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Antimicrobial resistance (AMR) is a major problem globally. The main bacterial organisms
associated with urinary tract infection (UTI) associated sepsis are E. coli and Klebsiella
along with Enterobacter species. These all have AMR strains known as ESBL (Extended
Spectrum Beta-Lactamase), which are featured on the WHO priority pathogens list
as “critical” for research. Bacteriophages (phages), as viruses that can infect and kill
bacteria, could provide an effective tool to tackle these AMR strains. There is currently
no “gold standard” for developing a phage cocktail. Here we describe a novel approach
to develop an effective phage cocktail against a set of ESBL-producing E. coli and
Klebsiella largely isolated from patients in United Kingdom hospitals. By comparing
different measures of phage efficacy, we show which are the most robust, and suggest
an efficient screening cascade that could be used to develop phage cocktails to target
other AMR bacterial species. A target panel of 38 ESBL-producing clinical strains
isolated from urine samples was collated and used to test phage efficacy. After an
initial screening of 68 phages, six were identified and tested against these 38 strains
to determine their clinical coverage and killing efficiency. To achieve this, we assessed
four different methods to assess phage virulence across these bacterial isolates. These
were the Direct Spot Test (DST), the Efficiency of Plating (EOP) assay, the planktonic
killing assay (PKA) and the biofilm assay. The final ESBL cocktail of six phages could
effectively kill 23/38 strains (61%), for Klebsiella 13/19 (68%) and for E. coli 10/19 (53%)
based on the PKA data. The ESBL E. coli collection had six isolates from the prevalent
UTI-associated ST131 sequence type, five of which were targeted effectively by the final
cocktail. Of the four methods used to assess phage virulence, the data suggests that
PKAs are as effective as the much more time-consuming EOPs and data for the two
assays correlates well. This suggests that planktonic killing is a good proxy to determine
which phages should be used in a cocktail. This assay when combined with the virulence
index also allows “phage synergy” to inform cocktail design.

Keywords: antimicrobial resistance, antibiotic resistance, urinary tract infection, bacteriophage, phage therapy,
ESBL, E. coli, Klebsiella
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INTRODUCTION

Antimicrobial resistance (AMR) is a major global challenge.
It is part of the key target priorities for several prominent
organisations including the World Health Organisation (WHO),
European Centre for Disease Prevention and Control (ECDC)
and National Institute of Health Research (NIHR) (Tacconelli
et al., 2018). It has been predicted that more people will die of
AMR infections than cancer by 2050 and AMR associated deaths
are estimated to be approximately 10 million people per year
(O’Neill, 2014). AMR has been compounded by a reduction in
novel antibiotic discovery, the persistent use of antibiotics and
thus, the rapid emergence of bacterial strains that are resistant
to both existing and new antibiotics (Tacconelli et al., 2018).
The most clinically relevant group of multi-drug resistant (MDR)
pathogens are referred to collectively as the ESPAKEE organisms
(Gram-positive Enterococcus faecium and Staphylococcus aureus,
as well as Gram-negative Pseudomonas aeruginosa, Acinetobacter
baumannii, Klebsiella pneumoniae, Enterobacter species, and
Escherichia coli), and are together responsible for the majority
of hospital-acquired infections (Pendleton et al., 2013). Urinary
tract infections (UTIs) are prevalent and can cause serious
infections per se but can also act as infection sources for
sepsis (urosepsis) and septicaemia. The majority of organisms
associated with urosepsis are E. coli, which are responsible for
50% of cases, and Klebsiella along with other Enterobacter species,
which total 15% of cases (Kalra and Raizada, 2009). Furthermore
biofilm formation has been shown to be crucial in infections
such as catheter-associated UTIs with both E. coli and Klebsiella
(Hancock et al., 2010).

Extended Spectrum Beta Lactamases (ESBL) are plasmid-
mediated enzymes that, if expressed by a bacterial strain, confer
resistance to antibiotics containing a beta-lactam ring in their
molecular structure such as penicillins, cephalosporins, and
carbapenems (Sykes and Matthew, 1976; Livermore, 1987; van
Duin and Doi, 2017). ESBL-producing strains of both E. coli and
Klebsiella have been detected from a variety of sources worldwide
(Bush, 2018). They pose a serious global public health threat
due to the difficulties associated with treatment of infections
with ESBL-producing bacteria. Although, Sakellariou et al. (2016)
reported no difference in mortality rates of infections caused
by either ESBL-producing E. coli (23.8%) or ESBL-producing
Klebsiella (27.1%), they did report that septicaemia associated
with ESBL-producing Klebsiella has a higher morbidity (sepsis
with organ failure).

The decline in antibiotic discovery and emergence of
resistance to last line antibiotics (Pendleton et al., 2013),
motivates the need for alternative antimicrobials. A promising
solution is the therapeutic application of lytic bacteriophages
(phages), which are viruses that kill bacteria. Phage therapy has
a long history of use in countries such as Georgia, Poland, and
France (Kutateladze and Adamia, 2008; Ansaldi et al., 2018;
Gorski et al., 2018) where it has been used alongside or instead of
antibiotics to treat bacterial infections for more than 100 years.
There is a critical need to widen access to this therapy, either
as an alternative or supplement to antibiotic treatment. If phage
therapy is to be developed in the Western world, it is advisable

to focus on bacterial diseases for which no other treatments exist
and those which have high levels of AMR (Tomas et al., 2018).

A phage cocktail is a mixture of several phages and has two
potential clinical advantages (Chan and Abedon, 2012). One is
to combine the individual phages to broaden the number of
strains the phages are able to infect. The second is to combat
phage resistance, which can occur with the use of single phages.
By using a cocktail of phages, strains that become resistant to
one phage can potentially be targeted by other phages within
the cocktail. In the context of the current study, the primary
goal for the phage cocktail was to provide a broader host range
than any of the individual phages alone. Host range coverage
was prioritised over efficiency of killing with regards to the
phage cocktail selection. This is because in a clinical context,
it would be beneficial to provide partial treatment to a wider
number of patients, allowing synergy with the immune system
and antibiotics, rather than treating only a select few patients
(Chan et al., 2013; Mattila et al., 2015). The overall aim was
to identify phages that individually have broad host ranges and
collectively when combined would cover ∼90% of the either the
ESBL-producing E. coli or Klebsiella collection.

Although phage cocktails have been designed and their
efficacy reported in the literature previously, there are no current
guidelines to standardise the development of an optimised
cocktail for antibiotic resistant bacteria or indeed to predict the
efficacy of phages at least under in vitro conditions. Through
the development of the phage cocktail in the current study, we
have generated a data set that allows comparison of four different
methods of assessing phage virulence (the ability of the phage to
kill bacteria) across a panel of 38 bacterial isolates. These tests
are: Direct Spot Test (DST), Efficiency of Plating (EOP) assay,
a planktonic killing assay (PKA) and a biofilm assay. Both the
DST and EOP assay are frequently utilised in the determination
of phage virulence (Mirzaei and Nilsson, 2015) and both tests
use the double agar plate method. The DST is a reasonably good
method for initial host range screening, but it does not provide a
reliable indication that the phage can replicate on the host strain.
The EOP assay indicates productive infection of the host strain by
the phage from which the efficiency of infection of the host can be
determined. The PKA was assessed as an alternative to the labour-
intensive DST and EOP approaches. This method monitors the
optical density of a liquid culture of bacteria to which a phage
combination was added using a plate reader over 24 h. The
previous three methods examine the virulence of phages based on
killing bacteria under “normal” growth conditions in vitro and so
the final method chosen was a biofilm assay. This assay provides
an insight into phage virulence in an in vitro model of infection
and biofilm formation. Genomic analysis was performed on all 38
ESBL-producing clinical isolates to determine the relationships
between susceptibility to phage infection and genomic content.
The genetic relationship between the most sensitive and most
resistant clinical isolates was determined. The final six phages
selected for the ESBL phage cocktail were also sequenced to
confirm suitability for phage therapy by ensuring they did not
encode for any known undesirable traits (toxins/lysogeny).

This article focuses on the development of a phage cocktail
that is effective against ESBL-producing E. coli and Klebsiella that
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were largely isolated from patients in United Kingdom hospitals.
In producing this data, we describe an efficient screening cascade
to develop cocktails, which will be relevant for other target AMR
bacterial species. This data shows a novel, direct comparison
of results across the four phage virulence tests for individual
clinical isolates and indicates that the PKAs are a reliable and time
efficient way to assess phage efficacy.

MATERIALS AND METHODS

Bacterial Strains
Thirty eighty strains of ESBL-producing bacteria were examined
during this study; 19 E. coli and 19 Klebsiella. All strains were
clinical isolates from UTIs; 14 of the E. coli isolates were from
Leicester Royal Infirmary, United Kingdom; 5 from Huashan
Hospital, Shanghai and 19 Klebsiella isolates from Leicester
Royal Infirmary, United Kingdom (Supplementary Table S1).
All bacteria were grown at 37◦C in either Luria-Bertani Broth
(LB—Thermo Fisher Scientific, United Kingdom) at 100 rpm
or on LB 1% (w/v) agar plates. All strains were stored in
50% glycerol stocks at −80◦C until required. The bacterial
strains were sequenced by MicrobesNG with the Standard Whole
Genome Service, Illumina Sequencing by sending the bacterial
strains as samples.

Phage Collection, Isolation,
Amplification, and Visualisation
Phages were collated from several sources with the majority
coming from collaborations with other research projects
(Supplementary Table S2). Phages were isolated using the
method previously described by Kropinski et al. (2009). To
identify phages, 100 µl enrichment, 100 µl culture and 3 ml
LB 0.5% (w/v) agar were poured onto a LB 1% (w/v) agar
plate and incubated overnight at 37◦C. Single plaques were
picked and transferred to 500 µl SM Buffer [100 mM NaCl
(Sigma-Aldrich, United Kingdom), 8 mm MgSO4 7 H2O (Sigma-
Aldrich, United Kingdom), 0.1% (w/v) gelatin (Sigma-Aldrich,
United Kingdom), 50 mM Tris-HCl pH 7.5 (Sigma-Aldrich,
United Kingdom)]. This process was repeated to give five rounds
of single plaque purification and stored in SM buffer.

Phage stocks were made using the double layer agar method.
Briefly, an overnight culture of the host strain was diluted
1:100 in LB and grown for 2 h to an ∼OD550 of 0.2 at
37◦C, 100 rpm. 500 µl of the bacterial culture and 200 µl
of phage stock were added to 8 ml of 0.5% (w/v) LB agar
and poured onto 120 × 120 mm square LB 1% (w/v) agar
plates. The plates were incubated overnight at 37◦C. The
plates were agitated for 2 h in 10 ml SM buffer. The top
layer was removed and centrifuged at 4,000 × g for 15 min.
The supernatant was filter-sterilised through 0.2 µm pore size
filters and the resultant phage stock titre was determined using
double agar overlay plaque assays (Kropinski et al., 2009).
Stock was stored at 4◦C. Phage UP17 (vB_EcoM_UP17) was
propagated using E. coli EA2; phage JK08 (vB_SsoM_JK08)—
E. coli MH10; phage 113 (vB_SsoM_113)—Shigella sonnei B31;
phage 2811 (vB_KpnS_2811)—Klebsiella pneumoniae KR2811;

phage 311F (vB_KpnM_311F)—K. pneumoniae KR311; phage
05F (vB_KpnM_05F)—K. pneumoniae MH05.

Transmission Electron Microscopy imaging for the phages
UP17, 113, 2811, 311F and 05F was performed at University
of Leicester, United Kingdom. The phages were negatively
stained with 1% (w/v) uranyl acetate on 3 mm carbon-coated
copper grids and visualised with a JEM-1400 transmission
electron microscope (JEOL UK Ltd., United Kingdom) with an
accelerating voltage of 120 kV. Digital images were collected
with an Xarosa digital camera (EMSIS, Germany) with Radius
software for phage 113; all other phages were imaged using a
Megaview III digital camera (EMSIS, Germany) instead. Imaging
for phage JK08 was performed at the Max Rubner-Institut,
Germany with a Tecnai 10 transmission electron microscope
(FEI, Eindhoven, The Netherlands) operated at an acceleration
voltage of 80 kV.

Direct Spot Testing (DST)
Bacterial cultures were grown overnight, then diluted 1/100 in
LB and grown for 2 h to ∼OD550 of 0.2. 500 µL of the culture
was added to 8 ml 0.5% (w/v) LB agar kept molten at 55◦C and
poured onto LB 1% (w/v) agar square 120× 120 mm plates. 20 µl
of phage stock (109/1010 pfu/ml) was spotted onto the plate, left
to dry and then incubated overnight at 37◦C. The appearance of
the spot was graded: ++++ complete lysis; +++ lysis with resistant
colonies; ++ hazy lysis; + visible plaques; 0 no visible plaques
(Supplementary Tables S3, S4).

Efficiency of Plating (EOP)
This method has been previously described by Kutter (2009);
5 mM calcium chloride was supplemented to the 0.5% (w/v) LB
agar for the E. coli and Shigella phages. Plaques on each plate were
counted and the relative EOP was given as the ratio between the
phage titre in pfu/ml (plaque forming units/ml) for the test host
strain and the titre of the propagating host strain. Propagating
host for phages UP17, JK08 and 113 was E. coli MH10. The
propagating host for 2811—K. pneumoniae KR2811; for 311F—
K. pneumoniae KR311; and for 05F—K. pneumoniae MH05.

Planktonic Killing Assay (PKA)
Experiments were carried out using the BMG Labtech
SPECTROstar Omega, using a flat bottom 96 well plate
(Sarstedt, Germany). 100 µl of a 1:100 dilution of overnight
cultures was added to the 96 well plate, grown to A600 OD 0.15
(1 × 108 CFU/ml), then 100 µl of phage cocktail (containing
1 × 108 PFU/ml of each individual phage) was added. Working
with a MOI of 1:1; throughout all the experiments. Final
concentrations were achieved using LB as a diluent. The
microtiter plates were securely sealed using gas-permeable
parafilm M (Amcor, United States). OD readings (A600) were
taken every 5 min for a total of 24 h with shaking 10 s prior
to each reading. The microtiter plate had a positive control for
every individual clinical strain for comparison (bacteria only),
as well as a negative control (LB only) and 3 blanks (LB and
gentamicin 10 µg/ml). Each cocktail was repeated in triplicate
for each ESBL-producing clinical isolate and the data was merged
to give a single killing assay curve.
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The killing assay curves were analysed by a modified objective
method (Storms et al., 2019) which was devised using the
generated curve to give a “virulence index.” The virulence index
score was calculated comparing the area under the curve of the
individual phage or cocktail against the positive control whilst
in log phase. This virulence index was normalised to a figure
between 0 and 1, 0 = not effective and 1 = highly effective.

Biofilm Assay
Bacterial cultures were grown overnight at 37◦C, 100 rpm. 100 µl
of 1:100 dilution in LB of each bacterial strain was added to 96
well flat bottom microtiter plate in triplicate for both controls and
phage cocktail treated. The whole experiment was also repeated
in triplicate for all bacterial strains. After 24 h at 37◦C, the
LB was removed, and each well was washed with PBS. For the
controls, 100 µl of fresh LB instead of 100 µl of the final ESBL
cocktail was added (108 PFU/ml of each individual phage). After
an additional 24 h of incubation, 20µl of resazurin (0.15 mg/ml—
Sigma-Aldrich) was added and incubated at 37◦C. OD readings
were taken at A595 with Labtech.com LT-4500 at 4 and 24 h
post incubation.

Phage DNA Extraction
Phage lysate at titres of 1011 PFU/ml was used to extract
DNA using a modified phenol-chloroform-isoamyl method as
previously described (Nale et al., 2015). The final DNA pellet
was dissolved in 5 mM Tris HCl. This method only applies
to phages UP17, 113, 2811, 311F, and 05F. For phage JK08,
DNA isolation was performed using the Norgen Phage DNA
isolation Kit (Norgen Biotek, ON, Canada) according to the
manufacturer’s instructions.

Sequencing and Bioinformatic Analysis
Genome sequencing was conducted by MicrobesNG1, which was
supported by the BBSRC (grant no. BB/L024209/1) for phages
UP17, 311F and 05F as well as all the bacterial genomes. De
novo assembly of the trimmed reads using Trimmomatic 0.30
(Bolger et al., 2014) from MicrobesNG was carried out using
SPAdes genome assembler 3.12.0 (Bankevich et al., 2012) with
default settings.

For the bacterial genomes, contigs were annotated using
Prokka v1.12 (Seemann, 2014) and the assembly metrics were
calculated using QUAST 5.0.2 (Gurevich et al., 2013). MLST
2.16.2 was used for characterisation of the bacterial strains
(Seemann, 20202). ABRicate with Resfinder database was used
with default settings to screen the genome of each strain for the
presence of antimicrobial resistance and virulence genes (Zankari
et al., 2012; Feldgarden et al., 2019).

Sequence data for the bacterial genomes was also used to
create phylogenetic trees (Figure 4) using MEGA7 v7180411
(Kumar et al., 2018) and visualised using iTOL v5.5 (Letunic
and Bork, 2007) based on the core genome SNPs. For phages
113 and 2811, the genomes were sequenced using an Illumina
MiSeq, with a v3 kit (600 cycles). Genomic libraries were prepared

1http://www.microbesng.uk
2https://github.com/tseemann/mlst

using the Illumina Truseq Nano DNA library Preparation
Kit as per the manufacturer’s instructions. The genomes were
assembled using MEGAHIT (Li et al., 2015); phage 2811
(version 1.2.1) and phage 113 (version 1.1.4). Phage termini
were identified using PhageTerm v1.0.11 (Garneau et al., 2017).
Phage JK08 was sequenced using an Illumina MiSeq using a v2
kit (2 × 250). Illumina Truseq PCR-free library preparation kit
was used as per manufacturer’s instructions for genomic library
preparation. Genome assembly was performed with MIRA v4.0.2
(Chevreux et al., 1999).

The genomes of phage UP17, 311F, and 05F were assembled
by subsampling reads to an approximate coverage of 100× with
seqtk3 and assembled with SPAdes v3.12.0 with only assembler
option (Bankevich et al., 2012). Phage genomes were annotated
as previously described (Michniewski et al., 2019). To check
for antibiotic resistance and virulence genes within the phage
genomes, ABRicate was used with the card and vfdb databases,
respectively.

Accession Numbers
All bacterial and phage genomes were submitted to the European
Nucleotide Archive (ENA) under project accession number
PRJEB34549. Individual accession numbers are provided in
Supplementary Tables S1, S2.

Statistical Analysis
GraphPad Prism 7.04 (La Jolla, CA, United States) was used
for statistical analysis for the biofilm assays. The results were
expressed as mean ± SEM after analysis with 2-way ANOVA.
A p < 0.05 was considered significant.

RESULTS

Comparison of Phage Virulence
Methods—DST, EOP, and PKA
The three methods used to assess phage virulence: DST,
EOP, and PKA were compared. These three tests form the
basis for the initial screening of a phage library to identify
phages with the broadest host range. The data generated
also allowed direct comparison of DST versus EOP, as
these two assays are commonly used to characterise phages
(Sybesma et al., 2016; Montso et al., 2019; Rivera et al., 2019;
Supplementary Tables S5, S6).

The final three phages selected for the final ESBL cocktail
based on their effectiveness against the ESBL-producing E. coli
strains were UP17, JK08, and 113. With phages 2811, 311F, and
05F selected to target ESBL-producing Klebsiella. Phages were
selected based on the results of the DST, EOP and PKA data
(Figure 1). The selection of the final three phages was based on
combining the minimum number of phages to have the maximal
effect. For example, with the E. coli phages using four phages
resulted in the same percentage coverage of using only three
(Supplementary Table S5).

3https://github.com/lh3/seqtk
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FIGURE 1 | Summary of the ESBL-producing E.coli clinical isolate (n = 19) coverage of final E.coli phages (A) UP17, (B) JK08, and (C) 113 and ESBL-producing
Klebsiella clinical isolate (n = 19) coverage of final Klebsiella phages (D) 2811, (E) 311F, and (F) 05F across the three selection tests [Direct Spot Test (DST),
Efficiency of Plating (EOP) and Killing (Planktonic Killing Assay)]. Isolate coverage was determined by the following parameters: DST ≥ + appearance score;
EOP > 0.01; Killing ≥0.2 virulence index score.

The final three E. coli phages were selected on the basis
of having the broadest clinical isolate coverage. The following
coverage was observed: phages UP17, JK08, and 113 could lyse
14/19 (74%), 13/19 (68%), and 14/19 (74%) of E. coli clinical
isolates, respectively (Figure 1). When the phages were combined
based on DST data, they provided coverage of 18/19 clinical
isolates (95%) (Supplementary Table S5). The final three phages
selected to be effective against the ESBL-producing Klebsiella
clinical isolates gave overall coverage of 17/19 (89%) based
on DST data (Supplementary Table S6). In comparison, the
individual phages gave the following coverage: phage 2811 lysed
7/19 (37%), phage 311F lysed 6/19 (32%), and phage 05F lysed
11/19 (58%) (Figure 1).

The DST data highlighted which clinical isolates were lysed
by the phages. To determine if the phages could efficiently
replicate on the clinical isolates they infected, EOP studies
were conducted. A detectable EOP was defined as the ratio
compared to the control stain was > 0.01. Across all the phages,
the number of isolates on which they could replicate within
(EOP) were lower than those lysed (DST) as would be expected
(Figure 1). Collectively for the three E. coli infecting phages,
EOP data showed 13/19 strains (68%) compared to 18/19 (95%)
predicted by the DST. DST overestimates the efficiency of killing
compared to EOP and PKA. For example, UP17 only effectively

replicates (EOP score of ≥ +) in 6/14 of the clinical isolates
identified by DST.

There is a closer relationship between the PKA and EOP
data; but the trend appears to be that PKA is slightly lower than
EOP isolate coverage. For example, the PKA showed that phage
05F was effective (virulence index ≥ 0.2) for 5/19 (26%) clinical
isolates compared with EOP 4/19 (21%) (Figure 1). Based on
EOP data for phage 2811, it suggests that the phage could only
replicate on 2/19 (11%) clinical isolates compared with 1/19 (5%)
on the PKA (Figure 1).

Characterisation of the Final Six Phages
Selected for the ESBL Phage Cocktail
The final phages selected to target ESBL-producing E. coli were
UP17, JK08, 113 and for Klebsiella the final phages were 2811,
311F, and 05F, totalling 6 phages in the final cocktail. There
was no lytic activity of the Klebsiella phages against the E. coli
clinical isolates or vice-versa based on DST (Supplementary
Tables S3, S4). The phage genomes were analysed to ensure that
they did not carry genes known to allow a lysogenic lifestyle
and did not contain any genes encoding for known toxins.
A summary of the characteristics of the final six phages are shown
in Figure 2.
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FIGURE 2 | Summary of key features of the final six phages within the ESBL cocktail—TEM image, family classification, genome size and species of propagation
host. From top row left to right, (A): phage UP17, (B): phage JK08, (C): phage 113. From bottom left to right: (D): phage 2811, (E): 311F, and (F): phage 05F. Black
bar represents 200 nm.

Use of Virulence Index Score
Demonstrates Synergy Within Phage
Combinations
Analysis of the Combinations of ESBL E. coli Phages
Using Virulence Index Scores
Phages UP17, JK08, and 113 used in various combinations of
doublets, triplets and also in the final ESBL six-phage cocktail
were tested using the PKA. Using the quantitative virulence index
scores, all data was compared (Table 1). Data was compared on
two scales; the macroscale to analyse only the number of clinical
isolates within each virulence index category and the microscale
to analyse individual clinical isolate virulence index scores for
each phage combination.

Based on the virulence index data from the three individual
phages (UP17, JK08, and 113), 13/19 (68%) of E. coli isolates
should be targeted. However, only 12/19 (63%) were actually
targeted (Table 1). There was an unexpected reduction in the

number of isolates killed by the triplet phage combination
(63%) when compared with the final six phage combination
(53%) (Table 1).

When comparing virulence index scores, there were no
substantial differences between the triplet cocktail (UP17, JK08,
and 113) and the final six phage cocktail for the majority of
the individual clinical isolates (Table 1). However, the virulence
index identified inhibitory combinations. For example, when
KR2729 was treated with phage 113 alone a high virulence
index score of 0.64 is obtained (Table 1). But when used in
combination with phage JK08 (JK08 and 113), its virulence index
score dropped to almost zero (0.05) (Table 1). When all three
phages were used in combination, the high virulence index score
is restored to 0.92, which could be due to phage UP17 alone
(Table 1). This effect is only noted where phage 113 is the only
phage to have a high virulence index score, but with no noticeable
effect from phage JK08 (Table 1). The effect was not noted in
combinations where both phages JK08 and 113 had medium
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TABLE 1 | The virulence index scores of individual phage and various phage combinations across all the 19 ESBL-producing E. coli clinical isolates.

UP17 JK08 113 UP17 UP17 JK08 UP17 Final

JK08 113 113 JK08

113

KR2728 0.93 0.03 0.04 0.91 0.90 0.10 0.90 0.91

KR2729 0.93 0.00 0.64 0.94 0.92 0.05 0.92 0.92

KR2730 0.06 0.00 0.00 0.05 0.00 0.00 0.00 0.00

KR2731 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KR2733 0.30 0.45 0.00 0.95 0.00 0.65 0.70 0.68

MH01 0.00 0.8 0.00 0.90 0.00 0.68 0.69 0.65

MH02 0.00 0.62 0.00 0.68 0.00 0.48 0.49 0.41

MH03 0.00 0.00 0.53 0.04 0.60 0.28 0.20 0.12

MH04 0.00 0.04 0.54 0.22 0.55 0.30 0.14 0.02

MH07 0.00 0.21 0.00 0.42 0.00 0.08 0.20 0.04

MH08 0.02 0.56 0.04 0.55 0.02 0.43 0.48 0.48

MH09 0.00 0.54 0.03 0.64 0.00 0.48 0.63 0.55

MH10 0.10 0.67 0.38 0.81 0.51 0.61 0.58 0.70

MH11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

MH12 0.05 0.03 0.00 0.02 0.00 0.00 0.03 0.00

MH13 0.05 0.03 0.08 0.09 0.05 0.05 0.09 0.08

MH14 0.18 0.83 0.47 0.87 0.62 0.72 0.79 0.80

MH15 0.11 0.77 0.06 0.8 0.00 0.82 0.79 0.80

MH16 0.06 0.12 0.06 0.17 0.07 0.07 0.02 0.03

High > 0.5 2 7 3 10 6 5 8 8

Medium 0.2–0.5 1 2 2 2 0 5 4 2

Low > 0.001 – < 0.2 8 5 6 5 3 5 4 6

None 0 8 5 8 2 10 4 3 3

Effective 3/19 9/19 5/19 12/19 6/19 10/19 12/19 10/19

(High and Medium) 16% 47% 26% 63% 32% 53% 63% 53%

Numbers highlighted in Dark Blue represent high virulence index scores and those highlighted in Light Blue represent medium virulence index scores. The rows represent
each of the ESBL-producing E. coli clinical isolates used within this study. The top column represents the phage starting with individual phage on the left to progressing
across the various combinations. The phages are highlighted with different colours: UP17 (Orange), JK08 (Pink), 113 (Yellow), Final (Purple). Final = all six final phage
(UP17, JK08, 113, 2811, 311F, and 05F). All values represent the mean generated from triplicate experimental data. A full diagrammatic representation of this data can be
seen in Supplementary Figure S7. The bottom section of the table summarises the individual phages and phage combinations into categories. The rows represent the
categories, high = virulence index score > 0.5, medium = virulence index score 0.2–0.5, low = virulence index score ≥ 0.001–< 0.2, none = 0. Effective is a combination
of the high and medium categories, this defines effective killing by the phage combination and its clinical isolate coverage.

or high virulence index scores. This was exemplified by clinical
isolates MH10 and MH14 (Table 1).

Conversely synergistic interactions were also observed.
Treating KR2733 with phage UP17 or JK08 results in virulence
index scores of 0.3 and 0.45, respectively. However, when used
in combination the virulence index increases to 0.95 (Table 1).
A similar pattern can be seen for clinical isolates, MH01, MH10,
and MH07 (Table 1) with this phage combination.

There is an example within the virulence index data of
diminished returns with E. coli clinical isolate MH03. When the
clinical isolate is infected with 113 alone (0.53), JK08 and 113
(0.28), all 3 E. coli phages (0.20), and the final 6-phage cocktail
(0.12). This demonstrates that increasing the number of phages
within a cocktail is not necessarily beneficial.

Analysis of the Combinations of ESBL Klebsiella
Phages Using Virulence Index Scores
The same selection process was carried out for comparison of
Klebsiella phages. The effectiveness of different combinations
of phages 2811, 311F, and 05F was compared using the

virulence index scores to assess the efficacy (Table 2). The
most effective doublet combination was 311F and 05F, which
targets 53% of isolates. The addition of a further phage had
a detrimental effect, reducing the number of isolates killed to
37% (Table 2).

Seven clinical isolates are targeted by the triplet cocktail
compared to the six isolates covered based on the individual
phage data (Table 2). The additional clinical isolate targeted by
the triplet, KR398, showed a virulence index score (0.22) just
above the threshold (Table 2). This suggests that for the Klebsiella
phages, the killing seen with the individual phages translates
directly to the triplet combination of phages. Additionally, the
virulence index scores of the individual phages and of the triplet
suggesting no synergy or competitive inhibition across all the
clinical isolates. For example, clinical isolate KR438, phage 2811
only (0.78), triplet (0.73) or clinical isolate MH05 phage 05F only
(0.32), triplet (0.33) (Table 2).

Analysis of the doublet (311F and 05F) showed unexpected
synergistic combination. For five clinical isolates (KR358, KR359,
KR360, KR396, and KR398), individually phages 311F and 05F
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TABLE 2 | The virulence index scores of individual phage and various phage combinations across all the 19 ESBL-producing Klebsiella clinical isolates.

2811 311F 05F 2811 2811 311F 2811 Final

311F 05F 05F 311F

05F

KR310 0.05 0.10 0.00 0.14 0.09 0.18 0.04 0.23

KR311 0.02 0.86 0.43 0.85 0.49 0.91 0.89 0.90

KR312 0.00 0.00 0.08 0.03 0.03 0.16 0.09 0.20

KR313 0.00 0.33 0.34 0.42 0.32 0.41 0.38 0.43

KR315 0.00 0.00 0.00 0.04 0.04 0.18 0.03 0.26

KR358 0.06 0.05 0.00 0.02 0.02 0.25 0.07 0.24

KR359 0.05 0.09 0.05 0.05 0.14 0.35 0.18 0.33

KR360 0.00 0.07 0.00 0.00 0.00 0.20 0.09 0.12

KR396 0.00 0.04 0.00 0.00 0.04 0.21 0.02 0.15

KR397 0.00 0.03 0.00 0.01 0.02 0.15 0.05 0.29

KR398 0.00 0.16 0.19 0.16 0.10 0.21 0.22 0.27

KR399 0.00 0.00 0.00 0.00 0.04 0.01 0.12 0.16

KR401 0.09 0.10 0.28 0.18 0.29 0.25 0.32 0.27

KR431 0.03 0.06 0.05 0.07 0.11 0.08 0.14 0.04

KR432 0.13 0.54 0.50 0.57 0.55 0.36 0.57 0.43

KR437 0.09 0.15 0.14 0.06 0.04 0.02 0.04 0.01

KR438 0.78 0.13 0.06 0.80 0.77 0.10 0.73 0.74

MH05 0.12 0.00 0.32 0.07 0.29 0.43 0.33 0.39

MH06 0.10 0.02 0.09 0.07 0.14 0.12 0.09 0.16

High > 0.5 1 2 1 3 2 1 3 2

Medium =0.2–0.5 0 1 4 1 4 9 4 11

Low > 0.001 – < 0.2 10 12 7 12 12 9 12 6

None 0 8 4 7 3 1 0 0 0

Effective 1/19 3/19 5/19 4/19 6/19 10/19 7/19 13/19

(High and Medium) 5% 16% 26% 21% 32% 53% 37% 68%

Numbers highlighted in Dark Blue represent high virulence index scores and those highlighted in Light Blue represent medium virulence index scores. The rows represent
each of the ESBL Klebsiella clinical isolates used within this study. The top column represents the phage starting with individual phage on the left to progressing across
the various combinations. The phages are highlighted with different colours: 2811 (Orange), 311F (Pink), 05F (Yellow), Final (Purple). Final = all six final phage (UP17,
JK08, 113, 2811, 311F, and 05F). All values represent the mean generated from triplicate experimental data. A full diagrammatic representation of this data can be
seen in Supplementary Figure S7. The bottom section of the table summarises the individual phages and phage combinations into categories. The rows represent the
categories, high = virulence index score > 0.5, medium = virulence index score 0.2–0.5, low = virulence index score ≥ 0.001–< 0.2, none = 0. Effective is a combination
of the high and medium categories, this defines effective killing by the phage combination and its clinical isolate coverage.

had an almost negligible effect, but when combined (311F and
05F) they demonstrated medium virulence index scores for all
strains (Table 2). For the triplet cocktail (2811, 311F, and 05F),
five clinical isolates (KR310, KR312, KR315, KR358, KR359,
KR397) again had negligible virulence index scores (Table 2). But
when exposed to the final cocktail (UP17, JK08, 113, 2811, 311F,
and 05F), all five clinical isolates had a medium virulence index
score (Table 2). This demonstrated a further unexpected synergy
when added with the ESBL E. coli phages.

Effectiveness of the Final ESBL Phage
Cocktail
The final ESBL cocktail was effective against 23/38 clinical isolates
(61%) based on the virulence index data (any clinical isolates with
a medium or high virulence index score > 0.2). The final ESBL
cocktail was then tested in a 24 h biofilm assay, to test the cocktail
in a bacterial virulence model.

The final ESBL cocktail was most effective against the E. coli
clinical isolates. There was a significant (p < 0.05) decrease in

bacterial cell viability in 11 (58%) and 13 (68%) isolates after 4
and 24 h of resazurin incubation, respectively (Figure 3).

For Klebsiella, at 4 h the cocktail only killed 5/19 (26%) of
isolates and at 24 h 3/19 (16%) (Figure 3). This is in stark contrast
to the high clinical isolate killing observed by the PKA of 13/19
(68%) (Table 2). An example of the disparity of results between
the two tests is clinical isolate KR311. It had the highest virulence
index score of 0.9 (Table 2), when using the final ESBL cocktail
in the PKA but had no significant (p < 0.05) decrease in bacterial
cell viability (Figure 3). However, the second highest virulence
index score of 0.74 on isolate KR438 (Table 2) correlated with a
significant (p < 0.05) reduction in the biofilm assay (Figure 3).

Genomic Analysis of the
ESBL-Producing Clinical Isolates
Core genome SNP analysis was used to compare the clinical
isolates (Figure 4). Ten different ST types of E. coli were
identified, with the cocktail being able to target 10 strains across
three ST types. The cocktail could target 5/6 of the ST131
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FIGURE 3 | Graphical representation of the biofilm assay data—resazurin cell viability-based model on a 96 well plate. Clinical isolates were grown for 24 h on a flat
bottom 96 well plate, then incubated for an additional 24 h with either LB (control) or the final phage cocktail (phage treated). Resazurin was then added, OD
readings were taken at 4 and 24 h post adding resazurin. Each ESBL-producing clinical isolate has two bars: the black bar represents the phage treated blank
corrected OD and the grey bar represents the control blank corrected OD. OD taken at A595, experiments repeated in triplicate for all clinical isolates, columns
represents mean with standard error of the mean. * = significance difference between those treated with final phage cocktail and the control, p < 0.05. The top left
graph (A) depicts the all ESBL producing E.coli clinical isolates 4 h post incubation with resazurin, top right (B) depicts ESBL producing E.coli clinical isolates 24 h
post incubation with resazurin, the bottom left (C) depicts all ESBL-producing Klebsiella clinical isolates 4 h post incubation with resazurin and bottom right (D)
depicts all ESBL-producing Klebsiella clinical isolates 24 h post incubation with resazurin.

clinical isolates, which is the most prevalent multidrug resistant
uropathogen (Johnson et al., 2010; Kudinha et al., 2013). The
core-genome SNP analysis of Klebsiella clearly separated the
isolates into two different species (Figure 4). Three isolates
were Klebsiella oxytoca and the remainder Klebsiella pneumoniae.
There was a broad diversity of ST types present with 12 different
types detected. There are representatives of the global endemic
carbapenem-resistant associated ST258 as well as high risk AMR
type ST147 (Bowers et al., 2015; Dhar et al., 2016; Peirano et al.,
2020). The cocktail of phages was able to target a broad diversity
of ST types across the three different bacterial species.

Figure 5 allows an overview of the PKA virulence index scores
taking into consideration all phage combinations including
individual, doublets, triplets and the six-phage final cocktail that
were used during this work. It also includes combinations using
phages that were screened but not selected as the final six phages.

When comparing this data with the two phylogenetic trees
(Figure 4) of all 38 clinical isolates, there is no clear pattern of

genomic similarities to phage susceptibility. The most sensitive
E. coli clinical isolates (MH14, KR2733, KR2729, MH01, KR2728)
are spread across three different clades. In contrast the most
resistant clinical isolates were spread across five different clades
(MH11, KR2731, MH12, MH13, and KR2730). With regards to
Klebsiella, the most sensitive strains were spread across five clades
(KR311, KR438, KR432, KR313, MH05). The most resistant
strains were distributed across three different clades (KR399,
KR396, KR360, KR315, KR397).

DISCUSSION

Antimicrobial resistance is an urgent issue that needs to be
addressed. Phage therapy could be part of the solution. This
work focuses on the development of an effective phage cocktail
in response to this need. The aim of this work was to assess phage
selection methods to streamline the development of a phage
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FIGURE 4 | Phylogenetic analysis of the 38 ESBL-producing clinical isolates used in this study. (A) Shows ESBL-producing E. coli and (B) shows ESBL-producing
Klebsiella spp. Trees were produced using MEGA7 to assess the core genome SNPs. Core-genome SNP analysis revealed that there were two species of Klebsiella.
KR315, KR359 and KR401 are Klebsiella oxytoca and all others are Klebsiella pneumoniae. Each clinical isolate name is followed by its MLST
(Achtman—E. coli)—please note KR315 was unable to be assigned. Tree scale noted and bootstrap values are labelled on branches. Coloured boxes within each
tree represent groups of sequence types. The heat map on each tree represents the virulence index score assigned to the final phage cocktail for each strain.

cocktail. This was achieved using an example of a phage cocktail
against ESBL-producing clinical isolates of E. coli and Klebsiella.

DST is commonly used in the literature to assess the host
range of phage (Sybesma et al., 2016; Hyman, 2019; Montso et al.,
2019). The data demonstrated that the DST overestimates the

host range or clinical isolate coverage of the individual phage
by approximately 50% compared with the EOP and the PKA
(Figure 1). The discrepancy between DST and EOP is in keeping
with previous publications relating to Enterobacteriaceae species
(Mirzaei and Nilsson, 2015; Manohar et al., 2019). It is considered
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FIGURE 5 | A box and whisker plot depicting the range of killing assay virulence index scores from all phage combinations explored during this work for each of the
38 ESBL-producing clinical isolates. From left to right shows the ESBL-producing clinical isolates that are most resistant to the combinations attempted to those that
are most sensitive. Please note not all combinations were completed in triplicate for those combinations that were not part of the final ESBL cocktail (all six phages).

to be due to other mechanisms of killing noted with DST, such
as “lysis from without,” that are not a result of phage replication
(Hyman and Abedon, 2010). But when comparing EOP with PKA
data, there is less disparity in the numbers of clinical isolates
and specific individual clinical isolates covered. There is also a
trade-off in experimental time between the methods described
in terms of labour-intensity and actual experimental time under
our laboratory conditions. For example, set-up time for DST ∼5
h, EOP ∼6 h versus PKA ∼2 h. In addition, EOP being the
most labour intensive and requiring the most materials. This
is compared to PKA which due to the 96-well plate format
uses small volume of materials and allows the use of labour-
saving device such as a multi-channel pipettor. So as EOP and
PKA give similar results, the savings in labour and material
would favour PKA.

Use of the virulence index score for analysis across a large
dataset allowed direct comparison of individual phages and phage
combinations, which would be a powerful tool for cocktail design.
Overall, based on the dataset generated by this work, there is
not a clear formula for the expected outcome when combining
phages. This is due to either synergy or inhibition, which cannot
be easily predicted. The ability of the virulence index to detect
these interactions is a clear advantage over the use of DST or
EOP as a selection method. The concepts of viral interference and
augmentation have previously been discussed in the literature
(Casey et al., 2018). Synergistic enhancement could be due to
an effect on one or more of the three properties: (1) rate of
infection, (2) production of progeny, or (3) the time window
between infection and progeny release (Schmerer et al., 2014).
Therefore, synergy of phage infection is an additional advantage
for the creation of a successful phage cocktail (Schmerer et al.,

2014). The PKA method alongside analysis using the virulence
index score could make this a realistic research aim during future
cocktail design. UP17 was interesting in that it also appeared
to be resistant to interference from the other phages within the
cocktail. This is shown with Table 1, where UP17 had a high
virulence score against a particular clinical isolate (KR2728 and
KR2729) this score is maintained throughout all the other phage
combinations with UP17 (UP17 and JK08, UP17 and 113, UP17
and JK08 and 113, all 6).

Overall, it would be worth investigating further, why UP17
is resistant to interference from the other phages as well as
to why its effectiveness increases when combined with JK08.
In addition to this, also consider why JK08 and 113 had an
antagonistic relationship. This could be due to the phages having
similar receptor sites and one being more likely to lead to an
abortive infection, or superinfection resulting in an unsuccessful
infection for both (Abedon, 2015). Answering all of these
questions, may help determine effective future cocktail design.
The strength of this work is the use of the virulence index score
to be able to support the combination of phages together in a
cocktail by providing clear evidence of synergy. This synergy
would not be apparent from other commonly used selection
methods such as DST and EOP. In addition, this method also
outperforms the previous PKA methods, with the use of time
course measurements in a 96-well plate format, as it allows
high throughput of a large number of individual phage/phage
combinations and clinical isolate panels.

The data suggests that other factors may come into play for
Klebsiella clinical isolates. When comparing the phage virulence
assays of the biofilm assay and PKA, there appears to be no
correlation for Klebsiella clinical isolates. For example, when
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FIGURE 6 | Depicts the suggested selection processes to screen a phage
library against a clinical isolate collection to optimise development of a
potentially therapeutic phage cocktail. The left sided route suggests starting
with the screening of the individual phages via the DST followed by EOP to
confirm host-range. The right sided route suggests starting initially screening
the individual phages with the DST followed by the PKA to confirm
host-range. Both routes are then followed by selection of the phages that
have the broadest and complementary host range to combine to test in
combinations against the clinical isolate collection with the PKA. The final
phage combination will be then be tested in biofilm assay. The tables on the
right hand of the figure are to depict examples of the host-range coverage
provided by each of the virulence tests.

using the final ESBL cocktail the clinical isolate KR311 has
the highest virulence index score of 0.9 in the PKA (Table 2)
and yet there was no significant (p < 0.05) decrease in the
biofilm assay (Figure 3). In contrast, the second highest virulence
index score of 0.74 against KR438 correlated with a significant
(p < 0.05) reduction in cell viability in the biofilm assay
(Table 2 and Figure 3). Overall, when assessing the clinical
isolates that demonstrated a significant (p < 0.05) reduction
in cell viability for at least one of the timepoints during the
biofilm assay, there appears to be no correlation with the PKA
virulence index. This is a disappointing result, at least for
this biofilm model, as the ideal case would be for the high-
throughput method to determine virulence such as the PKA
to translate to effectiveness in an in vitro bacterial model of
virulence. The final cocktail covered 13 isolates (68%) in the
PKA (Table 2) in comparison to 5/19 (26%) clinical isolates at
4 h and 3/19 (16%) clinical isolates at 24 h within the biofilm
assay (Figure 3). It has been demonstrated in the literature
that the use of phage can cause a significant reduction in
biofilm production in Klebsiella spp. (Tabassum et al., 2018;

Taha et al., 2018). This is in conflict to data demonstrated
in this work. The results with E. coli were more promising
as the clinical isolate coverage was similar 10/19 (53%) for
PKA and in the biofilm assay 11/19 (58%) at 4 h and 13/19
(68%) at 24 h. The overall aim of this work was to develop
a phage cocktail that was effective against 90% of the ESBL-
producing clinical isolate collection. This was not achieved, and
the result may influence the clinical application of the final
cocktail. The data presented here demonstrated it was highly
effective against the global prominent AMR UTI-associated
E. coli ST131 isolates with 5/6 (83%) isolates killed. The data
in this paper would need to be reconciled with prevalence data
of the different sequence types within the general population
to be able to draw conclusions with regards to the true
clinical application.

In this study, we also performed basic bacterial genetic
analysis identifying those clinical isolates that were most resistant
to phage infection and those that were most sensitive. This
highlighted clinical isolates that were on the same clade on
the phylogenetic tree (Figure 4) but have polar opposite
phage sensitivity. An example, Klebsiella KR396 and KR399
are both resistant isolates against sensitive isolate Klebsiella
KR438 (Figure 4). Further genetic analysis of those with polar
opposite phage sensitivity could provide further insight into
mechanisms of resistance. It could also provide an opportunity
to assess the individual clinical isolates susceptibility across
three different screening methods and biofilm assay to see if
there were any markers that predicted the outcome. These
markers could help in the design of cocktails. In the future,
a more detailed genomic analysis of the clinical isolates
will be reported.

This paper is intended to outline the initial selection of
phages for a final cocktail formulation. It will provide a basis for
further building toward a “gold” standard within the community.
This data could be used alongside other publications that have
generated comparative data from the phage virulence methods
described—DST, EOP, PKA and biofilm assay (Chen et al.,
2018; Forti et al., 2018; Yang et al., 2020). There are two
alternative routes that could be considered for use (Figure 6).
Both commence with DST as the initial screening test. This
would be used to eliminate phage candidates with low coverage
of the clinical isolate collection. The refined list of phage
candidates will either undergo EOP or PKA as individual
phages against the clinical isolate collection to refine the list
further. This will be achieved by providing a more accurate
host range. In turn, this will allow selection of phages that
have broad and complementary host ranges to ensure the
widest coverage of the clinical isolate collection. Those phages
selected will be used in various combinations within the PKA.
When the optimal combination is elicited, it will be tested in
the biofilm assay.

In conclusion, DST and EOP are not as useful as PKA as
selection methods for designing phage cocktails. This is due
to the inability of the DST and EOP to identify beneficial
synergy as well as avoid inhibition. But DST and EOP are more
easily accomplished and initially can add to the confidence of
phage selection.
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