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Abstract

Motivation: Molecular signatures for treatment recommendations are well researched. Still it is

challenging to apply them to data generated by different protocols or technical platforms.

Results: We analyzed paired data for the same tumors (Burkitt lymphoma, diffuse large B-cell

lymphoma) and features that had been generated by different experimental protocols and analyt-

ical platforms including the nanoString nCounter and Affymetrix Gene Chip transcriptomics as well

as the SWATH and SRM proteomics platforms. A statistical model that assumes independent sam-

ple and feature effects accounted for 69–94% of technical variability. We analyzed how variability is

propagated through linear signatures possibly affecting predictions and treatment recommenda-

tions. Linear signatures with feature weights adding to zero were substantially more robust than

unbalanced signatures. They yielded consistent predictions across data from different platforms,

both for transcriptomics and proteomics data. Similarly stable were their predictions across data

from fresh frozen and matching formalin-fixed paraffin-embedded human tumor tissue.

Availability and Implementation: The R-package ‘zeroSum’ can be downloaded at https://github.

com/rehbergT/zeroSum. Complete data and R codes necessary to reproduce all our results can be

received from the authors upon request.

Contact: rainer.spang@ur.de

1 Introduction

Today, molecular data describing blood, urine, stool or tissue speci-

mens is high-content data. Machine learning methods extract bio-

marker signatures from molecular data that can be used for therapy

recommendations. Among the best established methods are penal-

ized linear regression models such as the LASSO (Tibshirani, 1996)

and the elastic net (Zou and Hastie, 2005). A more recent method is

zero-sum regression (Altenbuchinger et al., 2017; Lin et al., 2014).

These algorithms select features and endow them with weights form-

ing predictive linear signatures.

Data sharing is critical to advance precision medicine. Molecular

high-content data of patient specimens together with matching diag-

nostic, histologic and clinical data across many studies are made eas-

ily accessible, comparable and jointly analyzable (Quackenbush,

2014). Projects like DECIPHER (Firth et al., 2009), the NCI

Genomic Data Commons (NCI Center for Cancer Genomics (CCG),

2016), or the Australian Genomics Health Alliance are on the

forefront of buildung such digital medicine resources. But data am-

biguity and data dissonance still present major obstacles in the shar-

ing of data (Grossman et al., 2016; Quackenbush, 2014).

Current data resources are not harmonized. Protocols for re-

trieval of biological specimens, extraction and measurement of

molecules of interest, and data processing may vary considerably

among datasets. Differences in data generation leave traces in the

datasets rendering their joint analysis difficult. Cross platform ana-

lysis is particularly essential in case of signatures developed on

omics high-content platforms to be later applied to targeted plat-

forms that generate data only for the selected features. Similarly,

signatures developed for fresh frozen material need to be trans-

ferred to formalin-fixed paraffin-embedded (FFPE) material, which

is more readily available (Masqué-Soler et al., 2013; Scott et al.,

2014).

To identify requirements for data harmonization, we need a bet-

ter understanding of inter-technical variability: the systematic
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discrepancies in data generated by different protocols. Moreover,

we need to better understand how these dissonances propagate

through subsequent analysis steps. From the precision medicine per-

spective, there are two types of data problems: those that can affect

treatment decisions and those that cannot. Vice versa, there are two

types of predictive signatures, those that are sensitive to specific data

dissonances and those that are not.

Here we study and model systematic discrepancies in transcrip-

tome and proteome data generated by various protocols and plat-

forms. Based on the model we study which properties of linear

signatures enhance or reduce the effect that data dissonance has on

treatment recommendations and give advice on choosing proper re-

gression models.

2 Results

2.1 Modelling inter-technical variability
Let x and z be two datasets covering the same features for the same

patients but generated with different protocols. Both xij and zij are

matrices with i¼1, . . ., N denoting samples and j¼1, . . ., p denot-

ing features. We further assume that both data matrices are normal-

ized using a state of the art protocol and are log-transformed.

Data generated by different technical platforms for the same

sample is quantitatively and qualitatively different even after nor-

malization. In Figure 1 row (1), the heatmaps (a) and (b) contrast

Affymetrix gene expression data of fresh frozen material of 40

non-Hodgkin lymphomas from (Klapper et al., 2012) to matching

nCounter data of FFPE material (Masqué-Soler et al., 2013). The

plots in row (2) show proteomics data for 23 of the lymphomas

using (a) sequential window acquisition of all theoretical fragment

ion spectra (SWATH) (Gillet et al., 2012) and (b) targeted selected

reaction monitoring (SRM) (Faktor et al., 2016). For measurement

details we refer to the methods section. Finally, the third row

shows (a) microarray mRNA and (b) RNA-Seq profiles from Zhao

et al. (2014) for the 12 most variable genes in 12 activated T cell

samples. For details on data preprocessing, see the methods

section.

To model the discrepancies we assume that they result from two

independent biases: (i) sample effects hi that systematically affect all

features of a sample i in the same way. (ii) feature effects xj that sys-

tematically affect feature j in all samples in the same way. We model

technical variability D using these two effects by:

Dij ¼ zij � xij ¼ hi þ xj þ rij; (1)

where rij is the residue of the model. Tukey’s median polish algo-

rithm (Tukey, 1977) estimates hi and xj. The plots in column (c) of

Figure 1 show

~zij ¼ zij � hi � xj: (2)

This is the data of technology (b) adjusted to the systematic sample

and feature effects. The adjusted data of the technology (b) is visu-

ally closer to the data of technology (a), and also quantitatively:

Figure 2 shows for each of the three paired datasets box plots of the

differences between the two original datasets (top) and between the

original first versus the adjusted second dataset (bottom). The two

independent biases accounted for 69%, 79% and 94% of the inter-

technology variability D2
ij, respectively.

By minimizing Dij in Equation (1) we adjust data from different

technologies. However, this is not our primary aim here. Instead we

strive for signatures that can be used on non-harmonized data dir-

ectly. The model will guide us to these signatures.

2.2 Propagation of inter-technical variability
Here we analyze how technical variability that can be modeled by

(2) propagates in linear signatures of the form

yi ¼ b0 þ
X
j2C

bjxij ; (3)

where the bj are feature weights, and yi is a response variable like

the response of patient i to a certain treatment. C contains all indices

of non-zero regression weights. Assume that the signature features

are covered by both datasets x and z but that the signature was only

trained on x. What happens if we apply the signature unchanged to

dataset z from a different platform?

2.2.1 An instructive simulation

We used Affymetrix GeneChip data from 281 diffuse large B-cell

lymphomas (DLBCL) (Hummel et al., 2006; Klapper et al., 2008;

Salaverria et al., 2011). 122 DLBCL are of the ABC and 159 of the

Fig. 1. Comparison and adjustment of omics data of the same samples pro-

filed with different technologies and protocols. The first two columns contrast

state of the art normalized datasets. Row (1) shows paired gene expression

data of the same non-Hodgkin lymphomas using the Affymetrix GeneChip (a)

and NanoString nCounter (b) technology. Row (2) shows paired protein ex-

pression data acquired by SWATH (a) and SRM (b), for a subset of the non-

Hodgkin lymphomas. And Row (3) shows paired expression levels of acti-

vated T cells for microarray (a) and RNA-Seq data (b). Column (c) shows heat-

maps for the datasets (b) adjusted to match the datasets (a) using our model.

Columns always correspond to molecular features (mRNA or protein) and

rows to samples
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Fig. 2. Most of the inter-technical variability can be explained by our inde-

pendent effects model. Figures (a) to (c) show box plots of the differences be-

tween data generated by different technologies. The plots on top show the

original non-adjusted but individually normalized data, while those below

compare adjusted datasets. 69%-94% of inter-technical variability could be

explained by our model
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GCB subtype. We first restricted the dataset to 47 genes, which were

also covered by nanoString nCounter data of 40 DLBCL (Masqué-

Soler et al., 2013). Next, we divided the data for which we only had

Affymetrix data into a training set of 51 ABC and 87 GCB and a

validation set of 71 ABC and 72 GCB. Using the LASSO logistic

regression algorithm implemented in the R package glmnet

(Friedman et al., 2010), we trained 1000 linear GCB/ABC classifiers

each on a different random subset of 40 genes and evaluated them

on the validation cohort. While the gene weights varied strongly

across signatures, all signatures reached almost perfect performance

(Fig. 3a).

We next applied these signatures unchanged to 40 DLBCL for

which nanoString data were available and which were not part of

the training set. For signatures with regression weights that sum up

close to zero the linear predictive scoresX
j2C

bjxij

for the Affymetrix data and the nanoString data showed correlation

around 0.9, while for signatures with unbalanced weights this was

reduced to 0.75 on average and fell for some signatures below 0.6

(Fig. 3b). Balanced signatures worked equally well on data from

both technologies while unbalanced signatures did not.

This observation can be explained by model (1). Plugging equa-

tion (1) into equation (3), assuming that the residues rij are small,

yields

yi ¼ b0 þ
X
j2C

bjxij ¼ b0 þ
X
j2C

bjðzij � hi � xjÞ : (4)

If the regression weights bj add up to zero this simplifies to

yi ¼ ~b0 þ
X
j2C

bjzij ; (5)

where ~b0 ¼ b0 �
P

j2C bjxj. Hence if the weights bj sum up to zero,

the sample effects hi cancel, while the feature effects xj absorb into

the intercept ~b0. Thus, the same model can be applied to x and z. In

this case hi and xj which account for the majority of technology

related discrepancies in the data do not affect the predictions except

maybe for a constant shift across all samples. The same argument

also holds for generalized and penalized linear models like the

LASSO logistic regression used above.

2.2.2 Zero-sum regression reduces cross platform adjustments to the

calibration of a single parameter

The LASSO can yield signatures with a small sum of regression

weights but it does not guarantee it (Fig. 3). However, balanced

weights can be enforced. Zero-sum regression is an instance of con-

strained LASSO regression (Tibshirani, 1996). It was originally de-

veloped for compositional data only (Lin et al., 2014), but its

spectrum of applications is broader (Altenbuchinger et al., 2017).

Here we argue that zero-sum regression is a method of choice for

cross technology data analysis. The method adopts the penalized

LASSO log-likelihood but additionally enforces the sum of the re-

gression weights to zero:

ðbb0;bbÞ ¼ argminb0 ; bf
1

2N

XN
i¼1

yi � b0 �
Xp

j¼1

bj xij

 !2

þkjjbjj1g ; subject to
Xp

j¼1

bj ¼ 0 :

(6)

Above we showed in three examples that platform differences

can be mostly explained by two independent effects: a sample effect

hi and an independent feature effect xj. Zero-sum signatures yield

the same prediction for shifted data xij þ hi and non-shifted data xij.

Moreover, unlike the standard LASSO, zero-sum learns the same

signature if applied to xij or xij þ hi (Altenbuchinger et al., 2017),

and, up to an arbitrary offset b0, also on xij þ hi þ xj. If we use the

LASSO, we must adjust all regression weights when moving from

data of one technology to the next. For data where our model ex-

plains 100% of the inter-technology variability, zero-sum signatures

will only need an adjustment of the off-set b0. Below we will show

that on real data, where the model explains only some 80% of the

inter-technology variability, zero-sum signatures, nevertheless, yield

consistent predictions across datasets.

2.3 Simulation studies
Here we further substantiate the benefits of zero-sum signatures in

cross technology data analysis in simulation studies. We simulated

paired data representing two technologies linked by Equation (1),

and quantitatively study how the simulated inter-technology vari-

ability propagates from feature data to predictions.

Omics data can be either continuous intensity or discrete count

data. NanoString nCounter, RNA-seq, and many other quantitative

next-generation sequencing based methods yield discrete data. We

thus simulated counts from a negative binomial distribution,

NBðlj;/jÞ, where lj is the mean count of feature j and /j its disper-

sion, which is directly related to its variance via varðXjÞ ¼ lj þ /jl
2
j .

To obtain realistic values for both lj and /j we estimated 1000 pairs

ðlj;/jÞ by a maximum likelihood estimate using the 1000 most

abundant genes from the RNA-seq data (doi:10.1371/jour-

nal.pone.0078644.s008) of Zhao et al. (2014).

For each simulation run, we randomly drew 100 mean-

dispersion pairs and simulated counts from the corresponding nega-

tive binomial distributions. In total, we simulated 150 samples, of

which 50 served as training set and 100 as test set. Taking loga-

rithms yielded simulated screening data matrices. For the two weight

vectors b shown in Table 1 we calculated response variables to

which we added the random Gaussian errors �i � Nðl ¼ 0; r ¼ 1Þ
resulting in a vector of responses (yi). Experimentally, no calibrated

data is available. Thus, we normalized the raw count data, X, by its

sample-wise means. After taking the logarithms, we ended up with

the normalized predictor data x¼ (xij), where i¼1, . . ., 150 and

j¼1, . . ., 100.

0 2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

| sum of regr. weights |

A
U

C
 (

A
ffy

.)

(a)

0 2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

| sum of regr. weights |

co
rr

el
at

io
n 

A
ffy

. v
s.

 n
C

ou
nt

er

(b)

Fig. 3. Comparing classifications across technologies: Plot (a) shows the ab-

solute sum of regression weights for 1000 signatures trained on re-sampled

data from technology 1 (Affymetrix) plotted against their classification per-

formances (area under the receiver operating characteristic curve (AUC)) on

independent data of the same technology. All signatures perform excellent

independent of their strongly varying weights. The y-axis of Figure (b) shows

the correlation (agreement) of classification scores for data of technology 1

(Affymetrix) and 2 (nanoString). Predictions from signatures with balanced

weights (x-axis near zero) agree well across technologies, while unbalanced

signatures produce conflicting predictions on the second technology
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We trained linear models on (y, x) using (i) zero-sum regression,

(ii) the standard LASSO and (iii) and ordinary least square regression

(OLS) combined with feature filtering. The latter method, first screens

for the top k features with highest absolute correlation to y and fits a

standard linear model on the selected features using OLS. k is cali-

brated in cross validation on the training data and so is the tuning par-

ameter k of both LASSO and zero-sum regression. While by definition

the sum of coefficients is zero for all zero-sum signatures, it ranges

from �10.7 to 11.1 (�0.1 to 21.1) in the LASSO signatures and from

�16.5 to 10.7 (�12.6 to 18.9) in the f-OLS signatures for simulation

scenario A (B), respectively, showing that the three methods produce

different signatures. Figure 4a and d shows violin plots of the correl-

ations r1 ¼ corðby1; yÞ between observed and predicted responses cal-

culated on the test cohort, where by1 are the predictions, for scenario

A and B, respectively. For both zero-sum and LASSO signatures we

observe that the median correlation over all simulation runs, shown

as a grey dot, is roughly the same indicating that the zero-sum con-

straint is not compromising predictive performance on the screening

data. This is not surprising for signature A where the data generating

coefficients b sum up to zero. But also for signature B with only posi-

tive coefficients the predictive performance of zero-sum regression

was not compromised. f-OLS combined with feature filtering per-

formed significantly worse in scenario A.

Next we simulated a matching second dataset representing a se-

cond technological platform. Technological platforms typically do

not cover the exact set of features. Nevertheless, we here assume

that at least all signature features are covered. We thus perturbed x

by xij ! xij þ hi þ xj, cut out the features selected by a signature s

and normalized this data by the same strategy as x, but now on the

signature features s only. This yielded a data matrix z(s).

2.3.1 Only zero-sum signatures apply on both technology 1 and 2 data

We first describe the performance of signatures, for which only the

offset b0 was adjusted. For these signatures we obtained predictionsby1 on the first dataset and by2 on the second. Figure 4b and e shows

r1 � r2 ¼ corðby1; yÞ � corðby2; yÞ calculated for the 100 test samples

for signature A and B, respectively. As expected, the performance of

zero-sum signatures applied to z(s) is not compromised at all while

those of LASSO and f-OLS models frequently is. For signature A

this effect was less pronounced than for signature B. LASSO esti-

mates coefficients close to those used for data generation. In A these

coefficients correctly summed to a small number, thus LASSO signa-

tures approximate zero-sum signatures. In contrast f-OLS predic-

tions were off target. In B the LASSO correctly estimated

predominantly positive coefficients yielding signatures far away

from a zero-sum. In simulation A LASSO signatures lost precision

on the second dataset, in simulation B they broke down. f-OLS sig-

natures performed poorly in both simulations.

2.3.2 Unchanged zero-sum signatures were more reliable than

retrained signatures

The most common approach to moving signatures from one technol-

ogy to the next, is to keep the selected features from the first study

and retrain all feature weights on a training dataset generated with

the second technology. In this simulation study, we compared re-

training to learning a zero-sum signature and leaving it unchanged.

Thus, using the simulated data we predicted the response y by (i)

using the original signatures and adjusting only the offset b0 and (ii)

by retraining all coefficients b0 and b 2 s on (y,z(s)).

Again we had test data predictions by1 and by2. Figure 4c and f

compare the performances of zero-sum, the LASSO and f-OLS for

simulations A and B, respectively. All three methods did not profit

from retraining. Unchanged zero-sum signatures guaranteed equal

performance on targeted data, while a retrained signature was a lot-

tery that yielded very good performance but even more frequently a

strongly reduced performance. In summary, the unchanged zero-

sum signatures appeared to be the safest choice.

2.4 Classifications using different proteomics platforms
DLBCL are a heterogeneous group of lymphomas comprising dis-

tinct molecular subtypes: the activated B-cell like (ABC) and the ger-

minal center B-cell like (GCB) lymphomas (Alizadeh et al., 2000;

Rosenwald et al., 2002). Differential diagnosis becomes increasingly

important as drugs are under investigation that appear to be effect-

ive for only one of the subtypes (Wilson et al., 2015).

Table 1. Data generating weights for the two simulation scenarios

Simulation b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 . . . b100

A 1 2 3 4 5 �1 �2 �3 �4 �5 0 . . . 0

B 1 2 3 4 5 1 2 3 4 5 0 . . . 0

In scenario A the weights are balanced, while in B they are all non-

negative.
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Fig. 4. Simulation results: Correlations between predicted and true responses

for simulation scenario A (top) and B (bottom) summarized in Table 1.

Models were trained using zero-sum regression (z.-sum), LASSO and OLS

with feature filtering (abbreviated as f-OLS). Plots (a) and (d) show correl-

ations between true and predicted responses for simulated technology 1

data, r1 ¼ corðby 1; yÞ, for scenario A and B, respectively. Zero-sum regression

can compete with the standard LASSO and out competes f-OLS on consistent

data from the same technology. Plots (b) and (e) show correlation differences

for simulated technology 1 and technology 2 data. The signatures were

trained on simulated technology 1 data and applied unchanged to simulated

technology 2 data. For the simulation with balanced weights (top) both zero-

sum and LASSO show good agreement across datasets, while for unbal-

anced weights (bottom) the LASSO and f-OLS show systematic reduced

agreement across datasets. Plots (c) and (f) also show correlation differences

for simulated technology 1 and technology 2 data, but this time the signa-

tures were retrained on simulated technology 2 data. Retraining did not im-

prove the agreement of predictions across technologies
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We frame ABC/GCB diagnosis as a regression problem. The

ABC and GCB subtypes are themselves heterogeneous groups. They

are not sharply separated. Instead, there is a continuous spectrum on

how ‘GCB-like’ a DLBCL can be. We have lymphomas that are ei-

ther clear GCBs or ABCs, but many are in between these prototypic

cases. Such lymphomas are labelled ‘unclassified’ (Rosenwald et al.,

2002). Masqué-Soler et al. (2013) have accounted for the continu-

ous transition between GCB and ABC by using a GCB score instead

of just the three classes GCB, unclassified and ABC. The score is

positive for GCB, negative for ABC and near zero for unclassified

lymphomas. We follow this strategy. In more statistical words, we

frame this diagnostic problem as a regression problem and not as a

classification problem. The gold standard for DLBCL subtyping is a

gene expression signature generated by the Affymetrix GeneChip

technology applied to fresh frozen material. On FFPE material, the

diagnosis can be performed using either the nanoString nCounter

transcriptomics platform (Masqué-Soler et al., 2013; Scott et al.,

2014) or a shotgun proteomics approach employing a stable-isotope

tagged reference proteome (Deeb et al., 2012). To complement these

methods, we here attempted diagnosis with low cost proteomics

data from (a) the SWATH and (b) the SRM platform, again using

FFPE material.

The ABC/GCB subtype is a property of a lymphoma. Its diagno-

sis must not depend on the technology used nor should it depend on

whether the tissue was frozen or FFPE. Here, we aimed for a single

set of regression coefficients that can be used with both SWATH

and SRM data.

2.4.1 Data and results

The data comprised 23 DLBCL of which 12 were GCBs, 7 were

ABCs and the remaining 4 were unclassified. FFPE biopsy specimens

of this cohort were subjected to SWATH proteomics, which yielded

expression levels for 235 proteins that were supported by at least 6 de-

tected peptides in all samples. We trained zero-sum signatures using

the SWATH proteomics data to predict the gold standard ABC/GCB

scores yi using zero-sum regression. This was done in a leave-one-out

cross validation across platforms. Figure 5a shows predicted scores

(SWATH proteomics) plotted against gold standard scores

(Affymetrix transcriptomics). The scores correlate well (r¼0.93) and

GCB samples (blue circles) are clearly separated from ABC samples

(red triangles). The dashed lines are classification boundaries for

ABC, unclassified and GCB, derived from the gold-standard ABC/

GCB scores. The heatmap below the plot contrasts the corresponding

classifications showing an excellent agreement between the prote-

omics predictions and the gold standard classifications.

Next we applied this signature unchanged to SRM data gener-

ated for FFPE material from the same lymphomas. As expected by

theory, the resulting ABC/GCB scores correlated well with both the

gold standard (r¼0.88) and the SWATH based scores (r¼0.95)

(Fig. 5b and c). As an alternative strategy to zero-sum signatures we

tested re-training a signature on the SRM data, which ended in not-

ably more discrepancies to the gold standard than the zero-sum sig-

nature (Fig. 5d).

To ensure comparability of results we kept the regularization

parameter k fixed at 0.5 in all results from Figure 5a thru 5d. Figure

5e and f illustrate how the results depend on k. The circles corres-

pond to scenario (a), the crosses to (b), the triangles to (c) and the

diamonds to (d). Interestingly, the SWATH signature remains re-

markably predictive between k¼0.25 and k¼2, also on the SRM

data. Furthermore, SWATH and SRM predictions are highly con-

cordant for all values of k.

In summary, zero-sum proteomics signatures accurately repro-

duced the transcriptomics based gold standard ABC/GCB classifica-

tion. Zero-sum signatures did not break down when switching from

SWATH to SRM based proteomics. Moreover, when applied to

(a) (b)

(c) (d)

(e) (f)

Fig. 5. DLBCL subtyping using different technological platforms and different

biopsy conservation protocols. Plot (a) shows the ABC/GCB gold-standard

scores (Affymetrix gene expression) versus zero-sum scores predicted in a

leave-one-out cross validation on SWATH proteomics data. The scores from

both technologies agree well. The dashed lines are classification boundaries

for ABC, unclassified and GCB, derived from the gold-standard scores. The

color bars below the plot contrast the resulting classifications showing an ex-

cellent agreement between the proteomics predictions and the gold standard

classifications. Similarly, Plot (b), shows gold-standard scores versus scores

predicted on SRM data. Here, the original SWATH signature was applied on

the SRM data directly, where only the offset b0 was retrained. The SWATH

signature carried over well to SRM data. Plot (c) shows SWATH versus SRM

predictions with excellent agreement. Plot (d) shows scores predicted on

SRM versus the gold standard scores, where this time the signature was

completely retrained on SRM data. The retrained signature was inferior to the

SWATH trained zero-sum signature in (b). All signatures were trained for the

penalizing parameter k¼0.5. In all four figures, (a–d), GCBs are indicated in

red (triangles), ABCs in blue (circles) and unclassified cases in green

(crosses). The dependence of correlations and mean squared errors of Figure

(a) to (d) on k is shown in Figure (e) and (f). Comparison (a) corresponds to

the blue circles, (b) to the red crosses, (c) to the green triangles and (d) to the

purple diamonds
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SRM data, unchanged zero-sum SWATH signatures were more

faithful to the classification than a retrained signature that was spe-

cifically adapted to SRM data.

2.5 Classifications using different transcriptomics

platforms and different tissue preservation protocols
Most proteomics platforms work well for both fresh frozen and

FFPE material. The situation is different for transcriptomics, as

RNA degradation in FFPE material will affect quantification.

We used gene expression data of molecular Burkitt lymphomas

(mBL) and DLBCL (non-mBL) that were assessed on fresh frozen

material using Affymetrix Gene Chips (Hummel et al., 2006).

Furthermore, FFPE data of a separate set of lymphomas was avail-

able from (Masqué-Soler et al., 2013) using the nanoString

nCounter platform. The differential diagnosis between mBL and

non-mBL can be challenging using standard histopathological as-

sessment (Hummel et al., 2006), but is nevertheless important be-

cause the entities are generally treated differently (Dave et al.,

2006). As for the ABC/GCB sub-typing we use a continuous mBL-

score, with the label intermediate between mBL and non-mBL cases,

and frame the diagnostic challenge as a regression problem.

We applied zero-sum regression to the training cohort from

Hummel et al. (2006), consisting of 23 mBL, 26 intermediate cases

and 62 DLBCL, available on Affymetrix Gene Chips. Two samples

were removed from the training cohort, because they were also part

of the data from (Masqué-Soler et al., 2013). The predictor variables

were restricted to features that were also covered by the nCounter

platform. The signature was then applied to a validation set of 9

mBL, 8 intermediate and 23 DLBCL, for which nCounter data was

available (Masqué-Soler et al., 2013). All regression weights were

used as they were, except the offset b0, which was readjusted in a

leave-one-out cross validation.

The results are summarized in Figure 6. The nCounter data

reproduced the gold standard scores well in line with (Masqué-Soler

et al., 2013). The zero-sum signatures did not break down when

switching the platform from Affymetrix Gene Chips to nanoString

nCounter and the tissue preservation protocol from freezing to

FFPE, and again the transferred signature out-competed retraining.

3 Discussion

This is the first systematic analysis of how data dissonance caused

by varying experimental protocols propagates in downstream ana-

lysis from signature learning to predictions and possible treatment

recommendations. We have observed that data dissonance can be

mostly modeled by independent sample and feature effects. As a

consequence we showed that in zero-sum signatures the sample ef-

fects fully vanish while feature effects can be absorbed in a single

parameter that can be easily adjusted. For these signatures data dis-

sonance appears under control. This is in contrast to signatures with

predominantly positive or negative regression weights, where data

dissonance strongly compromises predictions.

Independent sample and feature effects together accounted for

69 to 94% of data dissonance. This still leaves considerable dis-

agreements. Clearly, non-linear effects cannot be compensated nor

can systematic difference in noise, like for lowly expressed genes in

continuous microarray versus discrete RNA-Seq and nCounter data.

One remedy might be to learn signatures and select features not only

on a single platform but on joint dissonant data. In such a case lowly

expressed features and features that display non-linear discrepancies

across platforms might not be selected simply because other features

out-compete them.

To date, the most frequently used strategy to transfer signatures

across platforms was a two step procedure: first learn a sparse signa-

ture on high-content data. Then transfer the features to a second tar-

geted analytical platform. On the second platform keep the features

but discard the weights of this signature. New platform adjusted

weights can be learned in a training phase on the data of the new

platform (Masqué-Soler et al., 2013; Scott et al., 2014, 2013; Sha

et al., 2015). Surprisingly, in our studies this strategy was inferior to

simply keeping the weights of a zero-sum regression signature

learned on high-content data. While this observation might not hold

up for all data types, we nevertheless believe that zero-sum signa-

tures are a method of choice when working with large but diverse

data collections from digital medicine initiatives. With data from

numerous labs with different underlying experimental protocols it

might not be practical to readjust the parameters of prediction algo-

rithms for all of them.

Advancing a culture of data sharing and harmonized data gener-

ation is key to treatment decisions that build on all scientific evidence

available at any point of time. Maybe our results make data harmon-

ization a little less tedious. We observed that with the right algorithms

treatment recommendations remained stable even if the data were not

yet perfectly harmonized, supporting the prospect that data sharing

and integration can improve patient care immediately.

4 Materials and methods

4.1 Data preprocessing
The Affymetrix GeneChip data of Figure 1.1a, Sections 2.2 and 2.5

was preprocessed as in Hummel et al. (2006). Corresponding GCB/

ABC diagnosis scores, which served as responses throughout

Sections 2.4 and 2.5, were provided by the Molecular Mechanisms

in Malignant Lymphoma (MMML) consortium.

NanoString nCounter data from (Masqué-Soler et al., 2013)

were preprocessed by, first, scaling sample-wise to an equal number

of endogenous gene counts (to the total average over the raw counts

(a) (b)

Fig. 6. Differential diagnosis of mBL and DLBCL. Figure (a) shows mBL scores

predicted on FFPE data (nanoString) versus the gold standard scores from

fresh frozen material (Affymetrix). The signature was trained by zero-sum re-

gression on GeneChip data and was directly applied to the FFPE data, where

only the offset b0 was readjusted in cross validation. The color bars below the

plot contrast the resulting classifications showing an excellent agreement be-

tween the FFPE predictions and the gold standard classifications. In Figure (b)

the FFPE nCounter scores were obtained by a leave-one-out cross validation,

where the signature was retrained on the nCounter data. Retraining did not

yield any advantages over the original zero-sum signature. In both figures,

DLBCLs are indicated in red (triangles), mBLs in blue (circles) and intermedi-

ate cases in green (crosses)
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of endogenous genes), second, a pseudocount of 1 was added and, fi-

nally, the data was transformed by the natural logarithm. Here, the

natural logarithm is necessary to ensure that the data is comparable

to the GeneChip data.

The protein expression data shown in Figure 1.2a, 1.2b, and used

in Section 2.4, were first normalized sample-wise by their total inten-

sity, then scaled by a factor of 1000 and finally log2 transformed.

The data shown in Figure 1.3a and 1.3b were taken from (Zhao

et al., 2014). RMA normalized microarray data for 12 samples were

downloaded from doi:10.1371/journal.pone.0078644.s006. Probe

sets were annotated with gene names using the annotation file

doi:10.1371/journal.pone.0078644.s004 and redundant genes were

summarized by mean averaging. Corresponding RPKM normalized

RNA-seq data was downloaded from doi:10.1371/jour-

nal.pone.0078644.s009. After summing up RPKM-normalized counts

of redundant genes, a pseudocount of 1 was added and the data was

log2 transformed. Finally, both datasets were restricted to common

genes, as provided in doi:10.1371/journal.pone.0078644.s005.

For all comparisons in Figure 1, the datasets were additionally

brought to the same scale by subtracting the mean over all features

and samples available on both platforms.

4.2 SWATH/SRM signature transfer: computational and

measurement details
4.2.1 Protein profiling using SWATHTM acquisition

Two 10 mm sections of each FFPE-specimen were extracted accord-

ing to Ostasiewicz et al. (2010) and the proteins were subjected to

tryptic digestion using the GASP-protocol (Fischer and Kessler,

2015). An aliquot of 1 mL of the digest was used for SWATH-

measurements using a 3 h binary gradient and variable SWATH-

windows (Reinders et al., 2016; Simbürger et al., 2016; Zhang

et al., 2015). Targeted data extraction was conducted with the

SWATH Acquisition MicroApp 2.0 within the PeakView 2.2 soft-

ware (Sciex, Darmstadt, Germany).

4.2.2 Targeted protein profiling using SRM

The two most intensive, proteotypic peptide signals for each of the re-

spective proteins were used for scheduled SRM measurements using

10min retention time windows on a 73 min binary gradient with an

accumulation time of 120 ms per precursor (Limm et al., 2016).

Quantification of the signals was done with the Skyline software (ver-

sion 3.6) (MacLean et al., 2010) using at least 4 transitions.

4.2.3 Model training and cross validation across platforms

In each cross-validation step, we performed the following steps on

the training data. First, we fix k to a specific value. Here, we focused

on the interval k¼0.25 to 4. This restriction was necessary, because

each feature selected on SWATH needed to be remeasured on SRM.

For this reason, smaller k values, i.e. less sparse signatures could not

be studied using SRM, due to drastically increasing experimental ef-

fort. Next, we trained a signature consisting of features j 2 C with

coefficients unequal zero. Of these selected proteins, we removed

those that acquired coefficients jbjj < 0:5, leaving a protein set C0

(this cutoff was included to enforce additional sparseness of mod-

els). Then, a zero-sum model was retrained on the proteins C0, yield-

ing the final signature. The selected proteins were measured in a

targeted SRM measurement (this measurement was done once and

covered all proteins selected in all cross-validations). The offset b0

was adjusted on the SRM training data, and finally we predicted a

score for the left-out test sample, measured on SRM.
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