enhanced weight gain during early childhood
(Ashley-Martin et al., 2014; Bae et al., 2017; Guo et al., 2020).
Metabolic disruption after maternal BPA exposure has been
reported in rodent models where it promoted hyperlipidemia,
altered glucose homeostasis, impaired energy expenditure, and
increased adiposity (Miyawaki et al., 2007; Alonso-Magdalena
et al., 2010; MacKay et al., 2013; Li et al., 2014; García-Arévalo
et al., 2016; Bansal et al., 2017; Desai et al., 2018b; Manukyan
et al., 2019; Diamante et al., 2020).

Pthalates are plasticizers generally used in many personal
care and medical use products. Maternal exposure to phthalates
was reported to cause metabolic disruptions, elevate body mass
index (BMI), and leptin levels in the exposed population (Ashley-
Martin et al., 2014; Buckley et al., 2016a,b; Maresca et al., 2016).
Experimental studies have reported multiple mechanisms for
phthalates-associated metabolic disruption, including damage
and changes to hepatic metabolism (Zhang et al., 2018; Wen
et al., 2020), enhanced adipose differentiation (Hunt et al., 2017),
alteration in genes associated with β-cell developmental (Rajesh
and Balasubramanian, 2015), and dysbiosis of gut microbiota
(Fan et al., 2020). Altered phosphorylation of endothelial nitric
oxide synthase and induction of angiotensin type 1 receptor
could elevate blood pressure (Lee et al., 2016) and further
contribute to metabolic disruption by phthalates.

Diethylstilbestrol is a non-steroidal chemical with estrogenic
activity. It has been reported to act as an obesogen and
cause metabolic disruption through enhanced weight gain in
prenatally exposed human females (Hatch et al., 2015). However,
in rodent models, gestational low dose (0.1 ppm) exposure
to diethylstilbestrol (DES) resulted in reduced litter size and
decreased body weight of the offspring (Cagen et al., 1999a,b).

Organochlorines, a different class of endocrine disruptors,
have also been reported to cause metabolic deregulation after
maternal exposure (Tables 1, 2). Human cohort studies on
maternal exposure to dichlorodiphenyl-dichloroethylene (DDE)
and PCBs showed an increase in the growth rate and childhood
obesity in offspring (Tang-Péronard et al., 2014; Valvi et al., 2014).
High maternal urinary DDE levels were also associated with
increased body weight in infants (Karmaus et al., 2009; Valvi
et al., 2014; Iszatt et al., 2015). Hyperinsulinemia has also been
reported in some 5 year-old females exposed to persistent organic
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TABLE 1 | Epidemiological studies on maternal exposure to EDCs and risk of metabolic disorders.

EDC Study area Key findings References

BPA Maternal-Infant Research on Environmental

Chemicals Study (MIREC) (n = 1,363)

Hyperleptinemia in females but lower serum

adiponectin levels

Ashley-Martin et al., 2014

Rural area of East China cohort study (n = 403) Increase in BMI and waist to height ratio at 7 year of

age

Guo et al., 2020

Birth cohort study (n = 645) Higher diastolic BP while systolic BP did not differ

significantly

Bae et al., 2017

Diethylstilbestrol (DES) National Cancer Institute DES Follow-Up Study

(n = 2,871)

Increase in body mass index, weight gain, waist

circumference, and adult obesity in females

Hatch et al., 2015

Phthalates New York, USA. Maternal urine (3rd trimester of

pregnancy) (n = 173)

Lower fat mass and BMI in children exposed to di(2-

ethylhexyl) phthalate (DEHP)

Buckley et al., 2016a

Maternal-Infant Research on Environmental

Chemicals Study (MIREC) (n = 1,363)

Increased odds of high leptin among males along

with increase in maternal Mono-(3-carboxypropyl)

(MCPP)

Ashley-Martin et al., 2014

Persistent organic

pollutants (POPs)

Spanish birth cohort study (n = 2,483),

1,1-Dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE)

24% rapid growers and 30% overweight infants in

DDE exposed group

Valvi et al., 2014

Faroe Islands (n = 561), Polychlorinated biphenyls

(PCBs) and DDE

Higher odds of overweight in 5–7 years old children

with increase in PCBs and DDE in maternal serum

Tang-Péronard et al., 2014

Prospective Faroese Birth Cohort study (n = 656),

PCBs and DDE

Hyperinsulinemia in female offspring at early

childhood along with increase in maternal POP

levels

Tang-Péronard et al., 2015

Heavy metals The Newborn Epigenetics Study (NEST) (n = 319),

Cadmium

Increased risk of juvenile obesity Green et al., 2018

Maternal–Infant Research on Environmental

Chemicals (MIREC) study, Canada (n = 2001),

Cadmium

Increased odds of hyperleptinemia in male offspring Ashley-Martin et al., 2015

Human Early Life Exposome (HELIX) project

(n = 805), Mercury

Increased odds of metabolic syndrome in children Stratakis et al., 2020

Maternal Mercury levels 2.11 (1.04–3.70) µg/L Increased odds of overweight and obesity in

children aged 2–15 years, however plenty of

maternal folate intake was associated with a 34%

reduction in obesity risk after Hg exposure

Wang et al., 2019

Strong Heart Family Study (n = 466), Arsenic Increased odds of offspring with Type 2 Diabetes Tinkelman et al., 2020

Early Life Exposure in Mexico to Environmental

Toxicants (ELEMENT) birth cohort study, Mexico

(n = 369), Lead

Mean Lead concentration was 43 µg/dL

Significantly lower total cholesterol level in males (Pb

> 5 µg/dL)

No association in female offspring

Liu et al., 2020

pollutants (Tang-Péronard et al., 2015). Experimental studies
on prenatal exposure to DDE have also reported impaired cold
tolerance, high body fat content, and the carryover of an obese
phenotype up to F3 generation (Skinner et al., 2013; La Merrill
et al., 2014). Female offspring, which were perinatally exposed
to 2,3,7,8-Tetrachlorodibenzodioxin (TCDD), had increased fat
while exposed males showed decreased fat content. In the same
study, exposure to PCB was associated with increased glucagon
levels in females, while males showed hyperglycemia (Van Esterik
et al., 2015).

Many heavy metals, including cadmium, lead, mercury, and
arsenic, are also reported to act through endocrine disruption at
relatively low doses. In human birth cohort studies, cadmium and
lead exposure during early lifetime resulted in juvenile obesity
and hyperleptinemia (Ashley-Martin et al., 2015; Green et al.,
2018). However, lower blood cholesterol levels were observed
in male children after maternal lead (lead > 5 µg/dL) exposure

(Liu et al., 2019, 2020). Maternal cadmium levels were also
associated with juvenile obesity in the offspring (Green et al.,
2018). Gestational exposure to cadmium has been reported to
promote glucose intolerance, pancreatic damage, liver steatosis,
and adiposity in the animal offspring up to F2 generation
through endocrine disruption of glucocorticoid (Castillo et al.,
2012) and retinoic acid signaling (Jackson et al., 2020). Arsenic
exposure to both the mother and the offspring was associated
with metabolic disorders, including T2D in the Strong Heart
Family Study (Tinkelman et al., 2020). Multiple studies have
reported metabolic disruption after gestational arsenic exposure,
including increased glucose intolerance, adiposity, and insulin
resistance (Rodriguez et al., 2016; Huang et al., 2018). High-fat
diet has been found to exaggerate liver steatosis after maternal
arsenic exposure in offspring (Ditzel et al., 2016). Cumulatively,
all the above studies provide evidence that prenatal and early-life
exposure to EDCs can cause metabolic dysfunction.
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TABLE 2 | Major experimental studies describing maternal exposure to EDCs and risk of metabolic disorders in offspring.

EDC class Model and dose Key findings References

Bisphenol A (BPA) Mice (C57BL/6J) (BPA 10 µg/kg/day to 10

mg/kg/day), WPM2 to PND28

Impaired glucose stimulated insulin secretion (GSIS),

reduced β-cell mass and pancreatic islets

inflammation only in males

Bansal et al., 2017

Rats (SD) (BPA 40 µg/kg/day), GD0 to PND28 Glucose intolerance, downregulated expression of

glucokinase (Gck) gene in liver

Li et al., 2014

Mice (ICR) (BPA 1–10 µg/kg/day + High fat diet),

GD10 to PND31

Increased BMI, increase in serum TG and

cholesterol

Miyawaki et al., 2007

Mice (OF-1) (BPA 10–100 µg/kg/day), GD9-GD16 Glucose intolerance, elevated plasma triglycerides

(TG) and insulin levels, hyperleptinemia, no change

in BMI

Alonso-Magdalena

et al., 2010

Mice (C57BL/6J) (BPA 5 µg/kg/day), GD0 to GD21 Decrease in liver TG levels in females Diamante et al., 2020

Rats (Fischer 344) (BPA 0.5 or 50 µg/kg/day) GD3.5

to GD22

Reduced glucose stimulated insulin secretion Manukyan et al., 2019

Mice (OF-1) (BPA 10 and 100 µg/kg/day), GD9 to

GD16

Elevated levels of plasma insulin and leptin.

Reduced pancreatic β-cell mass in males

García-Arévalo et al.,

2016

Rats (SD) (BPA 5 mg/L), WPM2 to PND28 Increased adiposity, lipid content, upregulated

expression of appetite peptide

Desai et al., 2018a,b

Mice (CD-1) (BPA 5 to 50,000 µg/kgday), GD9 to

GD18

Increase in body weight, abdominal adipose tissue

mass, serum leptin and insulin levels and glucose

intolerance

Angle et al., 2013

Mice (CD-1) (BPA 3.49–7.2 µg/kg/day through diet),

GD0 to PND28

Glucose intolerance in only males, HFD exacerbated

obesogenic effect in females

MacKay et al., 2013

Phthalates Rats (Wistar) (DEHP 1, 10 and 100 mg/kg/day),

GD9 to GD21

Hyperglycemia, hyperinsulinemia at PND60, DNA

methylation in β- cell development genes

Rajesh and

Balasubramanian,

2015

Mice (DEHP 0.2, 2, 20 mg/kg/day) WPM1 to GD21 Elevated adipogenesis, glucose intolerance,

hypertrophic adipocytes, and dysbiosis of gut

microbiota

Fan et al., 2020

Rats (SD) (DEHP 600 mg/kg) throughout pregnancy

and lactation

Decrease in serum alanine transaminase (ALT), total

protein (TP), blood urea nitrogen (BUN), and

creatinine, and elevated thyroid stimulating hormone

(TSH) levels

Zhang et al., 2018

Mice (CD-1) (DEHP 20, 200 µg, 500 or 750

mg/kg/day), GD10.5 to GD21

Mild liver damage, immune cells infiltration and

altered DNA Methylation in liver

Wen et al., 2020

Mice (PCNAY114F/ Y114F) (DEHP 0.05, 500

mg/kg/day), WPM3 to PND21 Upregulated phosphorylation of PCNA at Y114

Enhanced adipocyte differentiation, enhanced body

weight gain

Hunt et al., 2017

Mice (C57BL/6) (DEHP 30 mg/kg) throughout

pregnancy and lactation.

Hypertrophic adipocytes, elevated serum

cholesterol levels, elevated blood pressure

Lee et al., 2016

Diethystilbestrol (DES) Rats (Wistar) (0.1 ppm DES), WPM2 to PND22 Prolonged gestational period, decrease in body

weight only in females

Cagen et al., 1999b

DDT Rats (SD) (DDT 25, 50 mg/kg /day), GD8 to GD14 50% of F3 male and female were obese Skinner et al., 2013

Mice (C57BL/6J) (DDT 1.7mg /kg/day), GD11.5 to

PND5

Impaired cold tolerance, increased body fat content

in females. HFD exaggerated glucose intolerance

and dyslipidemia

La Merrill et al., 2014

Persistent organic

pollutants (POPs)

Mice (C57BL/6JxFVB hybrid) (TCDD 10– 10,000

pg/kg/day; PCB 153 0.09–1,406 µg/kg/day)

through feed during gestation and lactation

TCDD exposed females show increased fat content.

PCB exposed males show hyperglycemia

Van Esterik et al., 2015

Heavy metals Rats (CdCl2 50, 500 µg/kg/day), WPM3 to PND21. Glucose intolerance, increased insulin pancreatic

secretion, increased circulating free fatty acids

(FFAs)

Jacquet et al., 2019

Zebrafish embryos (CdCl2 60 µg/L), from 4 to 7 dpf Increased lipid accumulation at puberty Green et al., 2018

Mice (CD1)(CdCl2 and CH3HgCl 2 mg/kg bw), for 4

days before and 4 days after mating

Glucose intolerance, increased body weight and

abdominal adiposity in males

Camsari et al., 2019

Rats (Wistar) (10 ppm of CdCl2 ad libitum), weaning

to mating and delivery

Hypermethylation of CpG on glucocorticoid receptor Castillo et al., 2012

(Continued)
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TABLE 2 | Continued

EDC class Model and dose Key findings References

Mice (CD-1) (CdCl2 500 ppb), GD0 to PND10 Increased body weight gain, mitochondrial

dysfunction, disruption of retinoic acid and insulin

signaling in females only

Jackson et al., 2020

Mice (CD-1) (NaAsO2 10 µg/L), GD10 to birth Enhanced body weight gain, elevated body fat

content, and hyperleptinemia

Rodriguez et al., 2016

Mice (Swiss Webster) (100 µg/L NaAsO2), GD5 to

GD21

Glucose intolerance, elevated fatty liver disease risk

after HFD feeding

Ditzel et al., 2016

Mice (C57BL/6J) (NaAsO2 0, 100, and 1,000 µg /L)

before mating to birth

Elevated fasting glucose levels, insulin resistance,

high body weight in male offspring

Huang et al., 2018

WPM, Week prior to mating; PND, Postnatal day; GD, Gestation day; TCDD:2,3,7,8-Tetrachlorodibenzo-p-dioxin; HFD, high fat diet; BW, body weight; hpf, hour post fertilization; dpf,

days post fertilization.

PRENATAL EXPOSURE TO EDCS AND
CHRONIC KIDNEY DISEASE

Chronic kidney disease is a growing health problem among
children and adults. The incidence and the prevalence of
chronic kidney disease (CKD) among children have been steadily
increasing since the 1980s (Baum, 2010; Harambat et al., 2012;
Becherucci et al., 2016). A number of traditional risk factors
associated with CKD in children include hypertension, obesity,
diabetes, and aberrant divalent mineral metabolism (Wong et al.,
2006; Staples et al., 2010; Harambat et al., 2012; Warady et al.,
2015). There is growing evidence that links exposure to EDCs
with early progression to end-stage renal disease (ESRD) (Kataria
et al., 2015). However, early-life exposure to EDCs and their
association with chronic kidney disease have not been extensively
studied. Some of the studies on gestational and early-life exposure
to EDCs and their effect on the kidney are summarized in
Table 3. Early-life exposure to EDCs was associated with elevated
levels of kidney toxicity markers such as albumin-to-creatinine
ratio (ACR), estimated glomerular filtration rate (eGFR), and
urinary protein-to-creatinine ratio (UPCR) in some human
population studies (Li et al., 2012; Trasande et al., 2013a, 2014;
Malits et al., 2018).

Detectable bisphenol A levels were reported in a study on
children correlated with increased levels of ACR (Trasande
et al., 2013a). Furthermore, in some animal studies, gestational
exposure to BPA was associated with glomerular abnormalities,
including changes in the glomerular number and density (Nuñez
et al., 2018). Early-life exposure to BPA and phthalates is
also associated with increased tubular injury and oxidative
stress, which can affect renal function (Jacobson et al.,
2020). In a study on children, exposure to high molecular
weight phthalates was associated with higher ACR (Trasande
et al., 2014). Exposure to di-(2-ethylhexyl) phthalate (DEHP)
tainted food was associated with micro-albuminuria in children
(Tsai et al., 2016; Wu et al., 2018a).

Growing evidence suggests a strong association between
dioxin exposure and renal dysfunction in adults (Huang et al.,
2016), although there is less information on prenatal dioxin
exposure and renal abnormalities (Table 3). Perinatal exposure

to TCDD can affect renal morphology (Aragon et al., 2008b)
and promote hydronephrosis (Aragon et al., 2008a). Similarly,
exposure to flame retardants, such as organophosphate esters
(OPEs) and tetrabromobisphenol A (TBBPA), was associated
with CKD in adult epidemiological studies (Kang et al., 2019). In
an in utero study, exposure to TBBPA was associated with renal
tubule atrophy and cyst in the kidney (Fukuda et al., 2004; Tada
et al., 2006).

The heavy metals, which might modulate the endocrine
system, are cadmium, arsenic, mercury, lead, manganese, and
zinc. However, not all heavy metals are associated with kidney
diseases. While there are several adult studies on exposure to
heavy metals and nephrotoxicity, the studies on gestational
and perinatal exposure are sparse. A cross-sectional study
on preschool girls (age range: 4.4–5.4 years) showed that
cadmium exposure during childhood was inversely correlated
with estimated glomerular filtration rate (eGFR), which can
adversely affect kidney function (Skroder et al., 2015). In
an animal study, increased levels of albumin, osteopontin,
vascular endothelial growth factor, and tissue inhibitor of
metalloproteinases-1 were observed in the amniotic fluid of
cadmium-exposed mothers (Jacobo-Estrada et al., 2016). In the
same study, histopathological assessment of the kidney of the
fetus showed tubular damage and precipitations in the renal
pelvis. In a related study, gestational and lactational exposure
to cadmium led to the reduced relative weight of liver and
kidneys in the female offspring (Luo et al., 2015; Hamidian
et al., 2020). Gestational exposure to cadmium also caused
a significant decrease in the glomerular filtration rate (GFR)
with a disorganized expression of tight-junction proteins, such
as claudin-2 and claudin-5 in rat offspring (Jacquillet et al.,
2007). In another study, rat offspring, which were prenatally
exposed to cadmium chloride (CdCl2), had increased β2-
microglobulin (β2M) levels, suggesting some kidney damage
(Saillenfait et al., 1991).

The effect of early exposure to arsenic on the progression
and development of kidney diseases has been assessed
in few human studies (Smith et al., 2012; Hawkesworth
et al., 2013; Zheng et al., 2014; Weidemann et al., 2015).
Exposure to arsenic has also been linked with increased
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TABLE 3 | EDC exposure and renal function.

EDC Study system Key findings Reference

Bisphenol A (BPA) Cohort study of pediatric CKD patients from the US

and Canada, BPA and phthalates

Increased tubular injury and oxidative stress Jacobson et al., 2020

National Health and Nutrition Examination Survey in

the United States population, early life exposure to

BPA

Low-grade urinary albumin excretion Trasande et al., 2013a

National Health and Nutrition Examination Surveyin

the United States population, BPA

Positive association of exposure with the Albumin to

creatinine ratio

Kang et al., 2019

Mice (ICR), Tetrabromobisphenol (TBBPA) prenatal

and postnatal exposure, GD0 to PND27

Atrophy of renal tubules and cyst in the kidney Tada et al., 2006

Rats (Wistar), Tetrabromobisphenol (TBBPA)

exposure, PND4 to PND21

Nephrotoxicity characterized by the formation of

polycystic lesions

Fukuda et al., 2004

Mice (OF1) (pregnant mice exposed to BPA (10 or

100 µg/kg/day), GD9 to GD16

Glomerular abnormalities and changes in glomerular

number and density

Nuñez et al., 2018

Phthalates Taiwan food scandal (2011), early life exposure to

di-(2-ethylhexyl) phthalate (DEHP)

Higher micro-albuminuria levels Tsai et al., 2016; Wu

et al., 2018a

Persistent organic

pollutants (POPs)

Mice (C57BL/6),

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 0.5,

3.0, or 6.0 µg/kg/day, in utero and lactational

exposure

Effect on renal morphology Aragon et al., 2008b

Mice (C57BL/6N), TCDD 6.0 µg/kg/day perinatal

exposure

Hydronephrosis and increased renal fibrosis Aragon et al., 2008a

Heavy metals Children from a supplementation trial in pregnancy

(MINIMat) in rural Bangladesh, arsenic and cadmium

Exposure to cadmium associated inversely with

estimated glomerular filtration rate (eGFR)

Skroder et al., 2015

Antofagasta and the rest of Chile, Arsenic exposure

upto 870 µg/L

Increased mortality from cancers and CKD Smith et al., 2012

Cross-sectional European survey, Lead (Pb)

exposure

Negatively associated with creatinine, cystatin C,

and beta2-microglobulin

de Burbure et al., 2006

Yugoslavian birth-cohort study, Pb contaminated

areas

Proteinuria observed in offspring Factor-Litvak et al.,

1999

Pediatric CKD patients, Pb contaminated areas High prevalence of elevated Pb levels in pediatric

CKD

Filler et al., 2012

Children aged 12 to 15 years, Area in the vicinity of

Pb Smelter

Blood Pb level positively associated with multiple

urinary renal injury biomarkers

Bernard et al., 1995;

Verberk et al., 1996;

Fels et al., 1998

Cross-sectional study on adolescents aged 12 to

20 years, 1.5 µ/dL of median Pb level in blood

Effect on kidney function (GFR) Fadrowski et al., 2010

Rats (Sprague-Dawley), Cadmium chloride (CdCl2)

exposure between 2.0 to 2.5 mg/kg on GD8, 10,

12,14

Significant increase of beta 2-microglobulin levels

but no effect on metallothionein

Saillenfait et al., 1991

Rats (Wistar), Cd 1.48 mg/kg/day, GD8-GD20 Structural alterations in fetal renal tissue Jacobo-Estrada et al.,

2016

Rats (Wistar), Cd 400 mg/ L 3 days per week, 3

weeks throughout gestation

Decreased total volume of kidney, medulla, and

proximal and distal tubules

Hamidian et al., 2020

Rats (Wistar), Cd 5 or 10 ppm during pregnancy

and lactation

Relative organ weight of kidney decreased

significantly

Luo et al., 2015

Mice (CD1), Arsenic 85 ppm from GD8-GD18 tumors/lesions initiated by prenatal arsenic in the

kidney

Tokar et al., 2012

Rats (Wistar), NaF (100 mg/L), NaAsO2 (50 mg/L)

during pregnancy and lactation

Disrupted histopathology and ultrastructure in the

kidney with altered creatinine, urea nitrogen and uric

acid levels

Tian et al., 2019b

Rats (Sprague-Dawley), HgCl2 1 mg/kg from

GD14-GD21

Increase in urinary beta 2 microglobulin (β2M) and

albumin and transient renal dysfunction

Bernard et al., 1992

mortality in young adults due to multiorgan cancers and
chronic renal diseases (Smith et al., 2012). The nephrotoxic
effects following prenatal arsenic exposure could also

be due to dysregulated autophagy (Tian et al., 2019b)
and increased oxidative stress and mitochondrial damage
(Tian et al., 2019a,b).
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Lead-induced nephropathy in young adults was first reported
in children in Queensland, Australia (Nye, 1929). Chronic
poisoning with lead (blood lead levels > 60 µg/dL) has been
associated with nephropathy in children and adults (Ekong et al.,
2006), and was characterized by tubulointerstitial fibrosis, tubular
atrophy, glomerular sclerosis, and reduced eGFR (Morgan
et al., 1966; Loghman-Adham, 1997). Childhood lead poisoning
can also promote hypertension (Moel et al., 1985; Hu, 1991;
Fadrowski et al., 2010), prolong partial Fanconi syndrome
(Loghman-Adham, 1998), and lead to abnormal renal function
(Moel and Sachs, 1992; Filler et al., 2012; Fadrowski et al.,
2013). In a prospective Yugoslavian birth-cohort study, high
blood pressure and proteinuria were observed in offspring born
to mothers living near lead-contaminated environment (Factor-
Litvak et al., 1999). This was also associated with increased
levels of lead in the blood. Hyperfiltration, which is often linked
with albuminuria and a transient increase in GFR, was also
associated with early-life lead exposure and may be the cause
of kidney injury during adulthood (Khalil-Manesh et al., 1992;
Weaver et al., 2003; Ekong et al., 2006; Helal et al., 2012).
Early-life exposure to lead was positively associated with serum
cystatin C levels (Staessen et al., 2001). However, in another
study, early-life exposure to lead was negatively associated with
serum creatinine and cystatin C (de Burbure et al., 2006). In
another population study on children exposed to lead, lead levels
in blood were positively associated with multiple urinary renal
injury biomarkers, including retinol-binding protein (Bernard
et al., 1995), β2M and Clara cell protein (Fels et al., 1998), and
N-acetyl-beta-D-glucosaminidase (NAG) (Verberk et al., 1996).

Exposure to all forms of mercury is nephrotoxic (Zalups
and Lash, 1994). In the kidneys, the pars recta segment of the
proximal tubule is highly susceptible to mercury. Unfortunately,
there are very limited studies on the effect of gestational mercury
exposure on the kidneys of the offspring. The accumulation
of high mercury levels in the kidney of offspring, following
exposure during the gestation period, has been reported (Drasch
et al., 1994). Animal studies showed transient renal dysfunction
in mothers, as well as the offspring with a significant increase
in urinary β2M and albumin levels after mercury exposure
(Bernard et al., 1992). An unpublished study from our lab has
also associated prenatal methyl mercury exposure with decreased
glomerulus numbers in the offspring.

PRENATAL EXPOSURE TO EDCS AND
CARDIOVASCULAR DISEASES

Cardiovascular diseases (CVD) cause an estimated 17.9 million
deaths annually (Wang et al., 2016). To date, the majority of
epidemiological and animal studies connecting environmental
stressors and CVD have focused on a narrow group of EDCs.

In an in vivo study, exposure to ioxynil (IOX) and DES during
the embryonic stage led to disrupted cardiovascular development
(Li et al., 2019). The study showed increased heartbeat frequency
and reduced ventricle volume and an aorta diameter, following
IOX and DES exposure during the embryonic stage.

In a similar study, zebrafish embryos, which were exposed
to BPA, had impaired cardiogenesis with an altered cardiac
phenotype, upregulation of hand 2, estrogen receptor (esr2b),
histone acetyltransferase (kat6a), and histone acetylation (Lombó
et al., 2019). Furthermore, the increased rate of heart failures
in the progeny was observed when male zebrafish was exposed
to BPA during spermatogenesis (Lombó et al., 2015). This
continued till the F2 generation. The study also showed a
significant decrease in five key genes involved in cardiac
development in the embryos of the F1 generation (myh6, cmlc2,
atp2a2b, sox2, and insrb). A study on apes, which were orally
administered BPA during the gestation period, suggested its
impact on the cardiovascular fitness of the developing fetus
(Chapalamadugu et al., 2014). A significant decrease in the
expression of myosin heavy chain, cardiac isoform alpha (Myh6),
was observed in the left ventricle. Similarly, overexpression of
′A Disintegrin and Metalloprotease 12′, long isoform (Adam12-
l), was observed in both the ventricles and the right atrium of
the heart of the exposed fetus. A study on sheep showed that
prenatal BPA exposure followed by postnatal overfeeding leads
to a significant increase in interventricular septal thickness and
affects the morphological and functional parameters of the heart
when the exposed animals become obese later in life (Mohan
Kumar et al., 2017).

Animal studies on perinatal BPA exposure have reported
enhanced male and reduced female sex specific differences
in velocity of the circumferential shortening and ascending
aorta velocity time integral. Elevated diastolic blood pressure
was observed in all the perinatally exposed female offspring
(Cagampang et al., 2012; Patel et al., 2013). Several calcium
homeostasis proteins (sarcoendoplasmic reticulum ATPase
2a (SERCA2a), sodium calcium exchanger-1, phospholamban
(PLB), phospho-PLB, and calsequestrin 2, which are involved
in contraction and relaxation of cardiac muscles were altered
(Cagampang et al., 2012; Patel et al., 2013). Fibrosis was
also observed in the heart of the fetus prenatally exposed
to BPA. This was associated with a significant change in
miR-17-5p,−208-3p, and−210-3p expression in the fetal
heart (Rasdi et al., 2020). In a study, using PXR-humanized
apolipoprotein E-deficient (huPXR•ApoE−/−) mouse model,
perinatal exposure to BPA worsened atherosclerosis in adult
male huPXR•ApoE−/− offspring (Sui et al., 2018). However,
no significant atherosclerotic changes were observed in
female offspring.

In a cross-sectional study, early-life exposure to BPA
was associated with elevated diastolic blood pressure (Khalil
et al., 2014). In another cross-sectional study on children and
adolescents, dietary phthalate (DEHP) exposure was associated
with elevated systolic blood pressure (Trasande et al., 2013b).
Perinatal exposure to hexachlorobenzene (HCB) was associated
with an elevated systolic blood pressure, and early-life exposure
to DDE was associated with an increase in diastolic blood
pressure (Vafeiadi et al., 2015). A combined cohort study
demonstrated that women prenatally exposed to DES are at
higher risk of coronary artery disease (CAD), myocardial
infarction (MI), high cholesterol levels, hypertension, and
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elevated blood pressure (Troisi et al., 2013, 2018). All these factors
are major signs of metabolic disorders.

In a cross-sectional study on children, exposure to phthalates,
such asmonobenzyl, monocarboxyoctyl, andmonocarboxynonyl
during the gestation period, was associated with decreased levels
of 8-isoprostane at 9 years of age (Tran et al., 2017). 8-isoprostane
is a known marker for oxidative stress, which can promote
detrimental metabolic changes later in life. Whereas, at 14 years
of age, a positive association (increase) was observed between
8-isoprostane and two other metabolites of high molecular
weight phthalates [mono(2-ethylhexyl) and mono (2-ethyl-
5-carboxypentyl) phthalate]. A positive association was also
observed between 8-isoprostane and total cholesterol levels, as
well as systolic and diastolic blood pressure (Tran et al., 2017).
Exposure to DEHP during lactation altered the expression of
insulin-signaling molecules in the cardiac tissue of the offspring
(Mangala Priya et al., 2014). In utero exposure to DEHP can also
reduce locomotor activity at postnatal day (PND) 60. At later-
life stages (PND 200), both systolic and diastolic systemic arterial
pressure and locomotor activity were reduced in adult rats
perinatally exposed to DEHP (Martinez-Arguelles et al., 2013).
Wu and coworkers observed an inverse correlation between
early-life exposure to phthalate and systolic blood pressure in
boys (Wu et al., 2018b). Another group of researchers identified a
notable correlation between different phthalate metabolites such
asmono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP),
and mono-2-ethylhexyl phthalate (MEHP), and elevated blood
pressure in children and adolescents aged 6–18 years (Amin
et al., 2018). As per the Spanish INMA-Sabadell Birth Cohort
Study, high- and low-molecular weight phthalate metabolites
were associated with lower systolic blood pressure in girls but not
in boys (Valvi et al., 2015).

Perfluorononanoic acid (PFNA), a perfluoroalkyl substance
(PFASs), was associated with elevated systolic blood pressure,
low-density lipoprotein cholesterol (LDL-C), and total
cholesterol (Khalil et al., 2018). Perfluorooctanoic acid (PFOA)
and perfluorooctane sulfonic acid (PFOS) were associated with
increased LDL-C. PFOA exposure was also positively correlated
with total cholesterol (Khalil et al., 2018). Elevated blood pressure
was observed in offspring born to rats exposed to DEX, PFOS,
atrazine, and PFNA (Rogers et al., 2014).

Nearly five decades ago, a set of autopsy case reports
established an association between perinatal arsenic exposure
and cardiovascular conditions, such as myocardial infarction,
vascular lesions, and thickening of the arteries in young
children (Rosenberg, 1973, 1974). Children with these severe
cardiovascular issues had resided in regions of Chile, who were
highly contaminated with arsenic (average levels of 870 µg/L)
from 1958 to 1970. Young adults (30–49 years) born during
this period were at three times higher risk of mortality due
to myocardial infarction as compared with the rest of the
Chile (Yuan et al., 2007). Several epidemiological studies have
also associated in utero and early-life arsenic exposure with
an increased risk of childhood cardiovascular disease (Table 4).
Increased childhood (5–18 years old) mortality due to CVD
was observed in arsenic-exposed children from Bangladesh
(Rahman et al., 2013). The risk was comparatively higher in

girls and in adolescents. According to MINIMat cohort study
in Bangladesh, higher in utero arsenic exposure was associated
with increased blood pressure in children at 18 months of age
(Hawkesworth et al., 2013). Elevation in blood pressure from an
early age may have detrimental effects later in life, particularly
in a genetically susceptible population. In a cross-sectional
study of children (3–14 years) in Zimapan, Mexico, a positive
correlation was established between total urinary arsenic and
carotid intima-media thickness (cIMT), a subclinical indicator
of CVD (Osorio-Yanez et al., 2013). The study also showed
an association of total urinary arsenic with increased plasma
levels of asymmetric dimethylarginine (ADMA), an endogenous
inhibitor of nitric oxide production and predictive of CVD. The
mothers of the participating children were reported living in the
highly contaminated areas during their pregnancy, suggesting a
possible contribution of prenatal arsenic exposure in the onset
of observed effects. Apolipoprotein E deficient (ApoE−/−) mice
are highly vulnerable to atherosclerosis. The male offspring
of pregnant ApoE−/− mice, which were exposed to arsenic,
showed accelerated atherosclerotic plaque and loss of endothelial
cell function and vascular tone at 10 and 16 weeks of age
(Srivastava et al., 2007). The follow-up study showed a more
profound effect, following early postnatal exposure to arsenic
(Srivastava et al., 2009).

DETERMINING COMMON MECHANISMS
ASSOCIATED WITH EXPOSURE TO EDCS

EDCs might cause similar modes of action, transport, and
storage within tissues and activate or antagonize nuclear
hormone receptors (Casals-Casas and Desvergne, 2011; Heindel
et al., 2017). During pregnancy, exposure to EDCs has been
associated with an abnormal gestational endocrine milieu,
including altered levels of sex hormones (Sathyanarayana
et al., 2014; Johns et al., 2015). Multiple mechanisms have
been proposed for the action of EDCs, including epigenetic
modulations, altered inflammatory and oxidative stress
responses, hormonal imprinting and fundamental changes in
energy storage, and glucose homeostasis pathways. The common
mechanisms across multiple classes of EDCs are summarized
in Figure 1.

Abnormalmaternal environmentmay alter the developmental
trajectory of the fetus via epigenetic modulations (Walker,
2016). Prenatal exposure to phthalates [particularly to DEHP,
MEHP, benz-butyl phthalate (BBP), DBP, and MBP] has
been shown to modulate genes through their effect on DNA
methylation, histone modifications (acetylation, methylation,
phosphorylation, ubiquitination, sumoylation, and ADP
ribosylation), non-coding RNAs and micro RNAs (miRNAs)
(Martinez-Arguelles and Papadopoulos, 2016; Solomon et al.,
2017; Dutta et al., 2020). Paternal factors such as sperm
DNA changes can also affect fetal development (Day et al.,
2016). Prenatal cadmium exposure was associated with
hypermethylation in the promoter of glucocorticoid receptor
(GR) gene, resulting in increased expression of hepatic GR,
leading to dysregulated hepatic metabolism (Castillo et al., 2012).
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TABLE 4 | EDC exposure and cardiovascular function.

EDC Study system Key findings Reference

Bisphenol A (BPA) Cross-sectional study on Early life exposure to BPA;

Obese children 3–8 years old

Increased diastolic blood pressure Khalil et al., 2014

Zebrafish, Embryonic exposure, BPA 2 and 4 ppm Impaired cardiogenesis Lombó et al., 2019

Zebrafish, Paternal exposure, BPA 0.1 and 2 ppm Increased rate of heart failure; abnormal expression

of cardiac development genes in offspring born

Lombó et al., 2015

Rhesus monkeys (Macaca mulatta), gestational

exposure, BPA 400 µg/kg

Altered fetal heart transcriptome Chapalamadugu et al.,

2014

Sheep, Gestational exposure, BPA 500 µg/kg Interventricular septal thickness in the heart of the

offspring

Mohan Kumar et al.,

2017

(Mice 9C57bL/6N), Perinatal exposure, BPA 0.5 and

5.0 µg/kg/day

Velocity of the circumferential shortening and

ascending aorta velocity time integral increased in

male and decreased in female; increased diastolic

blood pressure in females; abnormal expression of

proteins involved in contraction and relaxation;

increased global methylation in males and reduced

in females offspring

Cagampang et al.,

2012; Patel et al., 2013

Rat (Sprague Dawley), Gestational exposure, BPA

0.05 and 0.2 ppm

Heart fibrosis; abnormal expression of miRNAs in

offspring

Rasdi et al., 2020

Mice [PXR-humanized apolipoprotein E-deficient

(huPXR•ApoE−/−)], Perinatal exposure, BPA 50

mg/kg

Accelerated atherosclerosis in offspring Sui et al., 2018

Diethystilbestrol (DES) Combined cohort study, Women prenatally exposed

to DES

Higher risk of CAD, MI, high cholesterol,

hypertension and elevated blood pressure

Troisi et al., 2013, 2018

Zebrafish, Embryonic exposure, DES 0.1µM Increase heartbeat frequency, reduced ventricle

volume and aorta diameter

Li et al., 2019

persistent organic

pollutants (POPs)

Rhea mother-child cohort study, Children 4 years

old; Early life exposure to POPs

Increased blood pressure Vafeiadi et al., 2015

Cross-sectional pilot study, Children 8–12 years old;

Early life exposure to perfluoroalkyl substance

(PFAS)

Elevated blood pressure; increased Low-density

lipoprotein cholesterol (LDL-C) and total cholesterol

Khalil et al., 2018

Phathalates Cohort study, Children 6–19 years old; Early life

exposure to phthalates

Elevated blood pressure Amin et al., 2018

Spanish INMA-Sabadell Birth Cohort Study, Children

4–7 years old; Early life exposure to phthalates

Lower systolic blood pressure z-score in girls Valvi et al., 2015

Cross-sectional study, Children 6–19 years old;

Early life exposure to di-2-ethylhexyl phthalate

(DEHP)

Increase systolic blood pressure Trasande et al., 2013b

Cross-sectional study, Children 9–14 years old;

Early life exposure to phthalates

Increased total cholesterol, systolic and diastolic

blood pressure

Tran et al., 2017

Rar (Sprague-Dawley), Gestational exposure, DEHP

300 mg/kg/day

Reduced locomotor activity; elevated blood

pressure.

Martinez-Arguelles

et al., 2013

Rat, lactational exposure, DEHP 0, 1, 10, and 100

mg/kg /day

Altered expression of insulin signaling molecules in

heart tissue of the offspring

Mangala Priya et al.,

2014

Heavy metals Population study; MINIMat cohort study in

Bangladesh, Perinatal exposure to arsenic (As)

Increased risk of myocardial infarction (MI), vascular

lesions and thickening of the arteries; increased

blood pressure; risk comparatively higher in females

Rosenberg, 1973,

1974; Yuan et al.,

2007; Hawkesworth

et al., 2013; Rahman

et al., 2013

Cross-sectional study, Children 3–14 years old;

Early life exposure to As

Increase in carotid intima-media thickness (cIMT),

increase blood pressure, greater left ventricular

mass and a lower rejection fraction

Osorio-Yanez et al.,

2013, 2015

Mice (Apolipoprotein E deficient), in utero exposure,

As 85 mg/L daily, GD8 to GD 20

Early onset of atherosclerosis Srivastava et al., 2007

Several studies link early-life epigenetic changes with
dysregulation of metabolic parameters. Early-life exposure to
BPA can promote hypermethylation of imprinted genes like

IGF2, resulting in impairment of β-cell function in the pancreas
of offspring (Mao et al., 2017) and pregnant mothers (Bateman
et al., 2017). Maternal exposure to BPA might inhibit the
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FIGURE 1 | Multiple effects of exposure to endocrine disrupting chemicals (EDCs). EDCs might act through multiple mechanisms to alter cell fate and function.

Early-life exposure to EDCs might cause epigenetic dysregulation, pro-inflammatory changes, and changes in energy homeostasis and glucose regulation. These

could adversely affect the cardiometabolic renal health of offspring.

expression of pancreatic and duodenal homeobox-1(Pdx1) gene
through deacetylation, demethylation of histone 3 lysine 4
(H3K4), and methylation of histone 3 lysine 9 (H3K9), leading
to impaired β-cell development in the offspring (Chang et al.,
2016). Maternal BPA exposure also inhibits hepatic glucokinase
(Gck) expression through hypermethylation (Maet al. 2013;
Liet al., 2014). BPA might exert hyperlipidemic effects through
epigenetic modifications of hepatic genes Fasn, Nrf2, and SREBP-
1C, which are involved in lipid metabolism (Strakovsky et al.,

2015; Shimpi et al., 2017). Similarly, prenatal exposure to
DES caused developmental programming of obesity through
hypermethylation of the homeobox gene HOXA10 and other
region-specific alterations (Bromer et al., 2009). Prenatal BPA
exposure could also promote long-term weight gain through its
effect on imprinted genes, such as MEST (Junge et al., 2018) and
IGF2R (Choi et al., 2020).

Mono-(2-ethylhexyl)phthalate exposure in RAW 264.7 cells
was found to cause inflammation through sirtuins (Park et al.,
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2019a). Phthalates might also induce miRNAs modifications to
alter the cholesterol efflux in RAW 264.7 cells (Park et al., 2019b).
Maternal exposure to phthalates (DEHP) was also associated
with altered DNA methylation in liver (Wen et al., 2020) and
hypermethylation of genes (Pdx1, Pax4/6, and HNF-4α) involved
in pancreatic β-cell development (Rajesh and Balasubramanian,
2015). All these could promote diabetes and obesity phenotype,
which was closely linked with metabolic syndrome.

Non-epigenetic effects on glucose metabolism and
adipogenesis have also been observed. Adult exposure to
cadmium was found to inhibit key glucose metabolizing enzymes
involved in glycolysis, a pentose pathway, gluconeogenesis,
and a glycogenesis process through its binding to cysteine-SH
residues (Viselina and Luk’Yanova, 2000; Ramírez-Bajo et al.,
2014). Cadmium also affects the synthesis, transportation, and
metabolism of lipids (Lucia et al., 2010; Yang et al., 2013). Arsenic
might also interfere with glucose metabolism through binding
with the thiol-containing enzymes (Kannan and Flora, 2004).
It can also affect the binding of substrate to insulin receptors
and alter adipogenic differentiation and glucose homeostasis
(Garciafigueroa et al., 2013; Castriota et al., 2020). Arsenic might
also interfere and replace the phosphate group in enzymes
involved in glycolysis and oxidative phosphorylation through a
process known as “arsenolysis” (Kannan and Flora, 2004).

The promotion of persistent inflammation and oxidative
stress is another common theme across multiple EDCs.
Cadmium is associated with oxidative stress in the pancreas
(Lei et al., 2005). Arsenic can also promote oxidative stress
through both mitochondria-dependent (Naranmandura et al.,
2011) and independent mechanisms (Kannan and Flora, 2004;
Shi et al., 2004; Naranmandura et al., 2011). Upon exposure
to arsenic, there could be the production of nitric oxide and
superoxide anions, which can subsequently be converted to
reactive species to cause oxidative stress and cellular damage
through mitochondria-independent mechanisms. Many human
and animal studies have demonstrated that EDCs might
modulate the immune system and alter the inflammatory
cytokine milieu in both the mother and the fetus (Ferguson
et al., 2011; Dietert, 2012; Song et al., 2017). Cohort studies on
pregnant mothers have demonstrated that detectable levels of
paraben and phenols in the urine were associated with abnormal
inflammatory cytokine levels in the blood (Watkins et al.,
2015; Zota et al., 2018). Aberrant maternal proinflammatory
state, in turn, is associated with adverse birth outcomes,
including complete loss, preterm labor, preeclampsia, and
fetal growth restriction (Cotechini and Graham, 2015; Amaral
et al., 2017; Boyle et al., 2017; Catalano and Shankar,
2017).

Several signaling intermediates have been associated with
early-life exposure to EDCs and inflammation. Maternal
cadmium exposure might activate NF-κB to stimulate the
expression of inflammatory cytokines (Ronco et al., 2011).
Chronic inflammation after BPA exposure was associated with
activation of JNK and NF-kB-signaling pathways that was
followed by upregulation of inflammatory cytokines (Savastano
et al., 2015; Liao et al., 2016). Exogenous exposure to BPA induced
mitochondrial damage in INS-1 cells (Lin et al., 2013; Shirani

et al., 2019), along with induction of other proapoptotic proteins
(Gong et al., 2017; Wang et al., 2017; Kaur et al., 2018) and
cytochrome C release (Hwang et al., 2013).

Many EDCs might modulate physiological processes and
hormonal action in a non-monotonic manner (Casals-Casas and
Desvergne, 2011; Vandenberg et al., 2012; MacKay and Abizaid,
2018) through their effect on hormone receptors. BPA can
promote metabolic disorders through its endocrine-disrupting
effect on multiple nuclear receptors, including the estrogen
(Ohlstein et al., 2014; Acconcia et al., 2015), glucocorticoid
(GR) (Zhang et al., 2019), and aryl hydrocarbon receptor (AhR)
(Nishizawa et al., 2005). BPA might act as anestrogen receptor
alpha (ERα) agonist through activation of ERα ligand bonding
domain (LBD), although it cannot activate the LBD of estrogen
receptor beta (ERβ). Thus, it acts as an ERβ antagonist through
inhibition of the downstream p38/MAPK pathway (Ascenzi et al.,
2006; Bolli et al., 2010). BPA can also enhance adipogenesis
through GR activation and translocation in 3T3L1 cells (Sargis
et al., 2010; Atlas et al., 2014). Some in silico studies also
demonstrate its activity on GR (Prasanth et al., 2010; Zhang
et al., 2017). Although BPA cannot directly activate the nuclear
receptor PPARγ (Ohlstein et al., 2014), its analogs are known to
act through activation of PPARγ-RXR complex (Riu et al., 2011).
In utero exposure to BPA has been also shown to increase the
expression of AhR at both RNA and protein levels (Nishizawa
et al., 2005). Phthalates are also known to act on hormone-
signaling agents to enhance cell proliferation (Jin et al., 2008;
Chen et al., 2016). They can either activate the downstream
estrogen signaling (Lee et al., 2014) or stimulate AhR and
downstream signaling (Hsieh et al., 2012). Adult exposure to
phthalates is also reported to cause estrogen receptor stress and
autophagy in zebrafish liver through activation of the IRE-XBP1
pathway (Zhang et al., 2021).

Heavy metals, including arsenic and cadmium, can also alter
hormone signaling by interacting with ERα (Stoica et al., 2000)
and GR (Simons et al., 1990). Mercury is also known to inhibit
the endogenous hormone binding of GR and mineralocorticoid
receptor (MR) (Galigniana and Piwien-Pilipuk, 1999; Brkljačić
et al., 2004). Arsenic can target the DNA-binding domain (DBD)
of GR to inhibit gene expression in rat EDR3 hepatoma cells
at higher doses, while the effects are stimulatory at lower
doses (Bodwell et al., 2004). Perinatal exposure to arsenic can
interfere with MAPK signaling through the reduction in Ras
and Raf expression, which are downstream of GR (Martinez-
Finley et al., 2011; Caldwell et al., 2015). Chronic exposure to
arsenic is known to reduce the circulatory estradiol levels as
well as the expression of estrogen receptor and the estrogen-
responsive genes (VEGF, cyclin D1, and CDK4) in the uterus
(Chatterjee and Chatterji, 2010). Cadmium is also reported to
act as a metalloestrogen (Aquino et al., 2012). In vitro studies
have shown that cadmium could affect the estrogen receptor
either through binding to LBD (Stoica et al., 2000) or replacing
the Zn2+ in DNA binding domain (DBD) of ERα (Low et al.,
2002; Nesatyy et al., 2005). In vivo studies on the zebrafish
brain have also shown that the estrogen receptor antagonistic
activity of cadmium can be ameliorated by Zn treatment
(Chouchene et al., 2016).
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CONCLUSION

The clustering of metabolic and cardiovascular risk factors,
which was previously known as “syndrome X,” is now
referred to as “cardiometabolic syndrome” (CMS). Prenatal
exposure to EDCs could cause adverse metabolic alterations,
which are closely linked with CKD and CVD. The possible
unifying mechanism could involve fundamental changes in
the hormonal and epigenetic imprints caused due to EDCs
exposure during fetal development. This could permanently
alter the baseline inflammatory state and affect adipocyte
development in the offspring. All these factors could increase
the overall risk for cardiovascular disease, diabetes, and CKD

in offspring. Developmental exposure to EDCs may thus
be imprinting a risk phenotype for overall cardio-metabolic-
renal health (CMR-health) in later life, which needs to be
studied further.
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