
Comparison of methods for spectral alignment and signal 
modelling of GABA-edited MR spectroscopy data

Reuben Rideauxa,*, Mark Mikkelsenb,c, Richard A.E. Eddenb,c

aDepartment of Psychology, Downing Street, University of Cambridge, UK

bRussell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins 
University School of Medicine, Baltimore, MD, United States

cF. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, 
MD, United States

Abstract

Many methods exist for aligning and quantifying magnetic resonance spectroscopy (MRS) data to 

measure in vivo γ-aminobutyric acid (GABA). Research comparing the performance of these 

methods is scarce partly due to the lack of ground-truth measurements. The concentration of 

GABA is approximately two times higher in grey matter than in white matter. Here we use the 

proportion of grey matter within the MRS voxel as a proxy for ground-truth GABA concentration 

to compare the performance of four spectral alignment methods (i.e., retrospective frequency and 

phase drift correction) and six GABA signal modelling methods. We analyse a diverse dataset of 

432 MEGA-PRESS scans targeting multiple brain regions and find that alignment to the creatine 

(Cr) signal produces GABA+ estimates that account for approximately twice as much of the 

variance in grey matter as the next best performing alignment method. Further, Cr alignment was 

the most robust, producing the fewest outliers. By contrast, all signal modelling methods, except 

for the single-Lorentzian model, performed similarly well. Our results suggest that variability in 

performance is primarily caused by differences in the zero-order phase estimated by each 

alignment method, rather than frequency, resulting from first-order phase offsets within 

subspectra. These results provide support for Cr alignment as the optimal method of processing 

MEGA-PRESS to quantify GABA. However, more broadly, they demonstrate a method of 

benchmarking quantification of in vivo metabolite concentration from other MRS sequences.
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1. Introduction

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter within the human 

brain. The capacity to estimate the concentration of GABA in vivo using magnetic resonance 

spectroscopy (MRS) has revealed its diagnostic potential as a biomarker for a variety of 

neurological and psychiatric disorders, including epilepsy (Bradford, 1995; Olsen and Avoli, 

1997), autism (Chao et al., 2010; Markram and Markram, 2010; Rubenstein and Merzenich, 

2003; Vattikuti and Chow, 2010), and schizophrenia (Kehrer et al., 2008). The concentration 

of GABA has also been shown to correlate with individual differences in healthy participants 

on a range of behavioural tasks (Barron et al., 2016; Edden et al., 2009; Puts et al., 2011; 

Sumner et al., 2010; Van Loon et al., 2013; Yoon et al., 2010) and neuroimaging signals 

(Muthukumaraswamy et al., 2012; Stagg et al., 2014; Wang et al., 2017). Further, MRS-

detected GABA changes have been associated with learning outcomes (Shibata et al., 2017; 

Stagg et al., 2011) and processing of sensory stimuli (Lunghi et al., 2015; Rideaux et al., 

2019).

In vivo MRS measurements have a relatively low signal-to-noise ratio, requiring a large 

number of repetitions to be averaged to produce a reliable estimate of metabolite 

concentration (Mikkelsen et al., 2018). It is typical for there to be variability in the 

frequency and phase of the acquired transients, and frequency and phase alignment before 

averaging can improve the signal-to-noise ratio and reduce subject/physiological motion-

related variance, especially for difference-edited sequences (Near et al., 2020). Alignment is 

conceptually straightforward: frequency and phase parameters of individual transients are 

estimated and then corrected to a common point. However, a number of methods are 

commonly used to estimate these parameters. Once transients are aligned and averaged, 

GABA concentration is typically estimated as the area of a model (e.g., a Gaussian) fit to a 

resonance peak within the difference-edited spectrum. The edited GABA signal is a complex 

multiplet, the lineshape of which varies slightly depending on sequence and acquisition 

parameters (Mullins et al., 2014). As such, different models have been applied to quantify 

the GABA signal (e.g., one or two Gaussians).

There remains no consensus on the optimal way of aligning subspectra or quantifying the 

GABA signal, as evidenced by the diversity of techniques applied within the literature 

(Coxon et al., 2018; Rowland et al., 2016; Stagg et al., 2010; Wang et al., 2017, 2014). 

Benchmarking different methods with in vivo data is constrained by the lack of a ground-

truth GABA concentration. Benchmarking has been performed using data from phantoms 

(Jenkins et al., 2019), where the ground truth is known, but this data is qualitatively different 

from in vivo data, altering alignment and modelling strategies. Test-retest reliability has been 

measured (Brix et al., 2017; Saleh et al., 2016), but does not speak to accuracy. Alignment 

algorithms have often been developed with reference to their success in reducing subtraction 

artifacts (Evans et al., 2013; Mikkelsen, Saleh, et al., 2018; Mikkelsen et al., 2020), which is 

reasonable, but again offers no indication of accuracy. There is some evidence that the 

concentration of certain pairs of metabolites is related, e.g., GABA and Glx (Steel et al., 

2020), so it would be possible to use the strength of the relationship between two related 

metabolites as an index of accuracy. That is, as the accuracy of estimation is increased, so 

too will the relationship between measurements. However, as both metabolites are measured 
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from the same spectrum, concentration values are not independent and the relationship 

between them is subject to multiple confounding factors (e.g., linewidth or poor signal 

quality could produce spurious correlations). Further, the relationship between metabolites 

can be regionally variable (Rideaux, 2020, 2021).

Another predictor of MRS-detected GABA is the fractional volume of grey matter within the 

voxel, as there are differing concentrations of GABA in grey matter and white matter (Harris 

et al., 2015; Jensen et al., 2005; Mikkelsen et al., 2016; Petroff et al., 1988, 1989), and 

negligible concentrations in cerebrospinal fluid. In MRS studies, this relationship is often 

considered a nuisance, and attempts are made to reduce its impact by performing a 

correction based on the voxel tissue composition (Gasparovic et al., 2006; Harris et al., 

2015). The strength of this relationship will be mediated by the accuracy GABA estimates: 

as estimation accuracy increases, so too will the relationship between GABA and grey 

matter. Therefore, the relationship between GABA and grey matter provides an index of 

GABA estimation accuracy. In contrast to neurochemicals measured from the same 

spectrum, GABA and grey matter measurements are acquired independently, so their 

relationship is less susceptible to conflation by shared factors.

Using the relationship between GABA and grey matter as an index for GABA estimation 

accuracy, here we combine two large datasets (totalling 432 difference-edited MEGA-

PRESS scans) to compare the performance of different alignment and signal modelling 

methods. Our primary aim was to assess which alignment and signal modelling methods 

produces GABA estimates that account for the most variability in the grey matter volume 

fraction. Our secondary aims were to determine which methods produce the fewest outlier 

estimates, narrowest signal linewidth, and least (choline) subtraction artifacts.

2. Methods

2.1. Data collection

Legacy data from previous studies were combined. In these studies, participants underwent 

MR spectroscopic acquisition targeting visual (n = 108; Rideaux, 2020; Rideaux et al., 2019; 

Rideaux and Welchman, 2018), motor (n = 50; Rideaux and Welchman, 2018), dorsolateral 

prefrontal (n = 29), and posterior cingulate cortices (n = 29) while at rest (henceforth 

referred to as Dataset A). These data were combined with the “Big GABA” dataset, 

comprising MRS data targeting posterior cingulate cortex (n=216; henceforth referred to as 

Dataset B; Mikkelsen et al., 2017, 2019).

2.2. Data acquisition

For Dataset A, MR scanning was conducted on a 3T Siemens Prisma equipped with a 32-

channel head coil. Anatomical T1-weighted images were acquired for voxel placement with 

an MPRAGE sequence: voxel resolution=1 mm3 ; TE/TI/TR=3.02/900/2250 ms; scan 

duration=7.2 min; flip angle=9°; slices=192; FOV=256 mm2 ; matrix size=256 × 256; 

acceleration factor=GRAPPA (2). For detection of GABA+ (GABA + co-edited 

macromolecules), spectra were acquired using a MEGA-PRESS sequence (Mescher et al., 

1998): TE/TR=68/3000 ms; 256 or 400 transients of 2048 data points were acquired, 16 
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water-unsuppressed transients were additionally acquired; a 14.28 ms Gaussian editing pulse 

was applied at 1.9 (ON) and 7.5 (OFF) ppm. Water suppression was achieved using variable 

power with optimized relaxation delays (VAPOR; Tkáč and Gruetter, 2005) and outer 

volume suppression. Automated shimming followed by manual shimming was conducted to 

achieve approximately 12 Hz water linewidth.

Dataset B was collected by different sites using similar parameters on GE, Phillips, and 

Siemens scanners. A detailed description of the data acquisitions for Dataset B can be found 

in Mikkelsen et al. (2019, 2017). To summarize, MRS targeting posterior cingulate cortex 

was conducted on 3T Siemens, GE, and Phillips scanners equipped with 8-, 32-, or 64-

channel head coils. Spectra were acquired using a MEGA-PRESS sequence: TE=68 ms, 

TR=2000 ms; 320 transients of either 2048 or 4096 data points were acquired; a 15 ms 

Gaussian editing pulse was applied at 1.9 (ON) and 7.5 (OFF) ppm. Dataset B was acquired 

with weaker water-suppression than Dataset A. Henceforth, we will refer to the water 

suppression used in Dataset A and B as strong and weak water suppression, respectively.

Spectra were acquired from locations targeting visual, motor, dorsolateral prefrontal, and 

posterior cingulate cortices. See Table 1 for details of voxel location, voxel size, and the 

number of transients.

The coordinates of the voxel location were used to draw a mask on the anatomical T1-

weighted image to calculate the fractional volume of grey matter, white matter, and 

cerebrospinal fluid within each voxel (Fig. 1). For both Dataset A and B, DICOM files were 

converted into NIfTI format for tissue segmentation, which was performed using the default 

settings of the Statistical Parametric Mapping toolbox for MATLAB (SPM12, 

www.fil.ion.ucl.ac.uk/spm/; Ashburner and Friston, 2005).

2.3. Data processing

Spectral pre-processing and quantification were conducted in MATLAB using a combination 

of Gannet v3.1 (Edden et al., 2014) and in-house scripts. Prior to alignment, subspectra were 

zero-filled to a spectral resolution of 0.061 Hz/point and 3-Hz exponential line-broadening 

was applied. For GE and Siemens scans from Dataset B, RF coil combination was also 

applied.

Four different alignment methods were performed on all data: 1) creatine (Cr) peak 

alignment, 2) N-acetylaspartate (NAA) peak alignment, 3) spectral registration (SR; Near et 

al., 2015), and 4) robust spectral registration (rSR; Mikkelsen et al., 2020). We also present 

results from data with no alignment performed. Alignment methods 1 and 2 were performed 

in the frequency domain. For Cr and NAA alignment methods, a single-Lorentzian model 

was fit to either the total creatine (tCr; creatine and phosphocreatine) or total N-

acetylaspartate (tNAA; N-acetyl aspartate and N-acetyl aspartyl glutamate) signals to 

estimate frequency, zero-order phase, area, full-width at half-maximum (FWHM), and 

baseline and linear offsets. The frequency and phase parameter estimates obtained by 

modelling the target metabolite signal(s) were then used to align individual subspectra to a 

common frequency and phase. In the case of NAA alignment, editing-ON spectra that have 

no NAA signal were assumed to have the same frequency and phase as their corresponding 
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editing-OFF spectra. For subspectra in which a water signal was present (Dataset B), first-

order phase was estimated and corrected using the difference in phase between target and 

water signals. Individual subspectra with frequency, phase, area, or FWHM parameter 

estimates >3 standard deviations (s.d.) from the mean within a scan were omitted from 

further analysis. Alignment methods 3 and 4 were performed in the time domain, using a 

data-driven model to determine the phase and frequency of each transient; for a full 

description see (Mikkelsen et al., 2020; Near et al., 2015). For methods 3 and 4, individual 

spectra with parameter estimates of frequency and phase >3 s.d. from the mean within a scan 

were omitted from further analysis. Where subspectra were omitted, they were done so in 

(ON and OFF) pairs. An example of raw data before and after pre-processing, and following 

Cr alignment is shown in Fig. 1b–d.

2.4. Signal modelling and metabolite quantification

tCr FWHM was estimated by fitting a double-Lorentzian model to the mean spectrum 

between 2.5 and 3.5 ppm. tNAA FWHM was estimated by fitting a single-Lorentzian model 

to the mean OFF spectrum between 1.7 and 2.3 ppm. ON and OFF spectra were subtracted 

to produce the edited spectrum, from which GABA+ was estimated. Five different models 

were used to estimate GABA+ signal intensity from the mean edited spectrum between 2.75 

and 3.25 ppm: single and double Gaussian, and single, double, and triple Lorentzian. The 

single-Gaussian model was defined as

f x = a ⋅ exp x − μ 2

2σ2 + bx + c (1)

where a denotes amplitude, μ is the centre frequency, σ is the s.d., and b and c are the linear 

and constant baseline. The double-Gaussian model was the sum of two single Gaussians, 

including additional a, μ, σ free parameters. The single Lorentzian was defined as

f x = A ⋅ 2π−1w
x − μ 2 + w2 + bx + c (2)

where A denotes area, μ is the centre frequency, ω is the half-width at half-maximum, and b 
and c are the linear and constant baseline. Double- and triple-Lorentzian models were the 

sum of two or three single-Lorentzian models, with additional A, μ, ω free parameters. We 

also included model-free estimate of GABA+ by calculating the height of the signal within 

the GABA+ frequency band. Water signal intensity was estimated by fitting a single-

Lorentzian model to the mean unsuppressed spectrum. With the exception of GABA+ 

height, all GABA+ signal intensities were calculated as the area of the fitted peak(s). GABA

+ was then quantified in institutional units (i.u.) using the water signal as an internal 

concentration reference

GABAiu = Ag
Aw

⋅ CV ⋅
1 − exp −TR T1w
1 − exp −TR T1g

⋅
exp −TE T2w
exp −TE T2g

⋅ M
E (3)
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where A denotes area parameters of GABA+ and water, C is the pure water concentration, V 
is the water visibility, T R and T E are the pulse sequence relaxation and echo times, T 1 and 

T 2 are the relaxation times of GABA and water, M is the fraction of GABA in the GABA+ 

signal, and E is the editing efficiency of GABA. The following parameters were assumed: 

pure water concentration, 55000 mmol/L; water visibility, 0.65 (Kreis et al., 1993); T1 and 

T2 for water, 1.1 and 0.095 (Wansapura, Holland, Dunn, & Ball, 1999); T1 and T2 for 

GABA, 1.31 and 0.088 (Edden et al., 2012; Puts et al., 2013); fraction of GABA in the 

GABA+ signal, 0.45; GABA editing efficiency, 0.5 (Near et al., 2011). GABA+ linewidth 

was calculated as the average FWHM of the three peaks of the triple-Lorentzian model. The 

phase and FWHM of macromolecule (MM0.9) signal were estimated by fitting a complex 

singlet model to the difference spectrum between 0.5 and 1.5 ppm.

2.5. Data screening and statistical analyses

For phase and frequency correlation analyses, estimates >3 s.d. from the mean were omitted 

prior to calculating the Pearson correlation coefficient. For phase values, the circular 

correlation coefficient was calculated using the CircStat MATLAB toolbox (Berens, 2009).

For GABA+ analyses, impossible estimates (less than zero) were omitted prior to analyses. 

The robust correlations MATLAB toolbox (https://sourceforge.net/projects/robustcorrtool; 

Pernet et al., 2013) was used to calculate Pearson correlations between the proportion of 

grey matter within the MRS voxel and GABA+ estimates. The boxplot rule was used to omit 

bivariate outliers, which were excluded from further analyses. The edited spectra from 

which these bivariate outliers were produced are not included in the plots showing the 

average edited spectrum. We determined whether correlation coefficients produced using the 

different alignment methods were significantly higher than the corresponding coefficient 

produced using no alignment by comparing the z-scored coefficients (one-tailed test). For all 

statistical tests, we used a significance threshold of p < .05.

A repeated measures one-way analysis of variance (RM-ANOVA) was used to test for 

differences between the tCr, tNAA, GABA+, and MM FWHM estimate produced by each 

alignment method. Unrealistic FWHM estimates (>30 Hz) and estimates >3 s.d. from the 

mean for each alignment were omitted prior to analysis. Following the RM-ANOVA, paired 

t-tests were conducted between all combinations of alignments. The choline (Cho) 

subtraction artifact (Evans et al., 2013) was assessed by calculating the standard deviation of 

signal between 3.16 and 3.285 p.p.m (Mikkelsen et al., 2018). Values >3 s.d. from the mean 

were omitted prior to analysis.

A power analysis was used to estimate the sample size required to achieve 0.8 statistical 

power for an independent samples t-test where the difference between groups ranged from 

5% to 25%. The GABA+ mean and variance used in the calculation were the mean and 

variance of GABA+ estimates for each signal modelling method, averaged within alignment 

methods. Values >3 s.d. from the mean were omitted prior to analysis.
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3. Results

We computed the similarity between frequency and phase parameters estimated by the 

different alignment methods (Fig. 2). We found significant positive correlations between 

frequency and phase for all alignment methods (all p < .001). Frequency estimates were 

more similar than phase estimates; the average correlation coefficient for frequency and 

phase was .86 and .20, respectively. Although we found significant correlations between 

frequency and phase estimates produced by the different alignment methods, there was 

considerable unaccounted variability, especially for phase. This indicates that each method 

will perform differently, likely producing distinct estimates of neurometabolite 

concentration.

Fig. 3a shows the average edited spectra. For all alignment methods, including no alignment 

(‘none’), the GABA+ signal was visibly present in the average edited spectra. The average 

GABA+ signal and model fits across all data are shown in Fig. 3b.

Table 2 shows the correlations between grey matter volume fraction (i.e., the faction of grey 

matter within the voxel) and GABA+ estimated using each combination of alignment and 

signal modelling method. Fig. 4 shows the relationships for the different alignment methods 

using a single-Gaussian model. With the exception of NAA alignment, we found that all 

alignment methods produced at least one set of estimates that were significantly more 

positively correlated with grey matter than no alignment when combined with a particular 

GABA model. Overall, Cr alignment performed the best, producing estimates that were 

significantly more correlated with grey matter than no alignment across four GABA models 

(1G: z810=3.25, p = 6.0 × 10−4; 2G: z790 = 2.27, p = .012; 1L: z824 = 4.34, p = 7.2 × 10−6; 

3L: z805 = 2.21, p = .013) and significantly more than the next best performing alignment 

method (SR) across four GABA models (2G: z800 = 2.86, p = .002; 1L: z819 = 1.86, p 
= .031; 2L: z821 = 2.67, p = .004; 3L: z811 = 3.38, p = 4.0 × 10−4). By contrast, there was no 

clear best performing GABA model; all models performed similarly well, with the exception 

of the single-Lorentzian model. The triple-Lorentzian model captured the data best, by 

virtue of having the highest number of free parameters. However, the best performing 

combination was Cr alignment with a double-Gaussian GABA model, which produced 

estimates that accounted for 23% of the variance in grey matter. The differences between 

model performance were not significant, but it is possible that the triple-Lorentzian model 

did not outperform less complex models because its complexity leaves it more susceptible to 

the influence of noise and/or artefacts. Note, we found the same pattern of results when we 

correlated GABA+ with the fraction of grey matter tissue relative to the fraction of white 

matter tissue and with an index that explicitly assumes GABA is twice a concentrated in 

grey matter compared to white matter and absent in cerebrospinal fluid, i.e., fGM × 2+fWM.

The average GABA+ peaks produced by the different alignment methods have visible 

differences in zero-order phase (Fig. 3b, data). To assess the extent to which these 

differences in phase contributed to the differences in performance between methods, in 

terms of the correlation between GABA+ and the grey matter volume fraction, we 

recalculated the correlations between GABA+ and grey matter after regressing the zero-

order phase estimates of the MM0.9 signal out using linear mixed effects models. We 
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reasoned that if zero-order phase differences contributed to the differences in performance, 

the correlations between GABA+ and grey matter should be changed significantly as a result 

of controlling for phase offsets. However, we found that none of the correlations changed 

significantly as a result of controlling for zero-order phase (all p > .05). The Lorentzian 

models used to estimate GABA+ did not include a phase parameter. Thus, as a further test of 

the influence of phase offsets on performance, we computed the correlations between GABA

+ and grey matter for the Lorentzian models after including an additional phase parameter, 

which modelled out the phase offset of the GABA+ at the quantification stage. Consistent 

with the results of the regression analysis, we found the same pattern of results after 

controlling for zero-order phase at the modelling stage, demonstrating that phase differences 

in the average difference spectra cannot solely account for the differences observed in 

performance between the alignment methods.

There are multiple sources of noise that can reduce the quality of MRS data prior to 

alignment (e.g., participant head movement (Saleh et al., 2020), chemical shift displacement, 

or dilution associated with changes in blood flow (Ip et al., 2017)), resulting in spurious 

estimates. Alignment and/or robust model fitting can reduce the proportion of outliers, e.g., 

by increasing the effective signal-to-noise ratio in the edited spectrum. Here, outliers were 

excluded separately for each alignment and signal modelling combination, as shown in Table 

3. We found that Cr alignment produced the lowest proportion of outliers, while rSR 

produced the highest.

Linewidth is often reported as a measure of spectral quality in MRS studies and can indicate 

the quality of alignment. We found significant effects of tCr and tNAA FWHM between 

alignment methods (tCr: F4,1668 = 162.16, p < .001; tNAA: F4,1692 = 76.69, p < .001; Fig. 

5a–b). All alignment methods reduced tCr and tNAA signal linewidth compared to no 

alignment (all p < .001) and NAA alignment produced the narrowest linewidth for both 

signals (all p < .001). These results suggest a disconnect between the linewidth of tCr and 

tNAA signals, and the relationship between GABA+ and grey matter volume fraction. In the 

difference spectra, we found a significant effect of both GABA+ and MM0.9 FWHM (GABA

+: F4,1248 = 68.54, p < .001; MM0.9: F4,1560 = 39.70, p < .001; Fig. 5c and d). In contrast to 

the results for tCr and NAA, we found that there was less difference between no alignment 

and alignment, and Cr alignment produced the narrowest GABA+ and MM0.9 linewidth (all 

p<.005). These results are more consistent with the correlations observed between GABA+ 

estimates and grey matter, and suggest that the linewidth of the difference spectra may be 

more indicative of GABA+ accuracy.

Modulation of the GABA multiplet between ON and OFF subspectra can introduce an 

apparent frequency shift in the Cr signal. This shift can impair the alignment and subsequent 

subtraction of the Cr peak between ON and OFF subspectra, which can introduce a Cho 

subtraction artifact within the frequency band from which GABA is estimated (Evans et al., 

2013). The size of this artifact has previously been used as an index of alignment 

performance of in vivo MRS data (Mikkelsen et al., 2018). We compared the extent of Cho 

subtraction error between alignment methods (Fig. 5e). We found that Cr alignment 

produced edited spectra with the smallest Cho subtraction artifact (Fig. 5f). Note that not 

aligning spectra (‘none’) appears to produce more linear slopes, which is likely due to 
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averaging of misaligned subspectra. These results are in line with the finding that Cr 

alignment produces estimates that are most predictive of grey matter volume fraction.

Spectral registration alignment methods, which are performed in the time domain, estimate 

the frequency and phase of each subspectrum using information across all frequencies. The 

influence of metabolite signals on the parameter estimates is weighted by their relative 

amplitude. The strongest signal in the brain is water; thus, if weak water suppression is used 

to acquire the data, the amplitude of the residual water signal can be orders of magnitude 

larger than the signals representing other metabolites (e.g., Cr) and will dominate the 

estimation of frequency and phase. By contrast, the frequency-domain alignment methods 

(Cr and NAA) only consider information within a relatively narrow frequency band that does 

not include the residual water signal. This dichotomy can be observed in the average edited 

spectra of Dataset B (Fig. 6b): there is a minimal presence of water subtraction artifacts at 

4.8 ppm in the edited spectra aligned in the time domain, where the water signal is used to 

estimate frequency and phase. By contrast, there is no such difference in the average edited 

spectra of Dataset A (Fig. 6a), as these data were collected with stronger water suppression.

Given the reliance of time-domain alignment methods on the water signal, it is possible that 

the presence of a water signal may moderate the effectiveness of alignment. To test this 

possibility, we compared the correlation between GABA+ concentration estimates and grey 

matter volume fraction separately for Dataset A and B, where data were acquired using 

strong and weak water suppression, respectively (Table 4).

We found larger correlation values between GABA+ estimates and grey matter from Dataset 

A than Dataset B. This is likely due to the greater variability of grey matter values in Dataset 

A than Dataset B; Dataset A includes data from voxels targeting five different brain regions, 

whereas Dataset B includes only voxels targeting posterior cingulate cortex. Diversity 

among the sequence parameters used to acquire the T1-weighted anatomical image in 

Dataset B may have also contributed to the relatively weaker correlations by introducing 

additional variability to the tissue estimates, which is unrelated to GABA+. For both 

datasets, we found that Cr alignment performed the best, accounting for a maximum of 41% 

and 18% of the variance in grey matter for Dataset A and B, respectively. However, for 

Dataset B, the difference in performance between alignment methods was reduced. The only 

alignment and signal modelling combination that performed significantly better than no 

alignment was Cr alignment with height estimation. The diagnostic capacity of Dataset B for 

contrasting alignment methods is likely reduced by the limited variability of grey matter 

values. However, it may also indicate that alignment methods performed within the time 

domain, e.g., spectral registration, are as effective at isolating the GABA+ signal as Cr 

alignment when there is a large residual water signal.

To estimate the practical impact of using different alignment methods, we considered the 

case of comparing two groups in which GABA+ concentration is different, e.g., a patient 

group compared to a control group. For each alignment method, we calculated the sample 

size required to achieve statistical power of 0.8 over a range of group differences (Fig. 7). In 

line with the previous analyses, we found that GABA+ estimates produced by Cr alignment 

required the fewest subjects to reach sufficient statistical power. For example, with a group 
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mean difference of 15%, statistical power of 0.8 could be reached with 21 subjects when Cr 

alignment is used, whereas the next best performing alignment method (NAA) required 31 

subjects. These results suggest that selecting between different alignment methods can have 

a powerful influence on the likelihood of detecting differences in GABA+.

4. Discussion

Using a dataset of 432 GABA-edited MRS scans, targeting a range of brain regions, we 

compared four spectral alignment methods and six GABA signal modelling methods, all of 

which have been used in the literature. We found that alignment to the Cr signal provided 

GABA+ estimates that were most highly correlated with grey matter, accounting for 23% of 

the variance. We further found that Cr alignment produces the fewest outliers and the least 

Cho subtraction error. By contrast, we find that all the signal modelling methods performed 

similarly well, with the exception of modelling the GABA signal with a single Lorentzian, 

which performed relatively poorly.

Two frequency-domain (Cr and NAA) and two time-domain (spectral registration and robust 

spectral registration) alignment methods were compared. Each approach has theoretical 

benefits and drawbacks; for instance, the in vivo concentration of NAA in the brain is 

generally higher than Cr, providing a signal with a higher signal-to-noise ratio from which to 

estimate frequency and phase parameters. However, in difference-edited spectra, the NAA 

signal is suppressed in the ON subspectra, which means that correction parameters can only 

be estimated for half of the total subspectra. While frequency-domain alignment methods 

use only a relatively small proportion of the MR spectrum to estimate frequency and phase, 

time-domain alignment methods use the entire MR spectrum and are therefore more robust 

to noise, but susceptible to changes in lipid signals or the degree of water suppression.

We found that GABA+ estimates produced by Cr alignment accounted for almost twice as 

much of the variance in grey matter (23%) as the next best alignment (NAA, 14%). One 

possible explanation for this is that the frequency of the Cr signal (3.02 ppm) is closest to the 

GABA signal (3.0 ppm). If there are first-order phase differences across subspectra, which 

are left uncorrected, these will have an increasing influence on the subspectra as a function 

of the distance from the frequency at which the zero-order phase is estimated and corrected. 

The frequency of the NAA signal is further from the GABA signal than Cr, thus first-order 

phase differences will produce a more misaligned phase at the GABA frequency. This may 

also explain why Cr alignment produced the least Cho subtraction error. We performed first-

order phase correction for Cr and NAA alignment methods; however, accurate estimation of 

the first-order phase requires at least two signals that are sufficiently separated in frequency. 

Thus, we could only perform this correction in Dataset B, where a reference water signal 

was present, and only for half of the NAA subspectra within each scan. Further, even if first-

order phase correction could be performed on all subspectra, the accuracy with which this 

parameter is estimated is imperfect and will introduce an additional source of noise that can 

instead be minimised by correcting the zero-order phase at a frequency close to the target 

metabolite (e.g., GABA). The variability in phase estimated by the alignment methods is 

consistent with the presence of first-order phase offsets within the subspectra and implicates 

phase, rather than frequency, correction as the primary factor driving differences in 
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performance between alignment methods. Currently, neither of the time-domain-based 

alignment methods include first-order phase correction. It is possible that the inclusion of 

this additional correction may improve the performance of these methods.

With the exception of the single-Lorentzian model, which performed relatively poorly, the 

average performance of the signal models we compared was similar (note, the double-

Gaussian model performed the best). This indicates that these signal modelling methods 

provide highly correlated estimates of the same data (Mullins et al., 2014). Further, this 

implies that the selection of the alignment method is more important than that of the GABA 

signal modelling method.

Half of all the scans used in the current study (Dataset A) were collected using strong water 

suppression, while the other half (Dataset B) were collected using weaker water suppression. 

Where strong water suppression was used, almost no residual water signal was present in the 

spectrum. By contrast, where weaker water suppression is used, a residual water signal is 

present that is orders of magnitude larger than the other metabolite signals. For the 

frequency-domain alignment methods, the presence/absence of a water signal should have 

minimal influence as frequency and phase parameters are estimated within a frequency band 

that excludes the water signal. By contrast, for time-domain alignment methods, the water 

signal has a considerable influence on the estimation of correction parameters. We assessed 

whether the presence/absence of a water signal changed the relative performance of the 

alignment methods by analysing Dataset A and B separately. We found that the difference in 

performance between Cr alignment and time-domain alignments was larger for scans with 

strong water suppression than for scans with weak water suppression. This suggests that 

time-domain alignments may perform as well as Cr alignment when a water signal is present 

in the spectrum. However, grey matter volume fraction was less variable between the scans 

with weak water suppression, which also likely reduced the differences between the 

correlations with GABA+. Further, although the difference between correlations is reduced, 

it is reassuring to find the same pattern of results between Datasets A and B, which were 

collected by different research groups using different scanning protocols.

Previous work has assessed the performance of alignment and signal modelling methods by 

using phantom data (Jenkins et al., 2019), or measuring test-retest reliability (Brix et al., 

2017; Saleh et al., 2016) and subtraction artifacts (Evans et al., 2013; Mikkelsen et al., 2018, 

2020). However, it is unclear how well results from the analysis of phantom data translate to 

data collected in vivo, and reliability and the absence of artifacts do not necessarily indicate 

accuracy. The benchmarking method applied in the current study sought to overcome these 

limitations by using the proportion of grey matter as a proxy for in vivo ground truth GABA 

concentration. However, there are limitations associated with this method. First, factors other 

than the fraction of grey matter within the MRS voxel influence the concentration GABA, 

which limits its accuracy as a proxy. For example, we pooled data from different cortical 

locations, which provided better diagnostic capacity by increasing the variability of grey 

matter volume fractions. However, GABAA receptors are not uniformly expressed within the 

neocortex across the brain (Lee et al., 2014), so the correlation between GABA and grey 

matter likely varies as a function of brain region. Controlling for differences in cortical 

location prior to correlating GABA+ and grey matter is an option, but this would reduce the 
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diagnostic capacity of the test. More work is needed to assess the relationship between grey 

matter and GABA as a function of brain region. Second, although grey matter and GABA 

estimates are collected in different scans, the degree of participant movement during scans is 

likely to be related and it is possible that this may influence both estimates in the same way. 

For example, during the anatomical scan, excessive participant motion may reduce the 

estimated grey matter by blurring the boundaries between tissue compartments, and, during 

the MRS scan, it may reduce the GABA signal by introducing additional noise. Finally, the 

accuracy of GABA+ is a relatively downstream metric from which to judge the performance 

of alignment. This method relies on the assumption that there is a relationship between 

GABA+ and grey matter volume fraction. Although we have strong evidence supporting this 

relationship, more common upstream metrics such as linewidth are not dependent on this 

assumption. These limitations underscore the importance of considering multiple lines of 

evidence when comparing performance and it is encouraging that we found Cr alignment 

also produced the fewest outliers, the narrowest GABA+ and MM0.9 linewidth, and smallest 

Cho subtraction error. Here we assessed the performance of different alignment and signal 

modelling methods for GABA-edited data. However, future work could apply this 

benchmarking technique to data acquired using other MRS sequences, e.g., non-edited 

sequences, or to optimise alignment and quantification methods. Closed source software 

packages (e.g., LCModel, Tarquin, JMRUI) remain a popular means of analysing MRS data, 

so future work could also use the benchmarking technique developed here to compare their 

performance.

There are currently multiple different methods of analysing MRS data to measure GABA 

concentration, all of which produce different estimates. Here we use the proportion of grey 

matter within the MRS voxel as a proxy for in vivo GABA ground truth to benchmark the 

optimal method. We find that alignment to the Cr signal produces GABA+ estimates that 

account for twice as much of the variance in grey matter as the next best performing 

alignment. These results provide support for Cr alignment as the optimal method of 

processing MEGA-PRESS data for the purpose of quantifying GABA, but more broadly, 

they demonstrate a means of benchmarking quantification of other metabolites and analyses 

of MRS data from different sequences.
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Fig. 1. 
Voxel locations, tissue segmentation, and data processing. a) Coronal (COR), axial (AXL), 

and sagittal (SAG) views of representative MRS voxel placement and probabilistic partial 

volume voxel maps for grey matter (red), white matter (green) and cerebrospinal fluid 

(blue), for early visual (EVC), intermediate visual (IVC), motor (MC), posterior cingulate 

(PCC), and dorsolateral prefrontal cortices (DLPFC) on a T1-weighted structural image.b-c) 

Representative example of MRS data from early visual cortex scan (b) before and (c) after 

pre-processing, and (d) following Cr alignment. Green and magenta lines indicate edit-off 

and edit-on subspectra, respectively.
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Fig. 2. 
Similarity between alignment methods. Correlation matrices for (left) frequency and (right) 

phase estimates of subspectra prior to alignment, produced using Creatine (Cr), N-

acetylaspartate (NAA), Spectral Registration (SR), and Robust Spectral Registration (rSR) 

alignment methods.
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Fig. 3. 
Average edited spectra and GABA+ modelling. a) The average edited spectra produced 

using Creatine (Cr), N-acetylaspartate (NAA), Spectral Registration (SR), Robust Spectral 

Registration (rSR), and (none) no alignment methods; vertical dashed lines indicate the 

frequency band from which GABA+ was estimated. b) The average (left) edited spectra and 

(right) GABA+ model fit produced using each of the different alignment methods. The 

amplitude of individual edited spectra and GABA models was normalized to the area of the 

unsuppressed water peak before being averaged. Grey shaded lines indicate average fit 

residuals. 1G: single Gaussian; 2G: double Gaussian; 1L: single Lorentzian; 2L: double 

Lorentzian; 3L: triple Lorentzian. Shaded regions indicate s.d.
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Fig. 4. 
Relationship between GABA+ and grey matter. The proportion of grey matter within the 

MRS voxel as a function of GABA+ in institutional units (i.u.) as estimated by fitting a 

single-Gaussian model to spectra produced using Creatine (Cr), N-acetylaspartate (NAA), 

Spectral Registration (SR), Robust Spectral Registration (rSR), and (none) no alignment 

methods. Grey lines indicate line-of-best-fit.
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Fig. 5. 
Signal linewidth and Choline subtraction artifact. a-c) Average linewidth of the (a) tCr, (b) 

tNAA, (c) GABA+, and (d) MM0.9 signal produced using different alignment methods. e) 

Individual edited spectra within the frequency range in which the Cho subtraction artifact 

occurs (3.16-3.285 ppm). f) The average standard deviation of the edited spectra within the 

frequency band shown in (e); higher standard deviation is interpreted as increased presence 

of the Cho subtraction artifact. Error bars indicate s.e.m.
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Fig. 6. 
Average edited spectra for dataset A and B. The average edited spectra of dataset a) A and b) 

B produced using Creatine (Cr), N-acetylaspartate (NAA), Spectral Registration (SR), 

Robust Spectral Registration (rSR), and (none) no alignment methods; vertical dashed lines 

indicate the frequency band from which GABA+ was estimated. Shaded regions indicate s.d.
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Fig. 7. 
Comparative power analysis of GABA+ estimates produced by different alignment methods. 

The sample size required to achieve statistical power of 0.8 as a function of group mean 

difference (independent samples t-test), based on the mean and variance of GABA+ 

estimates produced by each of the alignment methods. The mean and variance were 

calculated as the average across all signal modelling methods.
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Table 2

Correlation coefficients between GABA+ and grey matter voxel tissue fraction.

Alignment method GABA signal modelling method

1G 2G 1L 2L 3L Height Average

Cr .45*** .48* .38*** .42 .46* .33 .42

NAA .28 .34 .05 .33 .37 .43 .30

SR .36* .31 .27** .25 .25 .35 .30

rSR .29 .34 .30** .33 .35 .15 .29

none .25 .34 .10 .32 .32 .41 .29

average .33 .36 .22 .33 .35 .34 .32

Note: 1G: single Gaussian; 2G: double Gaussian; 1L: single Lorentzian; 2L: double Lorentzian; 3L: triple Lorentzian. Single, double, and triple 
asterisks indicate correlation coefficients that are significantly higher (p<[.05, .01, and .001], respectively) than the corresponding coefficient for no 
alignment (‘none’).
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Table 3

Percentage of bivariate outliers.

Alignment method GABA signal modelling method

1G 2G 1L 2L 3L Height Average

Cr 4.6 5.8 4.4 3.7 4.6 5.3 4.8

NAA 6.5 8.3 3.9 7.9 5.8 5.6 6.3

SR 7.2 8.6 5.6 5.8 7.2 6.5 6.8

rSR 6.0 10.9 6.3 6.0 8.3 13.0 8.4

none 7.4 10.9 4.4 7.9 8.6 6.9 7.7

average 6.3 8.9 4.9 6.3 6.9 7.5 6.8

Note: 1G: single Gaussian; 2G: double Gaussian; 1L: single Lorentzian; 2L: double Lorentzian; 3L: triple Lorentzian. Total sample size = 432.
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