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An explanation for the low 
proportion of tuberculosis that 
results from transmission between 
household and known social 
contacts
Nicky McCreesh & Richard G. White   

We currently have little idea where Mycobacterium tuberculosis (Mtb) transmission occurs in high 
incidence settings. Molecular studies suggest that only around 8–19% of transmission to adults occurs 
within-household, or between known social-contacts. This contrasts with findings from social-contact 
studies, which show that substantial proportions of contact time occur in households, workplaces 
and schools. A mathematical model of social-contact behaviour and Mtb transmission was developed, 
incorporating variation in susceptibility and infectiousness. Three types of contact were simulated: 
household, repeated (individuals outside household contacted repeatedly with daily-monthly 
frequency) and non-repeated. The model was parameterised using data from Cape Town, South Africa, 
on mean and variance in contact numbers and contact durations, by contact type, and fitted to an 
estimate of overdispersion in numbers of secondary cases (‘superspreading’) in Cape Town. Household, 
repeated, and non-repeated contacts contributed 36%, 13%, and 51% of contact time, and 13%, 8%, 
and 79% of disease, respectively. Results suggest contact saturation, exacerbated by long disease 
durations and superspreading, cause the high proportion of transmission between non-repeated 
contacts. Household and social-contact tracing is therefore unlikely to reach most tuberculosis cases. A 
better understanding of transmission locations, and methods to identify superspreaders, are urgently 
required to improve tuberculosis prevention strategies.

We currently have little idea where Mycobacterium tuberculosis (Mtb) transmission occurs in high incidence set-
tings. A number of studies have used molecular data, combined with household address and/or contact data, to 
estimate the proportion of all tuberculosis cases attributable to recent within-community transmission that can 
be attributed to household transmission, or to transmission between known social contacts. In one community in 
Cape Town, it was estimated that only 8% of (within-community transmitted) tuberculosis resulted from trans-
mission between household members1. In another, during the early years of the South African HIV epidemic, 
19% of clustered tuberculosis cases could be attributed to household transmission2. Elsewhere in South Africa, 
in KwaZulu-Natal, ‘prolonged or intimate contact’ was identified between only 12% of molecularly linked cases, 
and casual acquaintanceship between a further 5%3. Finally, in Karonga District, Malawi, only 9.4% of all cases in 
the community could be attributed to transmission from known contacts - 8.2% family, and 1.2% other known 
contacts4.

This contrasts with findings from social-contact studies, which show that substantial proportions of con-
tacts and contact time occur in households. One study reported that 51% and 73% of close contacts (contacts 
involving skin-to-skin contact and/or conversation) occurred in respondents’ own households in Zambia and 
South Africa respectively5. Another study in South Africa found that 34% of close contacts and 20% of all indoor 
contacts occurred within respondents’ own households6. Findings are similar outside Southern Africa: 18–32% 
of close contacts in eight European countries7 and 85% of close contacts in Vietnam8 occurred in respondents’ 
own homes.
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One potential explanation for this disparity is contact saturation – once a household contact has developed 
disease, then any further infectious contacts with them before the disease is resolved are ‘wasted’9. Latent M.tb 
infection also provides some protection from reinfection, leading to an additional source of (partially) wasted 
household contacts. With variation in infectiousness, a higher proportion of people will not cause any second-
ary infections, reducing the pool of household contacts available to be infected. Variation in susceptibility will 
increase this effect, due to the low risk of transmission between people with only moderately infectious tubercu-
losis and their low-susceptibility household contacts. We therefore hypothesised that this effect of contact satura-
tion will be further exacerbated by variation between people in infectiousness, and in susceptibility to infection 
and disease progression.

In this paper, we used an individual-based model to simulate patterns of meetings and Mtb transmission 
between three different types of contact: household, regular (met at least once a month), and non-regular (met 
less frequently, or present at the same indoor location but did not speak). We defined meetings where conver-
sation occurred as ‘close contacts’. This included all household and regular, and some non-regular contacts. We 
defined meetings that included shared indoor space, but no conversation, as ‘casual contacts’. The model was 
parameterised using empirical data on social contacts and epidemiology from Cape Town, South Africa5,10.

In one set of scenarios, we simulated no variation between people in infectiousness or susceptibility to tuber-
culosis (beyond that resulting from extrapulmonary, smear positive, or smear negative disease type, and HIV 
status). In a second set of scenarios, we simulated realistic levels of individual-level variation in infectiousness 
and susceptibility, by fitting the model to an empirical estimate of overdispersion in the number of secondary 
cases generated by each person with pulmonary tuberculosis (‘superspreading’). In line with other studies11,12, we 
quantified this by describing the heterogeneity in the number of secondary cases attributable to each infectious 
person as a binomial distribution. The dispersion parameter (k) gives an estimate of the degree of ‘superspread-
ing’. Using molecular data from tuberculosis cases in Cape Town13, we estimated k to be 0.15 (95% confidence 
interval 0.074–0.32).

It is plausible that transmission rates are lower between contacts who do not talk (casual contacts), than those 
that do (close contacts). For this reason, each set of scenarios consists of three scenarios, in which we assumed the 
transmission rate between casual contacts was 100%, 50%, and 20% of the transmission rate between close con-
tacts. We refer to these scenarios as high, medium, and low non-repeated casual transmission risk, respectively.

For each scenario, we calculated the proportion of disease that can be attributed to transmission between 
household, regular, and non-regular contacts, to determine whether the effects of contact saturation (with or 
without superspreading) were sufficient to explain why the majority of tuberculosis results from transmission 
outside household and close social contacts in South Africa and other high incidence settings.

Results
Model fit to data.  The model was a good fit to empirical data (Fig. 1). The value of the dispersion parameter 
k (a measure of the degree of overdispersion) was within ±1% (relative) of the target value in all scenarios.

Proportion of transmission.  If we assume that the proportion of disease attributable to each type of con-
tact is proportional to meeting time, then an estimated 36.0%, 12.7%, and 51.3% of disease would result from 
transmission between household, repeated, and non-repeated contacts respectively (Fig. 2, green bar).

When we simulated patterns of meetings and transmission, assuming no additional variation in infectiousness 
or susceptibility, the proportion of tuberculosis cases resulting from transmission between household members in 
the model was 21.2%, 28.6%, and 37.1% in the high, medium, and low non-repeated casual transmission risk sce-
narios respectively (Fig. 2), higher than the 8–19% suggested by empirical data. The overall proportion resulting 
from transmission between repeated contacts was 10.1%, 16.0%, and 25.7%, respectively. The overall proportion 
resulting from transmission between non-repeated contacts was 68.7%, 55.4%, and 37.2%, respectively.

When the model was fitted to the empirical estimates of ‘superspreading’ (k = 0.15 (k = 0.074 – k = 0.32)), the 
proportion of disease resulting from transmission between household members was 12.6% (7.87%-19.3%), 14.6% 
(8.78%-23.2%), and 16.5% (9.87%-26.4%) in the high, medium, and low non-repeated casual transmission risk 
scenarios respectively, consistent with the 8–19% suggested by empirical data (Fig. 2). The proportion of tuber-
culosis cases resulting from transmission between repeated contacts was 8.16% (6.24%-9.90%), 11.6% (8.30%-
14.8%), and 16.5% (11.1%-22.2%) in the high, medium, and low non-repeated casual transmission risk scenarios 
respectively. Of this, 19.8%-38.8% was between contacts who see each other daily (derivable from data in Table 1). 
The proportion tuberculosis cases resulting from transmission between non-repeated contacts was 79.3% (85.9%-
70.8%), 73.8% (82.9%-62.0%), and 67.0% (79.0%-51.4%) in the high, medium, and low non-repeated casual 
transmission risk scenarios respectively. The majority of this (93.7–98.7%) was between contacts who did not talk 
(derivable from data in Table 1).

As ‘superspreading’ was reduced (i.e. k was increased), the proportion of disease attributable to transmission 
between household and regular contacts increased, and the proportion of disease attributable to transmission 
between non-regular contacts decreased (Fig. 3).

Sensitivity analyses.  Our results were robust to sensitivity analysis. There was little variation between the 
baseline scenario and the sensitivity analyses scenarios in the proportion of disease resulting from transmission 
between household members (12.6% in baseline, 11.6%-13.4% in sensitivity analyses), repeated (8.16% in base-
line, 5.97%-12.5% in sensitivity analyses), or non-repeated (79.3% in baseline, 74.6%-81.3% in sensitivity analy-
ses) contacts. Full results are given in the supplementary information.

Overdispersion.  In the scenarios where no additional variation in infectiousness or susceptibility was sim-
ulated, in the three casual transmission risk scenarios, between 66–73% of disease resulted from transmission by 
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Figure 1.  Model fit to data. The solid horizontal lines indicate the best estimates of the output values. The 
dashed horizontal lines indicate the minimum and maximum of the output plausible ranges. Circles, triangles, 
and squares indicate the high, medium, and low non-repeated casual transmission risk scenarios respectively. 
Red indicates scenarios with no additional variation in infectiousness or susceptibility simulated, and purple, 
turquoise, and green indicate the best estimate of k, and lower and upper bounds of the 95% confidence interval 
for k respectively. Full details of each output and plausible range justification are given in the supplementary 
information.

Figure 2.  Proportion of contact time, and proportion of disease resulting from transmission between 
household, repeated, and non-repeated contacts with no additional variation in susceptibility and 
infectiousness, or with ‘superspreading’, in the high, medium and low casual transmission scenarios. For the 
‘superspreading’ scenarios, coloured bars show results for the best estimate of the dispersion parameter k. Error 
bars indicate results for the upper and lower bounds of the 95% confidence intervals for k. Horizontal dotted 
lines show the range of the proportion of tuberculosis estimated to result from household transmission in 
empirical studies in sub-Saharan Africa1–4.
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the top 20% of transmitters, 45–52% from the top 10%, 29–36% from the top 5%, 16–20% from the top 2%, and 
10–13% from the top 1% (Fig. 4).

When the model was fitted to the lower, best and upper empirical estimates of k, in the high casual transmis-
sion risk scenarios, 100%, 93%, and 81% of disease resulted from transmission by the top 20% of transmitters 
respectively; 90%, 78%, and 62% by the top 10%; 77%, 62%, and 45% by the top 5%; 57%, 42%, and 28% by the 
top 2%; and 42%, 30%, and 18% by the top 1% (Fig. 4). Results for the medium and low casual transmission risk 
scenarios were very similar to those for the high casual transmission risk scenario, and are therefore not shown.

Discussion
Studies of social contacts suggest that large proportions of indoor meeting time between people occur between 
household members or close social contacts. Despite this, analysis of molecular data from tuberculosis cases 
indicates that transmission between household members is unlikely to be responsible for more than a small pro-
portion of disease in high incidence settings. In this paper, we provide an explanation for this disparity.

In our setting, meetings between household members were responsible for 36% of adult meeting time. When 
contact patterns in the community were simulated, assuming no variation in susceptibility or infectiousness 
(beyond those due to HIV status and disease type) and no reduction in transmission probabilities between con-
tacts who do not talk, household transmission was estimated to be responsible for around 21% of disease. This 
demonstrates the effects of contact saturation, in the absence of large amounts of overdispersion in number of 
secondary cases. Simulating greater overdispersion, ‘superspreading’, exacerbated the effects of contact saturation, 
and reduced the proportion of disease resulting from household transmission to 13% (7.9–19%), in line with the 
estimates from molecular studies (8–19%).

Our findings have implications for tuberculosis care and control in high incidence settings. With only a small 
proportion of tuberculosis resulting from household and close social contact transmission, contact tracing in 
households or among close contacts is unlikely to have a large effect on the incidence of tuberculosis at a com-
munity level. This is supported by empirical studies that identify few epidemiological links between molecularly 
clustered tuberculosis cases14,15. Our results suggest that the majority of disease results from infection by a small 
proportion of people with tuberculosis, often referred to as superspreaders. These people are likely to combine 
high infectiousness (e.g. generation of culture positive cough aerosols16) and/or long durations of infectious, with 
high numbers of contacts (for instance due to employment in busy congregate settings). This highlights a critical 

Empirical data
Model results, no variation in susceptibility 
or infectiousness

Model results, fitted to empirical estimate of k (95% confidence 
interval for k)

Proportion 
of contacts 
(per day)

Proportion 
of meeting 
time

High casual 
transmission

Medium 
casual 
transmission

Low casual 
transmission

High casual 
transmission

Medium casual 
transmission

Low casual 
transmission

Household 20.4% 36.0% 21.2% 28.6% 37.1% 12.6% (7.87%-19.3%) 14.6% (8.78%-23.2%) 16.5% (9.87%-26.4%)

Repeated

Daily 5.14% 5.76% 3.99% 5.92% 8.68% 2.51% (1.59%-3.68%) 3.12% (1.85%-4.85%) 3.81% (2.20%-6.11%)

Weekly-monthly 8.12% 6.82% 6.15% 10.1% 17.1% 5.65% (4.65%-6.22%) 8.48% (6.46%-9.92%) 12.7% (8.92%-16.1%)

Overall 13.3% 12.7% 10.1% 16.0% 25.7% 8.16% (6.24%-9.90%) 11.6% (8.30%-14.8%) 16.5% (11.1%-22.2%)

Non-repeated

Non-repeated close 1.21% 0.678% 0.918% 1.45% 2.36% 1.06% (1.14%-0.95%) 1.92% (2.16%-1.61%) 4.11% (4.60%-3.22%)

Non-repeated casual 63.5% 49.4% 67.8% 54.0% 34.8% 78.2% (84.8%-69.9%) 71.9% (80.8%-60.4%) 62.9% (74.4%-48.2%)

Overall 66.4% 51.3% 68.7% 55.4% 37.2% 79.3% (85.9%-70.8%) 73.8% (82.9%-62.0%) 67.0% (79.0%-51.4%)

Table 1.  Proportion of contacts and meeting time, and proportion of tuberculosis cases resulting from 
transmission between household, repeated, and non-repeated contacts.

Figure 3.  The proportion of disease resulting from transmission between household, regular, and non-regular 
contacts, at different values of the dispersion parameter k. Dots indicate points where model runs were carried 
out. The solid and dashed vertical lines show the best empirical estimate of k, and the 95% confidence intervals 
for k, respectively.
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need to develop new technologies and strategies to reliably identify tuberculosis superspreaders. Once developed, 
targeting case-finding at congregate settings regularly visited by superspreaders may become a high impact, and 
potentially highly cost-effective, intervention.

Our findings also have implications for the collection of social contact data for understanding infection trans-
mission, in particular for infections with long durations and/or superspreading characteristics, such as M.tb. 
Many social contact studies collect data on contacts that were spoken to or touched only, neglecting contacts that 
were merely present in the same indoor location at the same time7,17–20. In our study setting, these casual contacts 
were responsible for 64% of contacts and 49% of meeting time, and a disproportionately large proportion of 
tuberculosis – 89%, 74%, and 67%, assuming that the transmission probability between casual contacts was 100%, 
50%, and 20% of that between other contacts respectively.

Our study has a number of limitations. Our estimate of the overdispersion parameter k for Cape Town may 
be under- or overestimated. Restriction fragment length polymorphism (RFLP) data were only available from 
an estimated 27% of people with pulmonary tuberculosis in the molecular study from Cape Town13. While we 
adjusted for this in estimating k, we assumed that the probability of a person with pulmonary tuberculosis being 
missing from our data was unrelated to infectiousness. In practice, people with low infectiousness may be more 
likely to be missing from our sample, due to under-diagnosis or missing RFLP data. This may have resulted 
in us underestimating the true number of non-clustered cases, and overestimating k as a result (i.e. underesti-
mating superspreading). Alternatively, immigration into the community may have resulted in us overestimating 
non-clustered cases, and underestimating k. There is also a large amount of uncertainty in the proportion of 
data missing, due to uncertainty in the proportion of people with tuberculosis who are diagnosed21, however 
this has little effect on estimates of k (k = 0.12 (0.060–0.27) and 0.18 (0.094–0.37) with 44% and 99% case detec-
tion respectively). A full discussion of the limitations in the data and methods used in estimating k are given in 
Middelkoop et al.13 and Ypma et al.12 respectively.

We limited our model to people aged 15+ years, as detailed contact data from children were not available. 
This will have little effect on our estimates of transmission between different contact types in adults, as the risk of 
transmission from children is low22. The contribution of household contact to tuberculosis in children is likely to 
be higher than for adults however23, and therefore our findings do not apply to children. The proportion of trans-
mission between different types of contact may also be different for other settings, although data from molecular 
studies consistently show low household transmission in high incidence settings1–4.

There are likely to be inaccuracies in our estimates of contact numbers and meeting durations in Cape Town, 
due to the challenges in the collection of accurate social contact data. For instance, numbers of non-household 
contacts spoken to may be underestimated, due to recall bias or questionnaire fatigue; and numbers of 
non-repeated casual contacts may be under- or over-estimated, due to recall bias and difficulties in estimating the 
number of people present in a location. The relative contribution of non-repeated vs repeated contacts to over-
all tuberculosis in our model may therefore be over- or underestimated. It is also likely that some repetition of 
non-conversational, casual contacts occurs in real life, which were not captured in the model, however sensitivity 
analysis shows that this is likely to have little effect on our conclusions (see supplementary information). Similarly, 
there are difficulties in accurately estimating the proportion of transmission that occurs within households or 
between close social contacts from molecular data1.

Figure 4.  Proportion of tuberculosis cases resulting from transmission by the most highly transmitting 20%, 
10%, 5%, 2% or 1% of people with pulmonary tuberculosis. Bars on the left show the results from scenarios 
with no additional variation in infectiousness or susceptibility. Bars on the right show the results from scenarios 
where the model was fitted to empirical estimates of k, in the high casual transmission risk scenarios. The 
numbers below the bars show the dispersion parameter, k, from fitting a negative binomial distribution to the 
number of tuberculosis cases resulting from transmission by each person with pulmonary tuberculosis. Results 
for the medium and low casual transmission risk scenarios where the model was fitted to estimates of k were 
very similar to those for the high casual transmission risk scenario (right bars), and were therefore not shown.
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To conclude, contact saturation, exacerbated by superspreading, may be why only a small proportion of tuber-
culosis results from household transmission in high incidence settings. This has implications for tuberculosis 
control. Even if yields are high, household and social-contact tracing is unlikely to reach most tuberculosis cases. 
A better understanding of transmission locations, and methods for identifying superspreaders, would assist in the 
design of higher impact tuberculosis control strategies.

Methods
Contact data.  In the social contact literature, ‘contact’ is used both as a noun to refer to the people met, and 
as a verb to refer to the meeting or shared space between people. For clarity, in this paper, we reserve the term 
‘contact’ to refer to people met, and use the term ‘meeting’ to refer to people sharing indoor space.

Estimates of social contact meeting time were taken from a survey conducted in eight communities in Western 
Cape, South Africa in 20115,10. 1270 adults aged 18+ years were interviewed using a structured questionnaire. 
Contact data were collected using four methods:

	 (1)	 Respondents were asked for basic demographic information on their household members
	 (2)	� Respondents were asked for details of all people with whom they had a face-to-face conversation the 

day preceding the interview
	 (3)	� Respondents were asked to give information on all buildings (other than their own home) they went 

into on the day preceding the interview, including estimates of numbers of people present
	 (4)	 Respondents were asked questions about minibus use, and their last minibus journey

From these data, it was possible to estimate mean and variance in numbers of contacts aged ≥12 years seen the 
day preceding the interview, and mean meeting durations, for five types of contact. In line with other studies, we 
define close contacts as contacts with whom the respondent had a face-to-face conversation, and casual contacts 
as contacts with whom the respondent shared indoor space, without conversation5. Contacts can be grouped into 
three categories:

	 (1)	 Household (Repeated, Close, Household). Contacts who are members of the same household
	 (2)	� Repeated (Repeated, Close, Non-Household). Individuals (not from the respondent’s own household) 

spoken to, seen with at least monthly frequency. These are split into:

a.	 Daily. Contacts that respondents report that they see with daily frequency
b.	� Weekly-monthly Contacts that respondents report that they see ‘1–6 times a week or ‘1–3 

times a month’
	 (3)	� Non-repeated (Non-repeated, Close or Casual). Individuals seen with less than monthly frequency, 

or never seen before. These are split into:

a.	� Non-repeated close. Contacts spoken to that respondents report that they see ‘less than 
monthly’, or ‘never before’

b.	� Non-repeated casual. Contacts present in the same indoor location (building or minibus), but 
not spoken to

Table 2 shows the mean and variance in daily contact numbers, and meeting durations, by contact type. Full 
details of the contact data are given in the supplementary information.

Model description.  We used an individual-based model, coded in Netlogo 5.3.124. The model had a fixed 
population size of 20,000 people aged 15–60. People aged <15 years were not simulated, as the risk of transmis-
sion from children is low22, and detailed contact data were not available from children. The model simulated Mtb 
transmission; disease development, mortality, treatment and cure; and HIV and its effects on tuberculosis.

Five types of social contact were simulated, corresponding to the five types of contact outlined above. As 
before, these can be grouped into three categories:

	 (1)	� Household. Each simulated individual was assigned to a household. Household size and membership 
was fixed, only changing when a member died and was replaced.

	 (2)	� Repeated. Each individual was assigned a fixed number of repeated contacts. These contacts were fixed, 
only changing when a contact died and was replaced. Each repeated contact was assigned to one of two 
types:

a.	 Daily. Daily contacts were met every day.
b.	� Weekly-monthly. Simulated individuals had a pool of contacts of this type 5 times the size of 

the average number they meet each day. Each weekly-monthly contact was met each day with a 
probability 0.2.

	 (3)	� Non-repeated. Each individual was assigned a fixed number of non-repeated contacts to meet each 
day. These were chosen at random each day, from all people in the model, with the selection probability 
proportional to each individual’s own number of non-repeated contacts. Each time a meeting occurred, 
it was assigned at random to one of two types:

a.	 Non-repeated close. Meetings which included conversation
b.	� Non-repeated casual. Meetings between people present in the same indoor location or mini-

bus, but where conversation did not occur
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For all five contact types, the model was parameterised using empirical data on the mean and variance in con-
tact numbers of that type seen by each person per day. Meeting durations for each type of contact were fixed, and 
were set equal to the mean estimates from the empirical data. In line with the empirical contact data, conversation 
was assumed to occur between all types of contact except non-repeated casual contacts. Table 3 summarises the 
simulated contact types. A diagram showing how the contact data links to the model contact structure and con-
tact input parameters is given in the supplementary information.

Each individual in the model was assumed to have an individual level of susceptibility to Mtb infection and 
disease progression, and an individual level of infectiousness with pulmonary tuberculosis. These were mod-
elled as individual-level susceptibility parameters and infectiousness parameters, and were selected at birth from 
gamma distributions with mean 1 and variance susceptibility_‌var and infectiousness_‌var respectively. Gamma 
distributions were chosen, as gamma distributed infectiousness parameters result in a negative binomial distri-
bution of secondary cases. The susceptibility parameter is assumed to incorporate the effects of all risk factors that 
have an effect on the risk of infection and/or disease development, with the exception of HIV, which is explicitly 
simulated. It is assumed that 25% of the variation in susceptibility acts through altering susceptibility to infection, 
and 75% through altering the risk of progression to disease25. The effects of this assumption are explored in the 
sensitivity analysis. The infectiousness parameter is assumed to incorporate the effects of all risk factors that have 
an effect on the infectiousness of a person with tuberculosis, with the exception of whether the disease is pulmo-
nary smear positive, pulmonary smear negative, or extrapulmonary, which is explicitly simulated.

A full description of the model is given in the supplementary information.

Estimating ‘super-spreading’.  In line with other studies11,12, we quantify the degree of superspreading by 
describing the heterogeneity in the number of secondary cases (of pulmonary tuberculosis) attributable to each 
infectious person (person with pulmonary tuberculosis) as a binomial distribution. The dispersion parameter of 
the distribution, k, indicates the degree of superspreading, with a value of 1 suggesting no over-dispersion, and 
lower values indicating higher amounts of over-dispersion (superspreading). Using methods published by Ypma 
et al. (2013)12, we estimated k for Cape Town to be 0.147 (95% CI 0.0737–0.317), using data on tuberculosis clus-
ter sizes between 2001 and 2010 in a peri-urban township of Cape Town13. In calculating k, we assume that RFLP 
data were available for 27% of cases (42% × 63%). This is because RFLP data were available from only 42% of 
diagnosed cases of pulmonary tuberculosis13, and it is estimated that only 63% (95% CI 44%-99%) of people with 
tuberculosis are diagnosed in South Africa21. Assuming that 44% and 99% of people tuberculosis are diagnosed, 
we estimate k to be 0.123 (0.0595–0.269) and 0.179 (0.0941–0.370) respectively.

Contact type
Mean contacts/
person/day

Variance in contacts/
person/day

Mean meeting 
duration (minutes)

Mean meeting time/
person/day (hours)

Household 2.46 2.24 415 17.0

Repeated

Daily 0.62 1.41 263 2.72

Weekly-monthly 0.98 1.93 197 3.22

Overall 1.60 2.66 225 6.00

Proportion of repeated contacts that are daily 0.387

Non-repeated

Non-repeated close 0.146 0.435 132 0.32

Non-repeated casual 7.67 95.0 182 23.3

Overall 8.01 95.7 181 24.2

Proportion of non-repeated contacts that are non-repeated close 0.0187

Total 12.07 110 235 47.2

Table 2.  Empirical estimates of contact numbers and meeting durations, by contact type. Only contacts aged 
12+ years were included in the analysis. Underlining indicates figures used directly as model input parameters.

Contact type Simulated as:
Mean number 
of contacts

Daily probability of 
meeting with each 
contact-person

Mean number 
of contacts 
per day

Clustering 
coefficient

Meeting 
duration 
(minutes)

Relative 
transmission 
probability

Household Each person has fixed 
number of contacts 2.46 1 na 1 415 1

Repeated
Daily Each person has fixed 

number of contacts 0.62 1 na
0.2

263 1

Weekly-monthly Each person has fixed 
number of contacts 4.9 0.2 na 197 1

Non-repeated
Non-repeated close Chosen at random from 

model population each day na na 0.146 na 132 1

Non-repeated casual Chosen at random from 
model population each day na na 7.67 na 182 1/0.5/0.2*

Table 3.  Model contact types and characteristics. *The relative transmission probability for non-repeated 
casual contacts was assumed to be 1, 0.5, and 0.2 in the high, medium, and low non-repeated casual 
transmission risk scenarios respectively.
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Model parameterisation and fitting.  The model was fitted to WHO estimates for South Africa of over-
all and HIV-associated tuberculosis incidence, population level mortality rates from tuberculosis in HIV− and 
HIV+ people, the tuberculosis case detection rate, the proportion of people starting tuberculosis treatment who 
are HIV+21; South African national data on treatment outcomes (success and mortality) in HIV− and HIV+ 
people26; and UNAIDS estimates of adult HIV prevalence27. Full details of all fitting outputs are given in the sup-
plementary information.

In one set of scenarios, we simulated no additional variation in infectiousness and susceptibility (beyond that 
resulting from infection type (extrapulmonary, smear positive, or smear negative), and HIV status). In the second 
set, we fitted model output on the number of pulmonary disease cases resulting from transmission from each 
potential transmitter (simulated person with pulmonary disease), to the empirical estimates of k: k = 0.15 as the 
best estimate, plus k = 0.074 and k = 0.32 as upper and lower bounds. This was done by varying the amount of 
variation in infectiousness and susceptibility.

It is plausible that transmission rates are lower between contacts who do not talk (casual contacts) than those 
that do. For this reason, each set of scenarios consists of three sub-scenarios, in which we assumed the transmis-
sion probability per minute of meeting between casual contacts was 100%, 50%, and 20% of the transmission 
probability between close contacts; named ‘high’, ‘medium’, and ‘low’ non-repeated casual transmission risks, 
respectively.

To determine the effects of variation in infectiousness and susceptibility on transmission location, we also sim-
ulated scenarios where we varied the level of variation in infectiousness and susceptibility over a wide range. The 
model input parameter determining the baseline probability of Mtb transmission per minute meeting time was 
varied, to fit the model to the plausible ranges for the calibration targets. In these scenarios, we did not constrain 
the model output k.

The model was run until equilibrium was reached before any results were outputted. All results are averaged 
over 200 model runs. The proportion of disease resulting from transmission between household, regular, and 
non-regular contacts was calculated.

Sensitivity analyses.  A number of sensitivity analyses were conducted, exploring the effects of varying the 
probability that weekly-monthly contacts are seen each day, varying the proportion of variation in susceptibility 
that acts through altering the risk of infection (as opposed to disease progression), varying the clustering coef-
ficient for repeat contacts, varying the degree of variation in susceptibility relative to the degree of variation in 
infectiousness, and assuming that some casual contacts were repeated. All sensitivity analyses were conducted 
using the high non-repeated casual transmission risk scenario, fitted to the best estimate of k (k = 0.15). They are 
described in full in the supplementary information.

Code availability.  Model code will be made publicly available from the London School of Hygiene and 
Tropical Medicine ‘Data Compass’ repository upon publication of the manuscript, with no restrictions.
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