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The resting activity of the brain can be described by so-called intrinsic connectivity

networks (ICNs), which consist of spatially and temporally distributed, but functionally

connected, nodes. The coordinated activity of the resting state can be explored via

magnetoencephalography (MEG) by studying frequency-dependent functional brain

networks at the source level. Although many algorithms for the analysis of brain

connectivity have been proposed, the reliability of network metrics derived from both

static and dynamic functional connectivity is still unknown. This is a particular problem

for studies of associations between ICN metrics and personality variables or other traits,

and for studies of differences between patient and control groups, which both depend

critically on the reliability of the metrics used. A detailed investigation of the reliability

of metrics derived from resting-state MEG repeat scans is therefore a prerequisite for

the development of connectomic biomarkers. Here, we first estimated both static (SFC)

and dynamic functional connectivity (DFC) after beamforming source reconstruction

using the imaginary part of the phase locking index (iPLV) and the correlation of

the amplitude envelope (CorEnv). Using our approach, functional network microstates

(FCµstates) were derived from the DFC and chronnectomics were computed from the

evolution of FCµstates across experimental time. In both temporal scales, the reliability

of network metrics (SFC), the FCµstates and the related chronnectomics were evaluated

for every frequency band. Chronnectomic statistics and FCµstates were generally

more reliable than node-wise static network metrics. CorEnv-based network metrics

were more reproducible at the static approach. The reliability of chronnectomics have

been evaluated also in a second dataset. This study encourages the analysis of MEG

resting-state via DFC.

Keywords: MEG, resting-state, time-varying network analysis, chronnectomics, functional connectivity

microstates, symbolic analysis, reproducibility
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INTRODUCTION

The coordination of spontaneous activity can be characterized
with functional connectivity (FC), which refers to statistical
dependencies between the activity of distinct brain areas (Pereda
et al., 2005) and has been linked to the efficiency of an individual’s
brain functioning (Baldassarre et al., 2012; Yamashita et al., 2015).

A functional connectivity graph (FCG) can be constructed
by estimating the statistical dependencies between the brain
activity of all the areas in a pair-wise fashion. An FCG represents
statistical or causal relationships measured as cross-correlations,
coherence, or information flow (Dimitriadis et al., 2009, 2015d).

Neuroscientists first examined resting-state FC with
functional magnetic resonance imaging (fMRI) by correlating
blood oxygenation level-dependent (BOLD) signals (Biswal
et al., 1995; van den Heuvel et al, 2009; Biswal, 2011, 2012).
After 20 years of using fMRI as a dominant neuroimaging
tool, the community has succeeded in mapping brain areas to
specific brain functions, creating an anatomical-functional atlas
(Bandettini, 2012). Although fMRI is of high interest and a key
modality to explore human brain function, ultra-slow activity
described via BOLD signals is only an indirect measure of brain
activity (Logothetis, 2008).

In the last few years, greater attention has been given to
explore FC via electro-magneto-encephalography. Even though
the spatial resolution of magnetoencephalography (MEG)
is lower when compared to fMRI, MEG can capture the
multiplexity of human brain activity by providing insight
into the spectro-temporo-spatial dynamics of human brain
activity. MEG-based FC provides us with a direct measure of
neuromagnetic activity with a high temporal resolution (Deco
et al., 2011).

Resting-state networks (RSNs) have been successfully
extracted with MEG over the past few years using source-space
FC (de Pasquale et al., 2010; Brookes et al., 2011a,b; Hipp et al.,
2012; Luckhoo et al., 2012; Hall et al., 2013; Wens et al., 2015).
Moreover, resting-state MEG FC has been proven to detect
abnormal brain functioning in a variety of diseases, including
Alzheimer’s disease (López et al., 2014, 2017; Engels et al.,
2015), multiple sclerosis (Tewarie et al., 2015), in schizophrenia
(Bowyer et al., 2015), in dyslexia (Dimitriadis et al., 2013b,
2015c), in mild cognitive impairment (Dimitriadis et al., 2015b)
and in mild traumatic brain injury (Dimitriadis et al., 2015c;
Dunkley et al., 2015; Antonakakis et al., 2016, 2017).

Several studies have thus captured alterations of MEG

parameters in the resting state in order to estimate FC in disease

groups compared to controls. However, FC estimates at resting-
state could be affected by subject’s cognitive, emotional state and

other scanning-related systematic differences. For that reason,

it is unclear up to which level FC estimates are repeatable
for an individual. Moreover, in large studies of hundreds of

participants, there is a significant cost, both in financial resources
and time, to scan all the subjects two or more times. To
establish MEG as a clinically reliable neuroimaging tool that
can distinguish disease from healthy populations, the reliability
of FC patterns should be explored from repeat scans. Up
to date, only a few studies accessed the test-retest reliability

of MEG/electroencephalography (EEG) FC (Jin et al., 2011;
Hardmeier et al., 2014; Garcés et al., 2016) while only one
study has quantified the test-retest reliability of FC estimates
in the source-space MEG (Garcés et al., 2016). Colclough et al.
(2016) attempted to report the reliability of every edge-weighted
connections with a high number of connectivity estimators
but using a split-half strategy from a large pool of subjects.
Practically, the results cannot be adopted as reliability of static
network metrics since the analysis involved single MEG scan
recordings. However, no study has ever explored the reliability
of both static and dynamic networks at the source space in
MEG.

In the present study, we investigated the test-retest reliability
of both static and dynamic FC measures derived from MEG
resting-state data. For that purpose, we computed whole-brain
FC for 40 subjects who were scanned twice with a 1-week test-
retest interval. For each subject and session, MEG-beamformed
source activity was estimated and FC was computed between 90
brain areas. FC was estimated with the imaginary part of the
phase locking index (iPLV) and the correlation of the amplitude
envelope (CorEnv) in both static (SFC) and dynamic models
(DFC) by adopting a sliding window approach (de Pasquale
et al., 2010; Dimitriadis et al., 2010a, 2012a, 2013a, 2015a, 2016a,
2017a; Dimitriadis and Salis, 2017c). Afterwards, statistical and
topological filtering schemes were applied to both SFC and DFC
to reveal the true topology (Dimitriadis et al., 2017a,b). For the
SFC approach, we estimated well-known network metrics in a
node-wise fashion and the reliability was accessed via correlation
values between the two measurements and across the cohort.
Graph-based reliability was assessed with a novel graph diffusion
distance metric.

For the DFC approach, node-wise network metrics were
estimated across experimental time. To explore spatio-
temporally the derived network activity, we first designed
a codebook of prototypical network microstates and then
assigned each of the instantaneous connectivity patterns to
the most similar code symbol (e.g., functional connectivity
graph—FCG) (Dimitriadis et al., 2010a, 2012a, 2013a,b, 2015a,
2016a,b; Dimitriadis and Salis, 2017c). A codebook is a set of
prototypical functional connectivity graphs (FCGs). In this way,
we derive a unique symbolic time series from each individual
where each symbol corresponds to one of the predefined
prototypical functional connectivity microstates (FCµstates).
The evolution of these symbol-patterns encapsulates significant
state transitions. Furthermore, the evolution of these FCµstates
can be seen as a first order Markovian Chain (MC) that can be
modeled representing an individualized state transition model of
resting-state FCµstates. Fractional occupancy of each FCµstate,
transition rates of FCµstates and MCmodels are the key features
to explore the reliability of chronnectome in MEG source space.
The group-consistency of subject-specific FCµstates was further
explored. The whole analysis of dynamic functional connectivity
graphs and the definition of FCµstates have been described in
previous paper (Dimitriadis et al., 2013a).

Many techniques have already been proposed to summarize
brain activity into short-lived transient brain states using
the spectrum of neuromagnetic recordings (Vidaurre et al.,
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2016) and also the band-limited amplitude envelopes of source
reconstructed MEG data (Baker et al., 2014; O’Neill et al.,
2015). In detail, Vidaurre et al. (2016) proposed a combination
of multivariate autoregressive model with hidden markovian
modeling (MAR-HMM) in order to model the temporal, spectral
and spatial properties of MEG reconstructed activity into very
short-lived brain states. Similarly, (Baker et al., 2014) modeled
resting-state source-reconstructed MEG activity with HMM into
distinct spatio-temporal activation profiles called brain states.
These brain states were linked to well-known anatomical brain
areas. O’Neill et al. (2015) mined MEG source activity from two
tasks, a self-paced motor and a Sternberg working memory task.
He used a sliding window canonical correlation analysis (CCA)
to estimate the functional connectivity at each time-window
and a k-means clustering to detect repeatable spatial patterns of
connectivity that form transiently synchronizing sub-networks
(TSNs) or functional connectivity microstates. Here, we must
underline the distinction of summarizing brain activity using the
raw time series (ROIs × sliding windows; Baker et al., 2014;
Vidaurre et al., 2016) which is a 2D matrix and the dynamic
functional brain networks (ROIs × ROIs × sliding windows)
which is a 3Dmatrix (O’Neill et al., 2015). Currently the mapping
and the relationship between raw activity and brain connectivity
and also the relationship of microstates (raw activity) with
functional connectivity microstates (dynamic graphs; Allen et al.,
2012; Dimitriadis et al., 2013a,b, 2015a, 2016a,b; Dimitriadis and
Salis, 2017c) is still unknown. Further research is needed to
explore their mapping at resting-state and during tasks.

The proposed methodological scheme entails two distinct
ways of analyzing dynamic functional connectivity patterns.
These patterns are representative brain network topologies
across subjects and brain rhythms and are directly linked
to a brain state (Buzsáki and Draguhn, 2004). The very
first approaches in fMRI constitutes novel contributions
to an emerging neuroimaging field called chronnectomics
(Allen et al., 2012; Calhoun et al., 2014). Previously, we
reported the notion of FCµstates (Dimitriadis et al., 2013a)
and the developmental trends in cognition (Dimitriadis
et al., 2015a) using electroencephalographic recordings.
The concept of chronnectome is the incorporation of a
dynamic view of functional brain connectivity networks and
the evolution of revisiting distinct spatio-temporal brain
states (functional connectivity microstates—FCµstates).
To the best of our knowledge, this study constitutes
the first attempt to assess the test-retest reliability of
Dynamic Functional Connectivity at the MEG source
level.

Despite growing enthusiasm in the neuroscience community
about the potential contribution of neuroimaging and especially
brain networks in the designing of connectomic biomarkers
for various brain diseases/disorders, many challenges remain
open (Stam, 2014). At first level, it is more than significant
to explore how reliable are network metrics at both temporal
scales (static and dynamic) by analyzing a group of control
subjects with repeat scans (e.g., diffusion MRI: Dimitriadis
et al., 2017d). Here, we assess evidence of the reliability of
neuromagnetic (MEG) based functional connectomics to lead to
potential clinically meaningful biomarker identification in target

populations through the lens of the criteria used to evaluate
clinical tests.

MATERIALS AND METHODS

Subjects
40 healthy subjects (age 22.85 ± 3.74 years, 15 women and 25
men) underwent two resting-state MEG sessions (eyes open)
with a 1-week test-retest interval. For each participant, scans
were scheduled at the same day of the week and same time of
the day. The duration of MEG resting-state was 5min for every
participant. The study was approved by the Ethics Committee of
the School of Psychology at Cardiff University, and participants
provided informed and written consent.

MEG-MRI Recordings
Whole-head MEG recordings were made using a 275-channel
CTF radial gradiometer system. An additional 29 reference
channels were recorded for noise cancelation purposes and
the primary sensors were analyzed as synthetic third-order
gradiometers (Vrba and Robinson, 2001). Two or three of the
275 channels were turned off due to excessive sensor noise
(depending on time of acquisition). Subjects were seated upright
in the magnetically shielded room. To achieve MRI/MEG co-
registration, fiduciary markers were placed at fixed distances
from three anatomical landmarks identifiable in the subject’s
anatomical MRI, and their locations were verified afterwards
using high-resolution digital photographs. Head localization was
performed before and after each recording, and a trigger was sent
to the acquisition computer at relevant stimulus events.

All datasets were either acquired at or down-sampled to
600Hz, and filtered with a 1-Hz high-pass and a 200-Hz lowpass
filter. The data were first whitened and reduced in dimensionality
using principal component analysis with a threshold set to
95% of the total variance (Delorme and Makeig, 2004). The
statistical values of kurtosis, Rényi entropy and skewness of
each independent component were used to eliminate ocular
and cardiac artifacts. Specifically, a component was deemed
artifactual if more than 20% of its values after normalization to
zero-mean and unit-variance were outside the range of [−2, +2]
(Delorme and Makeig, 2004; Escudero et al., 2011; Antonakakis
et al., 2016). The artifact-free multichannel MEG resting-state
recordings were then entered in the beamforming analysis (see
next section).

Subjects further underwent an MRI session in which a 3T
GE scanner with an eight-channel receive-only head RF coil T1-
weighted 1-mm anatomical scan was acquired, using an inversion
recovery spoiled gradient echo acquisition.

Beamforming
An atlas-based beamformer approach was adopted to project
MEG data from the sensor level to source space independently
for each brain rhythm. The frequency bands studied were: δ

(0.5–4Hz), θ (4–8Hz), α1 (8–10Hz), α2 (10–13Hz), β1 (13–
20Hz), β2 (20–30Hz), γ1 (30–45Hz), γ2 (55–90Hz). First, the
coregistered MRI was spatially normalized to a template MRI
using SPM8 (Weiskopf et al., 2011). The AAL atlas was used to
anatomically label the voxels, for each participant and session,
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TABLE 1 | Optimization of the width of temporal window and the stepping criterion per frequency band and for both connectivity estimators.

δ Θ α1 α2 β1 β2 γ1 γ2

iPLV {time window, step} {2, 0.5} {3, 0.4} {4, 0.4} {4, 0.4} {6, 0.3} {6.5, 0.3} {8, 0.2} {8.5, 0.2}

CorEnv {time window, step} {2, 0.5} {3, 0.4} {5, 0.4} {5, 0.4} {7, 0.3} {7, 0.3} {8, 0.3} {9, 0.2}

in this template space (Tzourio-Mazoyer et al., 2002). The 90
cortical regions of interest (ROIs) were used for further analysis,
as is common in recent studies (Hillebrand and Barnes, 2002;
Hillebrand et al., 2016; Hunt et al., 2016). Next, neuronal
activity in the atlas-labeled voxels was reconstructed using the
LCMV source localization algorithm as implemented in Fieldtrip
(Oostenveld et al., 2011).

The beamformer sequentially reconstructs the activity for each
voxel in a predefined grid covering the entire brain (spacing
6mm) by weighting the contribution of each MEG sensor to a
voxel’s time series—a procedure that creates the spatial filters
that can then project sensor activity to the cortical activity.
Each ROI in the atlas contains many voxels, and the number
of voxels per ROI differs. To obtain a single representative
time series for every ROI, we defined a functional-centroid
ROI representative by functionally interpolating activity from
the voxel time series, within each ROI, in a weighted fashion.
Specifically, we estimated a functional connectivity map between
every pair of source time series within each of the AALs ROIs
(Equation 1) using correlation (Equation 2). We then estimated
the connectivity strength of each voxel within the ROI by
summing its connectivity values to other voxels within the same
ROI (Equation 3) and finally we normalized each strength by the
sum of strengths (Equation 4) to estimate a set of weights within
the ROI that sum to a value of 1. Finally, we multiplied each voxel
time series with their respective weights and we summed across
them in order to get a representative time series for each ROI
(Equation 5). The whole procedure was applied independently
to every quasi-stable temporal segment derived by the settings of
temporal window and stepping criterion.

The following Equations 1–5 demonstrated the steps for this
functional interpolation.

ROImap ∈ ℜvoxelsxvoxels ,Voxels ∈ no of voxel timeseries within

each ROI (1)

SVoxels =

Voxels
∑

k = 1

Voxels
∑

l = k+1

corr(ROI
map

k
(t),ROI

map

l
(t)),

SVoxels ∈ ROI x ROI (2)

SS =

Voxels
∑

k = 1

corr(k, :) , Svoxels ∈ 1xROI (3)

Wk =
SS

Voxels
∑

k = 1

SS

(4)

ROIactivity =

Voxels
∑

k = 1

ROItime series∗Wk (5)

The outline of the methodology is described in Figure 1. An
exemplar of the representative bandpass filtered ROI based time
series is given in Figure 1. Figure 2 illustrates the preprocessing
steps described in Equations (1–5).

Functional Connectivity
Here, functional connectivity was examined among the following
8 brain rhythms of the typical sub-bands of electrophysiological
neural signals {δ, θ, α1, α2, β1, β2, γ1, γ2}, defined respectively
within the ranges {0.5–4Hz; 4–8Hz; 8–10Hz; 10–13Hz; 13–
20Hz; 20–30Hz; 30–45Hz; 55–90 Hz}. For both static and
dynamic approach, we used two estimators: the correlation of the
amplitude envelope (CorEnv) and the imaginary part of the phase
locking value (iPLV).

Intra-Frequency Connectivity Estimators
Among the available connectivity estimators, we adopted one
based on the imaginary part of phase-locking value (iPLV)
(Lachaux et al., 1999) and adjusted properly so as to extract
time-resolved profiles of intra-frequency coupling from MEG
multichannel recordings at resting state. The original PLV is
defined as follows:

PLV =
1

T

T
∑

t = 1

ei(ϕ
(t)
k
,ϕ

(t)
l
) (6)

where k, l denote a pair of MEG sources and the imaginary part
of PLV is equal to:

Im{PLV} =
1

T

∣

∣

∣

∣

∣

Im

{

T
∑

t = 1

ei(ϕ
(t)
k
,ϕ

(t)
l
)

}∣

∣

∣

∣

∣

(7)

The imaginary part of PLV (iPLV) investigates intra-frequency
interactions without putative contributions from volume
conductance. In general, the iPLV is mainly sensitive to non-
zero-phase lags and for that reason is resistant to instantaneous
self-interactions from volume conductance (Nolte et al., 2004).
In contrast, it could be sensitive to phase changes that not
necessarily imply a PLV oriented coupling.

Correlation of the Envelope coupling (CorEnv) is based upon
correlation between the oscillatory envelopes of two frequency
band limited sources (Brookes et al., 2012). See Figure 1 for a
schematic diagram of phase and envelope based connectivity
analyses based upon neural oscillations. Correlation of the
Envelope coupling (CorEnv) is based upon correlation between
the oscillatory envelopes of two band limited sources (A) while
phase coupling searches for a constant phase lag between signals,
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FIGURE 1 | Outline of the methodology for accessing the reliability of network metrics derived from functional connectivity graphs (FCGs). (SF-Statistical Filtering,

TF-Topological Filtering, FCE-Functional Connectivity Estimator). Statistical and topologically filtering of the FCGs will be described in sections Surrogate Data Analysis

of iPLV/CorEnv Estimates—Statistical Filtering of Brain Networks and A data-driven Topological Filtering Scheme based on Orthogonal Minimal Spanning Trees

(OMSTs), correspondingly. One can understand how from a full-weighted FCG, a more sparse version is derived via the statistical and topological filtering approaches.

FIGURE 2 | Step-by-step construction of the representative virtual sensor time series for each ROI. (A) Plot of 108 voxel time series from left precentral gyrus. (B)

Distance correlation matrix SVoxels derived by the pair-wise estimation of the 108 voxel time series. (C) Summation of the columns of SVoxels produced the vector SS.

(D) Normalization of vector SS that further produces Wk where its sum equals to 1. (E) Multiplying every voxel time series with the related weight from the Wk. In this

example, we demonstrated this multiplication for the first and last voxel time series. (F) The reproduced voxel time series for left precentral gyrus (ROI activity). after

summing the weighted versions of every voxel time series from (E).

in the example a difference of π (B). The time series for the
estimation of CorEnv were orthogonalized between each other
using the bivariate version of this correction for signal leakage
effects (Colclough et al., 2015).

Static Functional Connectivity Analysis
Using both connectivity estimators, we estimated the fully-
weighted (90 × 90) anatomical oriented FCG, one for each
subject, recording session and frequency band. To construct the

static FCG (SFCG), we incorporated in the analysis the whole
5min of the recording session.

Dynamic iPLV Estimates: The Time-Varying
Integrated iPLV Graph (TVIiPLV Graph)
The goal of the analytic procedures described in this section was
to understand the repertoire of phase-to-phase interactions and
their temporal evolution, while taking into account the quasi-
instantaneous spatiotemporal distribution of iPLV estimates.
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This was achieved by computing one set of iPLV estimates
within each of a series of sliding overlapping windows spanning
the entire 5-min continuous MEG recording for eyes-open
condition. The width of the temporal window and the stepping
criterion were optimized for each frequency band separately
using as objective criterion the reliability of transition dynamics
between scan session 1 and 2 for each brain rhythm (Dimitriadis
et al., 2013a; see sections State Transition Rate and Optimizing
theWidth of the Time-Window and the Stepping Criterion). The
center of the stepping window moved forwards every frequency-
dependent time-window (see sections Optimizing the Width
of the Time-Window and the Stepping Criterion and Tuning
Parameters for Dynamic Functional Connectivity Analysis) for
the optimization of the parameters) for every intra-frequency
interactions and a new functional brain network is re-estimated
between every pair of “swifting” temporal segments of MEG
activity, from two sources, leading to a “quasi-stable in time”
static iPLV graph. In this manner, a series of 598 (for δ) to 2,140
(for γ2) iPLV graph estimates were computed for each frequency
(8 within frequency), for each participant and for both repeat
scans.

For each subject, a 4D tensor (frequencies bands (8) ×

slides (598–2,140) × sources (90) × sources (90); see sections
Optimizing the Width of the Time-Window and the Stepping
Criterion and Tuning Parameters for Dynamic Functional
Connectivity Analysis) was created for each condition integrating
subject-specific spatio-temporal phase interactions (Figure 3A).

Surrogate Data Analysis of iPLV/CorEnv
Estimates—Statistical Filtering of Brain
Networks
To identify significant iPLV/CorEnv-interactions which were
estimated for every pair of frequencies within and between all
90 sources, and at each successive sliding window (i.e., temporal
segment), we employed a surrogate data analysis. Accordingly,
we could determine (a) if a given iPLV/CorEnv value differed
from what would be expected by chance alone, and (b) if a
non-zero iPLV/CorEnv corresponded to non-spurious coupling.

For every temporal segment, sensor-pair and frequency, we
tested the null hypothesis H0: “the observed iPLV/CorEnv value
comes from the same distribution as the distribution of surrogate
iPLV/CorEnv-values”. One thousand surrogate time-series were
generated by cutting at a single point at a random location the
original time series and exchanging the two resulting time courses
(Aru et al., 2015). We restricted the range of the selected cutting
point in a temporal window of width up to 10 s in apart from
the middle of the recording session (between 140 and 160 s).
This surrogate scheme was applied to the original whole time
series and not to the signal-segment at every slide. Repeating this
procedure leads to a set of surrogates with a minimal distortion
of the original phase dynamics, while the non-stationarity of the
brain activity is less destroyed compared to shuffling the time
series or cutting and rebuilding it in more than one time points.

This procedure ensures that the real and surrogate indices
both have the same statistical properties. For each data set, the
surrogate iPLV/CorEnv (siPLV/sCorEnv) was then computed.

We then determined a one-sided p-value for each iPLV/CorEnv

value that corresponded to the likelihood that the observed value
could belong to the surrogate distribution. This was done by
directly estimating the proportion of “surrogate” siPLV/sCorEnv

that was higher than the observed iPLV/CorEnv. The p-value
reflected the statistical significance of the observed iPLV/CorEnv-
level (a very low value revealed that it could not have appeared
from processes with no iPLV coupling).

At a second level, we applied the FDR method (Benjamini
and Hochberg, 1995) to control for multiple comparisons within
each snapshot of the dynamic graph (FCG—a 90 × 90 matrix
with tabulated p-values) with the expected fraction of false
positives set to q ≤ 0.01. Finally, for each subject the resulting
TViPLV/TVCorEnv profiles constituted of two 3D arrays of size
[598 to 2,140 for δ to γ2 (time windows) × 90 (sources) ×

90 (sources)] with a value of 0 indicated a non-significant
iPLV/CorEnv value.

The aforementioned statistical filtering approach was applied
independently for each frequency band, session, subject, and
connectivity estimator for both static and dynamic functional
connectivity graphs.

A Data-Driven Topological Filtering
Scheme Based on Orthogonal Minimal
Spanning Trees (OMSTs)
As well as the statistical filtering approach, it is important to
adopt a data-driven topological filtering approach in order to
reveal the backbone of the network topology over the increment
of information flow.

Recently, it was proved that MST is an unbiased method that
yields reliable network metrics (Tewarie et al., 2015). In this
study, we adopt a variant of this topological filtering scheme
called orthogonal minimal spanning trees (OMST), which leads
to a better sampling of brain networks, preserving the advantage
of MST, that connects the whole network with minimum cost
without introducing cycles and without differentiated strong
from weak connections compared to the absolute threshold or
the density threshold (Dimitriadis et al., 2017a,b). MST is too
sparse to capture the “true” network and for that reason leading
to the selection of N-1 connections where N denotes the number
of nodes. We introduced OMST which samples the weights of a
brain network via the notion of MST and under the optimization
of the global information flow under the constraint of the total
Cost of preserving the functional connections (Dimitriadis et al.,
2017b,d).

Our criterion for topologically filtering a given brain network
is based on the maximum value of the following quality formula:

JOMSTs
GCE = GE− Cost (8)

We applied the data-driven topological filtering scheme based
on OMST at every static and quasi-instantaneous FCG from
the dynamic DFCG. After statistical and topological filtering
approaches applied to both SFCG and the DFCG, we estimated
network metrics at the node/source level.
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FIGURE 3 | From dynamic functional connectivity graphs (DFCG) to FCµstates. (A) A characteristic bandpass filtered time series for each of the studying frequency

band is given from a ROI. (B) Topologies of snapshots of DFCG from the three first temporal segments from δ band of subject 1 in order to make clear the estimation

of FCG in a dynamic fashion. The first three brain networks refer to the first three temporal segments demonstrated in (A). These functional brain networks were

statistically and topologically filtered as described in sections Surrogate Data Analysis of iPLV/CorEnv Estimates—Statistical Filtering of Brain Networks and A

data-driven Topological Filtering Scheme based on Orthogonal Minimal Spanning Trees (OMSTs). The tN refers to the last temporal segment of the DFCG. (C)

Laplacian matrices for a few snapshots of DFCG. (D) The dynamic evolution of the eigenvalues of the laplacian matrices for each frequency band. An example for δ

frequency band. (E) Euclidean Distance matrix of the laplacian eigenvalues between every pair of temporal segments. (F) Reordering the correlation matrix in (E) to

enhance the visualization of the two clusters—Fcµstates illustrated in (G). (G) The prototypical Fcµstates in a circular visualization. (H) The outcome of this procedure

is a symbolic time series that can be seen as a first order Markovian Chain that expresses the evolution of FCµstates across experimental time. The transition

probabilities (TP) of this Markovian Chain based is illustrated in the 2 × 2 colored figure. One can understand that human brain demonstrates a preferred transition

from FCµstates2 to FCµstates1 compared to the opposite direction (see 2D colormap). The chronnectomics were derived from this symbolic time series. ED,

Euclidean distance; LEG, Laplacian EiGenvalues; ED, Euclide and distance; AAL, automated anatomical labeling; LEG, Laplacian EiGenvalues.

Frontiers in Neuroscience | www.frontiersin.org 7 August 2018 | Volume 12 | Article 506

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dimitriadis et al. Reliability of Chronnectomics in MEG-Beamformed Resting-State

Figure 1 demonstrates an example of a full-weighted FCG
after applying both statistical and topological filtering approach.
Our algorithm was validated over all the existing thresholding
schemes with a large EEG dataset over brain fingerprinting
and with a multi-scan fMRI dataset over reliability of nodal
network metrics (Dimitriadis et al., 2017a). Additionally, we
demonstrated the importance of a data-driven topological
filtering technique in functional neuroimaging by using OMST
in a multi-group study with MEG resting-state recordings
(Dimitriadis et al., 2017b). The MATLAB code of the OMST
method and also of the majority of existing filtering methods
can be downloaded from the: https://github.com/stdimitr/
topological_filtering_networks & researchgate https://www.
researchgate.net/profile/Stavros_Dimitriadis.

Graph Diffusion Distance Metric for Brain
Networks
In order to assess group and scan sessions differences in the
topologically filtered FCG at the single-case level, we computed
the Graph Diffusion Distance as a distance metric (Fouss et al.,
2012; Hammond et al., 2013) from the OMST-derived final
Functional Connectivity Graphs (FCG). The graph laplacian
operator of each subject-specific FCG was defined as L = D −

FCG, where D is a diagonal degree matrix related to FCG. This
method entails modeling hypothetical patterns of information
flow among sources based on each observed (static) SFCG. The
diffusion process on the person-specific FCG was allowed for a
set time t; the quantity that underwent diffusion at each time
point is represented by the time-varying vectoru(t) ∈ ℜN . Thus,
for a pair of sources i and j, the quantity FCGij (ui(t) − uj(t))
represents the hypothetical flow of information from i to j via the
edges that connect them (both directly and indirectly). Summing

all these hypothetical interactions for each sensor leads to u
′

j(t) =
∑

i
FCGij(ui(t)− uj(t)), which can be written as:

ui(t) = −Lu(t) (9)

where L is the graph laplacian of FCG. At time t = 0 Equation
9 has the analytic solution: u(t) = exp(−tL)u(0). Here exp(–tL)
is a N × N matrix function of t, known as Laplacian exponential
diffusion kernel (Fouss et al., 2012), and u(0) = ej, where ej ∈ ℜN

is the unit vector with all zeros except in the jth component.
Running the diffusion process through time t produced the
diffusion pattern exp(–tL)ej which corresponds to the jth column
of exp(–tL).

Next, a metric of dissimilarity between every possible pair
of person-specific diffusion-kernelized FCGs (FCG1, FCG2) was
computed in the form of the graph diffusion distance dgdd(t).
The higher the value of dgdd(t) between two graphs, the more
distinct is their network topology as well as the corresponding,
hypothetical information flow. The columns of the Laplacian
exponential kernels, exp(–tL1) and exp(–tL2), describe distinct
diffusion patterns, centered at two corresponding sources within
each FCG. The dgdd(t) function is searching for a diffusion time
t that maximizes the Frobenius norm of the sum of squared

differences between these patterns, summed over all sources, and
is computed as:

dgdd(t) =
∥

∥exp(−tL1)− exp(−tL2)
∥

∥

2

F
(10)

where ‖.‖Fis the Frobenius norm.
Given the spectral decomposition L = V3V, the laplacian

exponential can be estimated via

exp(−tL) = Vexp(−t3)V′ (11)

where for3, exp(–t3) is diagonal to the ith entry given by e−t3i ,i .
We computed dgdd(FCG1,FCG2) by first diagonalizing L1 and L2
and then applying Equations (9, 10) to estimate dgdd(t) for each
time point t of the diffusion process. In this manner, a single
dissimilarity value was computed for each pair of participants
based on their individual characteristic FCGs. For further details
see (Hammond et al., 2013). The GDDmetric can be downloaded
from:

https://github.com/stdimitr/multi-group-analysis-OMST-
GDD.

Static Network Metrics
After applying the statistical and topological filtering approach,
we estimated the global efficiency for each node in static
approach. The static approach leads to 90 (sources) values for
each network,metric, frequency band and session per subject.We
adopted complementary features that measure the importance of
each node in segregation, integration and the information flow
within a weighted functional brain network (Dimitriadis et al.,
2010a,b, 2013a,b, 2015a). In this study, we estimated four basic
network metrics, the global and local efficiency, the strength of
each node and the mean first passage time based on random
walks (Goñi et al., 2013).

Network global efficiency (GE) reflects the overall efficiency
of parallel information transfer within the entire set of 90 sources
and was estimated as the average source specific GE value over
all sources using the following formula (Latora and Marchiori,
2001):

GE =
1

N

∑

i∈N

∑

j∈N,j 6=i

(

dij
)−1

N − 1
(12)

where d denotes the shortest path length from i to j.
Local efficiency (LE) indicates how well the subgraphs

exchange information when a particular node is eliminated
(Achard and Bullmore, 2007). Specifically, each node is assigned
the shortest path length within its subgraph GiGi

LE =
1

N

∑

i∈N

nodalLEi =
1

N

∑

i∈N

∑

j,h∈Gi ,j,h6=i

(

djh
)−1

ki
(

ki − 1
) (13)

where ki corresponds to the total number of spatial (first level
neighbors) neighbors of the ii-th node, while d denotes shortest
path length.
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The strength is equal to the total sum of the weights of the
connections of each node.

As a fourth candidate network metric, we adopted the mean
first passage time (MFPT). Starting a random walk process on
a brain network, an analytic expression can give the probability
that a single particle departing from a node i arrives at node j
for the first time within exactly L steps (Wang and Pei, 2008).
This criterion can be applied for each MEG source pair by setting
L to their shortest-path-length. We denote with 5G =

[

πij
]

the
n × n symmetric matrix containing, for each pair of nodes, the
probability of a single particle going from node i to node j via the
shortest path. Each entry πij can be computed as

πij = 1−

n
∑

v= 1

[

B
ϕij
j

]

iv

, i 6= j (14)

where matrix Bj is the transition matrix P introduced above,
but with all zeros in the j-th column, i.e., with j acting as an
absorbing state (Wang and Pei, 2008). Evaluating shortest-path-
lengths ensures that ∀i, j πij > 0. By considering one particle

here, the average shortest-path probability of a graph is defined
as

5spl =

∑

i

∑

j πij

n (n− 1)
, i 6= j (15)

The derived 2D matrix based on nodal NMTS of GE, LE, MFPT
and strength will be modeled with the proposed method that is
described in the following section.

Modeling of Dynamic Functional
Connectivity Graphs (DFCG) as a 3D Tensor
This subsection serves as a brief introduction to our
symbolization scheme, presented in greater details elsewhere
(Dimitriadis et al., 2012a,b, 2013a,b). The dynamic functional
connectivity patterns can be modeled as prototypical functional
connectivity microstates (FCµstates). In a recent study,
we demonstrated a better modeling of dynamic functional
connectivity graphs (DFCG) based on a vector quantization
approach (Dimitriadis et al., 2013a). In our previous work
(Dimitriadis et al., 2013a,b, 2015a), we used the neural-gas

FIGURE 4 | Muldimensional Scaling Projection of Frequency-Dependent Static Functional Connectivity Graphs (FCGiPLV ) in a Common Feature Space. (A–H: δ-γ2)

Each subplot illustrates the (dis)similarities of static FCGs across scanning sessions and subjects. The 2D matrix demonstrates the (dis)similarities of the static FCGs

across the subjects and both repeat scans. Scanning sessions were coded with blue and red circles correspondingly and a black line connects the FCG of each

subject between the two scanning sessions. With this representation one can read out the similarity of a static FCG between two scanning sessions and participants.

Stress expresses the loss of information expressed in the projected Frequency-Dependent Static Functional Connectivity Graphs in 2D feature space from an original

80D space. The low stress values mean that the relationship of the 80 FCGs in the original 80 × 80 matrix is preserved in the projected 2D space. R1,2 refer to the 2D

projected space of the 80 FCGs. FCG, functional connectivity graph; gDD, graph diffusion distance.
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algorithm (Martinetz et al., 1993) to learn the 2D matrix
(vectorized version of 2D matrix × time) leading to a codebook
of k prototypical functional connectivity states (i.e., FCµstates).
This algorithm is an artificial neural network model, which
converges efficiently to a small number k of codebook vectors,
using a stochastic gradient descent procedure with a soft-
max adaptation rule that minimizes the average distortion
error (Martinetz et al., 1993). In a recent study, we adopted
non-negative matrix factorization (NNMF) as an appropriate
learning algorithm of the 2D vectorized version of a dynamic
functional brain network (Marimpis et al., 2016).

In our previous study where we first demonstrated how
to model dynamic functional connectivity graph (dFCG)
(Dimitriadis et al., 2013a), we vectorised the upper triangular
of each of the quasi-static FCGs building a 2D matrix where
the 1st dimension is the number of temporal segments and the
2nd the vectorised version of a static FCG. The final outcome of
this approach is to define the so-called functional connectivity
microstates (FCµstates). In a next study, we moved one step
further by estimating node-wise global efficiency as the best
descriptor to characterize the brain activity. The final outcome
of the modeling using the same methodology of neural-gas
algorithm was task-based network microstates (Dimitriadis et al.,
2015a). Here, the vectorized version of a 90 × 90 FCG produces

a long vector of 4,005 values while the number of temporal
segments ranged from 598 to 2,140 which caused the so-called
curse of dimensionality where the number of number of the
temporal segment over which the modeling will learn the brain
states is much smaller compared to the vectorized snapshot of
FCG. Simultaneously, the vectorized notion of a brain network
didn’t maintain the inherent format of a functional brain network
which is a 2D matrix, a tensor.

The outline of this procedure is illustrated in Figure 3. In
Figure 3A, a characteristic bandpass filtered time series for each
of the studying frequency band is estimated from each ROI.
Here, instead of vectorising the upper triangular of an undirected
FCG, we used the statistical and topological filtering FCG on its
inherent format which is a 2D tensor. In the case of dynamic
networks, the dimension is a 3D tensor where the 3rd dimension
is the time. Figure 3B illustrates a few snapshots of the dFCG for
δ frequency of the first subject. At the next level, we estimated
the laplacian matrix of each quasi-static FCG. Given a FCG, the
laplacian matrix is given by:

L = D− A, (16)

where D is the degree matrix and A is the FCG.

FIGURE 5 | Muldimensional Scaling Projection of Frequency-Dependent Static Functional Connectivity Graphs (FCGCorEnv) in a Common Feature Space. (A–H: δ –

γ2) Each subplot illustrates the (dis)similarities of static FCGs across scanning sessions and subjects. The 2D matrix demonstrates the (dis)similarities of the static

FCGs across the subjects and both repeat scans. Scanning sessions were coded with blue and red circles correspondingly and a black line connects the FCG of

each subject between the two scanning sessions. With this representation one can read out the similarity of a static FCG between two scanning sessions and

participants. Stress expresses the loss of information expressed in the projected Frequency-Dependent Static Functional Connectivity Graphs in 2D feature space

from an original 80D space. The low stress values mean that the relationship of the 80 FCGs in the original 80 × 80 matrix is preserved in the projected 2D space.

R1,2 refer to the 2D projected space of the 80 FCGs. FCG, functional connectivity graph; gDD, graph diffusion distance.
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Figure 3C demonstrates the laplacian matrix of the FCG in
Figure 3B. In the main diagonal, the degree of each node is
tabulated. Afterward, we applied an eigenanalysis for each of
these laplacian matrixes and the eigenvalues of this procedure
describes the synchronizability of the original FCG. Figure 3D
illustrates for the 1st min the eigenvalues for each quasi-static
FCG. One can easily detect the abrupt transition between the
brain states. Here, neural-gas algorithm was applied on the 2D
matrix presented in Figure 3D after first concatenated across
subjects independently for each frequency band and scan session.
The main scope of this codebook learning algorithm is to define
FCµstates.

By estimating the reconstruction error E between the original
2D matrices (90× [slides× subjects]) and the one reconstructed
via the k FCµstates assigned to each snapshot of the DFCG for
each predefined threshold, we can detect the optimal threshold
T for each case. In this work, the criterion of the reconstruction
error E was set less than 4%. Practically for all the frequency
bands and in both connectivity estimators, the reconstruction
error E was less than 2%. The selected threshold was detected
based on the plateau by plotting of reconstruction error E vs. the
threshold T.

In this way, the richness of information contained in the
dynamic connectivity patterns is represented, by a partition
matrix U, with elements uij indicating the assignment of
input connectivity patterns to code vectors. Following the

inverse procedure, we can rebuild a given time series from
the k FCµstates, with a small reconstruction error E. The
selection of parameter k reflects the trade-off between fidelity
and compression level. As a consequence, the symbolic time
series closely follows the underlying functional connectivity
dynamics. The derived symbolic times series that keep the
information of network FCµstates (nFCµstates) are called
hereafter as STSL−EIGEN (L:Laplacian − Eigen:Eigenalysis).
Figure 3E tabulates the correlation of the eigenvalues between
every pair of temporal segments while in Figure 3F, the matrix in
Figure 3E was reordered such as the FCµstates to be revealed via
the neural-gas algorithm. The network topology of the extracted
FCµstates is illustrated in Figure 3G. From, Figure 3F, one can
understand that the two FCµstates describe the DCFG of this
subject.

An exemplar of prototypical FCµstates is illustrated in
Figure 3G. The outcome of this clustering procedure is also
to extract a symbolic time series per subject, repeat scan and
frequency that describes the transition of brain activity between
the extracted brain states (FCµstates; Figure 3D). The transition
probability P for this example and for the two FCµstates is
illustrated with a classical figure for first order Markovian Chain.
The self-arrows refer to the percentage of sliding windows where
the brain stays stable in a FCµstate without any transition while
the directed arrow gives the percentage of transition from one
FCµstate to the other.This symbolic time series can be seen as

FIGURE 6 | Reliability of node-wise network metrics derived from static brain networks with iPLV connectivity estimator. Each subplot demonstrates the correlation

coefficient (CC) of each network metric at every studying frequency band of each brain area between the two scanning sessions. CC, the correlation coefficient; AAL,

automated anatomical labeling.
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a first order Markovian chain where these switching between
“quasi-static” FCµstates can be modeled as a finite Markov
chain (Dimitriadis et al., 2013a,b, 2015a; O’Neill et al., 2015;
Vidaurre et al., 2016). One can clearly understand that human
brain demonstrates a preferred transition from FCµstates2 to
FCµstates1 (off-diagonal lines of the TP) compared to the
opposite direction (Figure 3H). The sketch of the markovian
chain and the colored TP matrix can reveal the aforementioned
trend of preferred direction FCµstates2 to FCµstates1.

From the symbolic timeseries, specific metrics tailored to
the dynamic evolution of FCµstates were estimated (see next
section) and their reliability was assessed via the correlation
coefficient between scan session 1 and scan session 2. The whole
approach was repeated independently for each frequency band
and connectivity estimator by integrating subject and scan-based
DFCG.

Characterization of Time-Varying
Connectivity
Once the integrated DFCG is formed and it is modeled via the
combination of neural-gas and laplacian eigenanalysis scheme
[N-GASL−EIGEN (L:Laplacian - Eigen:Eigenalysis)], relevant
features can be extracted from the data based on the state-
transition states. There features are called chronnectomics
(chronos—Greek word for time and connectomics for network
metrics) which are described in the following section.

Chronnectomics
The following chronnectomics (dynamic network metrics) will
be estimated on the STSL−EIGEN which expresses the fluctuation
of the FCµstates.

State Transition Rate
Based on the state transition vectors STSL−EIGEN as
demonstrated in Figure 3A, we estimated the transition
rate (TR) for every pair of states as followed:

TR =
no of transitions

slides− 1
(17)

where slides denote the number of temporal segments using the
sliding window approach.

TR yields higher values for increased numbers of “jumps” of
the brain between the derived brain states over consecutive time
windows. This approach leads to one feature per participant.

Occupancy Times of the nFCµstates
Complementary to the aforementioned chronnectomics, we
estimated also the occupancy time (OC) of each FCµstates as the
percentage of its occurrence across the experimental time. OC
was estimated from STSL−EIGEN as follows:

OC(k) =
Frequency of Occurance

slides
(18)

where k denotes the FCµstates.

FIGURE 7 | Reliability of node-wise network metrics derived from static brain networks with CorEnv connectivity estimator. Each subplot demonstrates the correlation

coefficient (CC) of each network metric at every studying frequency band of each brain area between the two scanning sessions. CC, the correlation coefficient; AAL,

automated anatomical labeling.
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Reliability of Static Network Metrics and
Chronnectomics
The reliability of static node-wise network metrics and the
chronnectomics was assessed with the correlation coefficient
between forty values derived from scan session 1 and forty values
from scan session 2 for each frequency band, condition and
connectivity estimator (see Figures 1–3).

Optimizing the Width of the Time-Window
and the Stepping Criterion
We optimized both the width of the time-window and the
step criteria for the sliding-window approach based on the
maximization of the reliability of TR. The reliability was
estimated based on the correlation coefficient of the TR across
the whole group between scan session 1 and 2. The whole
procedure was followed independently for each brain rhythm.
The settings for the width of temporal window and the step
were defined as a percentage of the cycles of the studying
frequencies: {from 1 up to 10 cycles with step equals to 0.5

cycle} for the width of the temporal window and {from 0.1
cycles to 2 cycles with step equals to 0.1 cycle} for the step
(see Table 1).

To avoid overfitting of both TR and OT since, we used TR
for both the optimization of the width of the temporal window
and the stepping criterion, we used the optimized parameters in
an external second repeat scan dataset for further evaluation (see
Supplementary Material).

RESULTS

Tuning Parameters for Dynamic Functional
Connectivity Analysis
The optimization of the temporal window and the stepping
criterion for each brain rhythm reveals a nice trend for
dynamic functional connectivity analysis. The width of
the temporal window increased from δ to γ2 while the
stepping criterion decreased in both connectivity estimators
(see Table 1).

FIGURE 8 | Frequency-dependent FCGµstatesiPLV. Network topologies of the FCGµstatesiPLV for each of the studying frequency band. To enhance the visualization

and contrast of FCGµstates across frequency bands, we adopted a network-wise representation instead of plotting the brain network in a 90 nodes layout. The 90

ROIs of the AAL template were assigned to each of the five networks: default-mode (DMN), fronto-parietal (FPN), occipital (O), sensorimotor (SM), and

cingulo-opercular (CO). The color of each node denotes total strength of within network connections while the color of each line the total strength of between network

connections. Both strength values were normalized across both frequencies and FCGµstates.
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Common Projection Space of
Frequency-Dependent Static FCG
To demonstrate the (dis)similarities between sessions and
subjects of the frequency-dependent static FCG, we constructed
a distance matrix of dimensions 80 × 80 (subjects × sessions)
using the graph diffusion distance metric. Then, we applied
multidimensional scaling (MDS) to project the distance matrix
into a common 2D feature space. Using a different colored circle
for each scanning session (blue for session 1 and red for session
2) and connecting both of them with a black line for each
subject, we further enhanced the (dis)similarities of the static
FCGs. Figures 4, 5 illustrate these FCG-based projections for
static FCGIplv and FCGCorEnv correspondingly. In Figure 4G one
can detect a few subjects with high reliable static FCG between
the two scan sessions and also subject-specific network topologies
that occupied an isolated subarea in the common projection FCG
space. The stress index estimated via the MDS approach was low
and the relationship of the 80 FCGs in the original 80× 80matrix
is preserved in the projected 2D space.

Reliability of Static Network Metrics
Figures 6, 7 demonstrate the correlation coefficients for each
node-wise network metric between the two scanning sessions
for every frequency-dependent static FCG. From the visual
comparison of both figures one can clearly reveal that the
correlation values are higher for CorEnv compared to iPLV.

Applying Wilcoxon Rank-Sum Test for every frequency and
network metric between the 90 correlation values, we detected
statistical significant differences in every case (p< 0.01, p

′
< p/32,

Bonferroni Corrected). However, the averaged correlation values
did not reach high reliability (e.g., >0.9) even for the CorEnv. It
is obvious from the correlation plots that the reliability of node-
wise static network metrics has high spatial variability in both
connectivity estimators.

Frequency-Dependent FCGµstates and
Reliability Chronnectomics for iPLV
Our analysis of DFCG based on iPLV revealed two
FCGµstatesiPLV for each frequency band. The topology of
these frequency-dependent FCGµstatesiPLV is illustrated
in Figure 8. We integrated the nodes into five well-known
brain networks: default-mode (DMN), fronto-parietal (FPN),
occipital (O), sensorimotor (SM), and cingulo-opercular
(CO). The mapping between the 90 ROIs of AAL and the
five brain networks can be retrieved from section Results
in Supplementary Material. One can clearly detect that the
functional coupling between the default mode network and the
cingulo-opercular dominates the coupling strength across the
frequency bands and FCGµstates with less pronounced effect in
both γ bands. Complementary, the coupling strength between
and within the networks is diminished after α2 frequency. This
behavior can be interpreted as a reduction of the connections

FIGURE 9 | Reliability of Transition Rates (TR) based on FCµstatesiPLV across frequency bands. (A). Mean and median values of TR across subjects and scan

sessions for each frequency band. (B). Scatter-plot of subject-specific TR for both sessions with the corresponding fitted line for each frequency band. All the

correlations were Corr. > 0.9 (p < 10−7). Each blue circle corresponds to a participant.
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up to the defined threshold following the increment of the
frequency. The two FCGµstatesiPLV showed also a different
distribution of strength globally and locally.

Both types of chronnectomics, transition rates (TR) (Figure 9)
and occupancy times (OC) (Figure 10) demonstrated high
reliability (Corr.> 0.9, p< 10−7) across frequency bands. Similar
results, we obtained also for the second external dataset (see
section 2 in Suplementary Material).

Frequency-Dependent FCGµstates and
Reliability Chronnectomics for CorEnv
Our analysis of DFCG based on the correlation of the envelope
connectivity estimators revealed two FCGµstatesCorEnv for each
frequency band. The topology of these frequency-dependent
FCGµstatesCorEnv is illustrated in Figure 11. The mapping
between the 90 ROIs of AAL and the five brain networks can
be retrieved from section 2 in Supplementary Material. One
can clearly detect that the functional coupling between the
default mode network and the cingulo-opercular dominates
the coupling strength across the frequency bands and
FCµstates. Complementary, the coupling strength between
and within the networks is diminished after α2 frequency as
it was observed for FCGµstatesiPLV. Complementarily, the
network topologies of FCGµstatesCorEnv between low and high
frequencies based on the strength coupling are more common

than the FCGµstatesiPLV.This common substrate across the
FCGµstatesCorEnv is consistent with the general notion that
correlation of the envelope is more stacked to the structural
connectome compared to the phase-based connectivity patterns
which demonstrate higher degrees of freedom (Engel et al., 2013;
compare Figure 8 with Figure 11).

Only transition rates (TR) showed high reliability for CorEnv
(Corr. > 0.8, p < 10−4) in all the frequency bands with the only
exception of β1 (Figure 12). Occupancy times (OT) showed low
reliability across the frequency bands (p > 0.4) (Figure 13). TR
of FCGµstatesCorEnv increased with the increment of frequency
reaching a plateau in γ1. In contrast, TR of FCGµstatesiPLV did
not show such a frequency-dependent behavior. Similar results,
we obtained also for the second external dataset (see section 2 in
Supplementary Material).

DISCUSSION

In the present study, we assessed the reliability of both
static and dynamic functional connectivity network descriptors
using resting-state MEG data from 40 subjects with repeat
scan sessions. This is the first time that the reliability of
chronnectomics, at least for the MEG modality, has been
taken into account. Source time series were first beamformed

FIGURE 10 | Reliability of Occupancy Time (OT) based on on FCµstatesiPLV across frequency bands. (A) Mean and median values of OT across subjects and scan

sessions for FCµstates1 and for each frequency band. (B) Mean and median values of OT across subjects and scan sessions for FCµstates2 and for each frequency

band. (C) Scatter-plot of subject-specific OT for both sessions with the corresponding fitted line for each frequency band. All the correlations were Corr. > 0.9

(p < 10−7). Each blue circle corresponds to a participant.
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FIGURE 11 | Frequency-dependent FCGµstatesCorEnv. Network topologies of the FCGµstatesCorEnv for each of the studying frequency band. To enhance the

visualization and contrast of FCGµstates across frequency bands, we adopted a network-wise representation instead of plotting the brain network in a 90 nodes

layout. The 90 ROIs of the AAL template were assigned to each of the five networks: default-mode (DMN), fronto-parietal (FPN), occipital (O), sensorimotor (SM) and

cingulo-opercular (CO). The color of each node denotes total strength of within network connections while the color of each line the total strength of between network

connections. 7 Both strength values were normalized across both frequencies and FCGµstates.

independently for each frequency band (Hillebrand et al.,
2005; Schoffelen and Gross, 2009; Brookes et al., 2011b), and
then representative voxel time series based on the AAL atlas
were extracted using a novel linear interpolation analysis. This
procedure produces informative timeseries with a characteristic
carrier frequency compared to the noisy time series derived
by PCA or by selecting the voxel time series within a ROI
that encapsulates the maximum power. Then, both static and
dynamic frequency-dependent functional connectivity graphs
were computed for each subject and scan session using the
imaginary part of phase locking value (iPLV) and the correlation
of the amplitude envelope (CorEnv). Both static and dynamic
FCG (SFCG-DFCG) were filtered both statistically (surrogates)
and topologically (OMST; Dimitriadis et al., 2017a,b).

Here, we adopted a data-driven pipeline of how to
estimate both static and dynamic FCG statistically and
topologically filtered using an algorithm previously applied to
EEG recordings. We explored the reliability of both static
networkmetrics and chronnectomics (dynamic networkmetrics)
by employing two representative connectivity estimators for

the construction of static and dynamic brain networks. Using
this pipeline, prototypical FCµstates were derived which were
highly reproducible across subjects and scan sessions in both
connectivity estimators and in all frequencies. The reliability
of node-wise static network metrics based on four network
metrics was low and spatially variable with both connectivity
estimators while the CorEnv demonstrates higher ICC values
compared to iPLV. The reliability of chronnectomics (TR, OT)
for iPLV was high while for CorEnv the reliability of only the TR
reaches high acceptable levels. Our results were reproduced also
in a second external dataset (see Supplementary Material). Our
study strongly encouraging the use of DFCGwith neuromagnetic
recordings that takes the advantage of the nature of MEG
modality, its high temporal resolution.

To our knowledge, this is the very first study that explored
the reliability of both static and dynamic FCG and the
related network metrics and chronnectomics, respectively in
neuromagnetic source space at. In static FCG, node-wise network
metrics demonstrated poor reliability for iPLV and poor to
medium for CorEnv. The node-wise reliability was highly spatial
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FIGURE 12 | Reliability of Transition Rates (TR) based on FCGµstatesCorEnv across frequency bands. (A) Mean and median values of TR across subjects and scan

sessions for each frequency band. (B) Scatter-plot of subject-specific TR for both sessions with the corresponding fitted line for each frequency band. All the

Corr. > 0.8 (p < 10−4 with the exception of β1). (C) Each blue circle corresponds to a participant.

variable and static FCG have also demonstrated low repeatability
in both connectivity estimators and especially in CorEnv. In
contrast, prototypical FCµstates were high reproducible across
subjects and scan sessions in both connectivity estimators and in
all frequencies supporting by the low reconstruction error (<2%)
of our brain network learning algorithm. Complementary, the
reliability of chronnectomics (TR,OT) for iPLV was high while
for CorEnv the reliability of only the TR reaches high acceptable
levels. These results strongly encourages the neuroscientists to
adopt the notion of DFCG with neuromagnetic recordings that
takes the advantage of its high temporal resolution.

Two main studies explored the reliability of static FCG on the
source level using MEG-beamformed resting-state connectivity
analysis. Garcés et al. (2016) studied the reliability of resting-
state networks using four connectivity estimators: phase-locking
value (PLV), phase lag index (PLI), direct envelope correlation
(d-ecor), and envelope correlation with leakage correction (lc-
ecor). They adopted intra-class correlation coefficient (ICC) and
Kendall’s W for assessing within and between-subjects agreement
respectively. Higher test-retest reliability was found for PLV
from θ to γ, and for lc-ecor and d-ecor in β. They commented
that high ICC in PLV and d-ecor could be artifactual due to
volume conduction effects. Colclough et al. (2016) investigated
the reliability of static FCG at resting-state using beamformed
source static connectivity analysis. They reported high reliability
mostly for the partial correlation analysis and the correlation
of the envelope among 12 connectivity estimators. Two more

studies, Deuker et al. (2009) estimated the reliability of resting-
state network metrics derived from MEG in sensor space using
mutual information. They obtained high ICC for clustering,
global efficiency and strength at a network level. Jin et al. (2011)
found medium ICC for nodal global efficiency, nodal degree and
betweenness centrality in α and β bands.

Our results revealed that nodal network metrics derived from
static FCG are less reproducible then their dynamic counterparts.
In contrast, chronnectomics are highly reproducible with both
adopted connectivity estimators. These results complemented
with the results presented in (Colclough et al., 2016) where they
adopted multiple connectivity estimators for the construction
of static brain networks on the source level using MEG-
beamformed resting-state activity. Colclough et al. (2016)
showed that the static full-weighted FCG are high repeatable
within the group-level mostly for the correlation of the envelope
adopting a split-half strategy on a dataset with single scans. Here,
we accessed the reliability of any network metric using a two scan
session design per subject.We should state here that edge-weights
are significant for the construction of network topology and the
reliability of connectomic biomarkers (Dimitriadis et al., 2018).

One of the key findings of our analysis are the frequency-
dependent FCµstates for each connectivity estimator.
Figures 8, 11 illustrate the strength of the coupling within
and between brain networks for the prototypical FCµstates
at every frequency band. It is obvious that the highest
strength within a network is observed within the DMN in
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FIGURE 13 | Reliability of Occupancy Time (OT) based on on FCGµstatesCorEnv across frequency bands. (A) Mean and median values of OT across subjects and

scan sessions for FCµstates1 and for each frequency band. (B) Mean and median values of OT across subjects and scan sessions for FCµstates2 and for each

frequency band. (C) Scatter-plot of subject-specific OT for both sessions with the corresponding fitted line for each frequency band. All the correlations were weak

and non-significant (p > 0.4). Each blue circle corresponds to a participant.

both connectivity estimators. The strength between the brain
networks is mainly distributed between DMN and the rest of the
networks demonstrating the highest value till α2 and dropped
from β1 to γ2 (Figures 8, 11). DMN reignited a high interest
the last years for the description of intrinsic ongoing activity
in studies of the human brain in health and disease (Raichle,
2015). Disruptions of functional connections within the DMN
and between DMN and the rest of brain networks have been
linked to various neurological and neuropsychiatric disorders
(Mohan et al., 2016). Studies in healthy aging and Alzheimer’s
disease have revealed the significant role of DMN (Mevel et al.,
2011).

Flexible hub theory based on clustering analysis of functional
networks gave an explanation of how temporal functional
modes exist where one neural region may be switched from
a certain network at one time to a different network at
another time (Smith et al., 2012). It remains still unclear how
the different brain networks are connected together during
spontaneous and task-related activity. Dosenbach et al. (2008)
proposed that the FPN may serve to initiate and adjust
cognitive control, whereas another control-type network, the
CO network (CON), provides stable set-maintenance. Cole
and colleagues (Cole et al., 2013) helped to untangle the
flexible role of the FPN, many questions remain regarding
the interaction between the FPN and the CON and also with

other networks such as the DMN,SM and O. In the present
study, we characterized the dynamic relationships of the brain
networks across time at resting-state in various frequency bands
and using representative connectivity estimators. We found
that these functional patterns are high reproducible which will
help multi groups worldwide to explore these interactions and
build reproducible connectomic biomarkers in various diseases
and disorders. Understanding the neural basis of intrinsic
activity, cognition and structure–function relationships, will
further enhance the prognostic/diagnostic abilities in clinical
populations.

The interactions of large-scale brain networks at resting-state
and during tasks is characterized by the studying frequency.
Frequency-specific functional interactions between large-scale
brain networks may be individual fingerprints of the idle activity
and cognition (Siegel et al., 2012). It will be interesting in the
future to explore how the FCµstates from a dynamic integrated
functional connectivity graph (Dimitriadis and Salis, 2017c) that
incorporates different intrinsic coupling modes both intra and
cross-frequency coupling can be used for brain fingerprinting
(Engel et al., 2013).

It is critically important to take advantage of new imaging
modalities to untangle the mechanisms that produce circuit
dysfunctions in many brain diseases and disorders. The
development of biomarkers is very important and for that reason
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the proposed experimental paradigm and analytics of the meta-
data derived from the analysis of human brain activity must
be highly reliable and reproducible. Magnetoencephalography
(MEG) allows us to measure neuronal events noninvasively with
millisecond resolution and recent advanced methods opens new
avenues of exploring and answering fundamental key research
questions tailored to each brain disease/disorder. MEG can
become a pioneering clinical research tool for mental disorders
(Bowyer et al., 2015; Grent-’T-Jong et al., 2016; Uhlhaas et al,
2017), Alzheimer’s disease (López et al., 2014, 2017; Koelewijn
et al., 2017), dyslexia (Dimitriadis et al., 2010b, 2013b), traumatic
brain injury (Dimitriadis et al., 2015c; Antonakakis et al.,
2016, 2017), multiple sclerosis (Tewarie et al., 2015), and other
brain diseases. To establish MEG-based biomarkers that can
be used for daily clinical practice and clinical evaluation, their
reproducibility should be further explored. Complementary,
the transition rate and also the occupancy times could be
personalized biomarkers of a subject’s resting-state condition
where more task-related FCµstates and the related markers
derived from them could build a subject specific database for
longitudinal studies. Transition rates could be also correlated
with IQ scores and also with behavioral performance during
execution of cognitive tasks.

In the present study, we proposed a data-driven analytic
pathway to assess the reliability of connectomics using MEG-
beamformed connectivity analysis. Our results clearly support
the notion of dynamic functional connectivity on the source
level, the derived prototypical FCµstates and the related
chronnectomics. Last years, many studies explored the
dynamic functional connectivity graphs in many modalities
(EEG/MEG/fMRI) and in both resting-state and during tasks
(Dimitriadis et al., 2010a, 2012a,c, 2013a,b, 2015a,b,c,d, 2016a,b;
Bassett et al., 2011; Rosazza and Minati, 2011; Allen et al., 2012;
Handwerker et al., 2012; Ioannides et al., 2012; Hutchison et al.,
2013; Liu and Duyn, 2013; Braun et al., 2015b; Mylonas et al.,
2015; Toppi et al., 2015; Yang and Lin, 2015; Calhoun and Adali,
2016, for reviews see Calhoun et al., 2014). This is the very
first study according to authors’ knowledge that the reliability
of chronnectomics was explored. The outcome of this study
opens new avenues in the exploration of human brain dynamics
with MEG-beamformed source activity and under the notion of
dynamic functional connectivity.

We addressed the key question of the readiness of
neuromagnetic-based based functional connectomics to
lead to clinically meaningful biomarker identification through
the reliability approach that offers a repeat scan study in
healthy controls. It is more than significant to customize stable
approaches for analyzing neuromagnetic recordings and present
reproducible brain connectomics across scans in healthy control
populations without sacrificing the individual characteristics
that can be used for personalized intervention neuroscience
(Gratton et al., 2018). It is highly recommend to access the
reliability of any metric derived from any neuroimaging

modality in a repeat scan protocol in healthy control population
before applying it to a larger disease group where the cost of
scanning is too high (diffusion MRI: Dimitriadis et al., 2017d).
Additionally, we will expand this analysis in future efforts to

identify disease status alone including clinical variables related to
genetic risk (Lancaster et al., 2018), expected treatment response
and prognosis.

CONCLUSIONS

In conclusion, we provided the first source-space test-retest
reliability of dynamic functional connectivity of neuromagnetic
recordings at resting-state. We computed both static and
dynamic functional connectivity based on 90 ROIs according to
AAL templated and using two connectivity estimators, the iPLV
and the CorEnv. Nodal network metrics were unreliable in both
connectivity estimators but with higher reliability demonstrated
for CorEnv. Moreover, their reliability demonstrates highly
spatial variability. Static FCG were also unreliable and especially
for CorEnv. In contrast, prototypical FCµstates were reliable in
both connectivity estimators and across frequency bands. The
derived chronnectomics (TR, OT) were highly reproducible for
iPLV while only TR was reliable for CorEnv within acceptable
levels. Our results strongly encourages future studies with
main scope to explore resting-state networks in both healthy
control and disease populations to apply a data-driven dynamic
functional connectivity analysis using MEG-beamformed source
reconstructed brain activity.
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