
����������
�������

Citation: Al-Otaiby, N.; Alhindi, A.;

Kurdi, H. AntTrust: An Ant-Inspired

Trust Management System for

Peer-to-Peer Networks. Sensors 2022,

22, 533. https://doi.org/10.3390/

s22020533

Academic Editors: Alvaro

Araujo Pinto and Hacene Fouchal

Received: 23 November 2021

Accepted: 3 January 2022

Published: 11 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

AntTrust: An Ant-Inspired Trust Management System for
Peer-to-Peer Networks
Nehal Al-Otaiby 1, Afnan Alhindi 1 and Heba Kurdi 1,2,*

1 Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11451, Saudi Arabia; nfalotaiby@iau.edu.sa (N.A.-O.); aalhindi@ksu.edu.sa (A.A.)

2 Mechanical Engineering Department, Massachusetts Institute of Technology (MIT),
Cambridge, MA 02139, USA

* Correspondence: hkurdi@ksu.edu.sa

Abstract: In P2P networks, self-organizing anonymous peers share different resources without a
central entity controlling their interactions. Peers can join and leave the network at any time, which
opens the door to malicious attacks that can damage the network. Therefore, trust management
systems that can ensure trustworthy interactions between peers are gaining prominence. This
paper proposes AntTrust, a trust management system inspired by the ant colony. Unlike other
ant-inspired algorithms, which usually adopt a problem-independent approach, AntTrust follows a
problem-dependent (problem-specific) heuristic to find a trustworthy peer in a reasonable time. It
locates a trustworthy file provider based on four consecutive trust factors: current trust, recommen-
dation, feedback, and collective trust. Three rival trust management paradigms, namely, EigenTrust,
Trust Network Analysis with Subjective Logic (TNA-SL), and Trust Ant Colony System (TACS),
were tested to benchmark the performance of AntTrust. The experimental results demonstrate
that AntTrust is capable of providing a higher and more stable success rate at a low running time
regardless of the percentage of malicious peers in the network.

Keywords: peer-to-peer networks; trust management; wireless sensor networks; privacy

1. Introduction

Computer networks, especially newly emerging forms such as wireless sensor net-
works (WSNs) and Internet of Things (IoT), are susceptible to failure [1–3]. Network
failures can be attributed to a range of issues, of which security breaches are among the
most common and dangerous. This is because, in these networks, a central component
(e.g., gateway/router) is usually essential to the connection to the cloud or to the nearest
network, which makes them more vulnerable, as a compromised central component can re-
sult in cascading failures. Therefore, many new application domains adopt the peer-to-peer
(P2P) structure [4] or device-to-device cooperative (D2D) scheme [5], in which network
nodes interact directly with each other, eliminating the need for the central component.

A P2P network is an open and dynamic distributed system, where nodes can directly
communicate with each other without the need for a centralized server. In these networks,
services are provided by peers; however, peers are characterized by their anonymity and
freedom, so trust is essential to establishing communication among them [6]. Therefore,
it is important to build a trust management system to encourage resource sharing among
peers in such networks [7].

Many emerging studies have focused on trust management systems in P2P net-
works [8–12]. On the other hand, only a few studies have considered bioinspired ap-
proaches [13], although they might be of great benefit in such a context. Furthermore, to
the best of our knowledge, all of the proposed bioinspired trust management algorithms
are based on metaheuristics, also known as problem-independent heuristics, such as ant
colony optimization (ACO) and artificial bee colony (ABC), rather than problem-specific

Sensors 2022, 22, 533. https://doi.org/10.3390/s22020533 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020533
https://doi.org/10.3390/s22020533
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6110-9657
https://doi.org/10.3390/s22020533
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020533?type=check_update&version=1

Sensors 2022, 22, 533 2 of 15

heuristics. A problem-specific heuristic is a specifically tailored algorithm for a certain
problem. Problem-specific heuristics are preferable to metaheuristics because they generate
a “good” and inexpensive solution in terms of time and computing resources, unlike meta-
heuristics. A metaheuristic generates an optimal or near-optimal solution by extensively
searching the solution space and iteratively generating candidate solutions before selecting
the best among them, which is computationally expensive and time-consuming [14,15].

This paper proposes a novel trust management system, AntTrust, based on an ant-
inspired problem-dependent heuristic. The proposed system helps to locate a trustworthy
provider by mimicking the behavior of real ants in an ant colony. A new formula is
proposed for the trust calculation between any two peers in the network based on four
trust factors (trust value, recommendation, feedback received from other peers, and trust
values collected from all friends in the community).

AntTrust was evaluated in a simulated P2P network model considering two types
of attack strategies: malicious peers working alone, which are known as naïve malicious
attacks, or malicious peers working in groups, which are known as collective malicious
attacks. In our system, good peers are peers who always strive to provide valid files, correct
feedback, and honest recommendations, while malicious peer models provide invalid files,
incorrect recommendations, and dishonest feedback. AntTrust was benchmarked against
three well-established trust management systems, namely, the TACS Trust Model for P2P
Networks [8], EigenTrust [9], and the Trust Network Algorithm using Subjective Logic
(TNA-SL) [16]. The results show the superiority of AntTrust, as it significantly increased
the success rate of good peers at a remarkably low running time when compared to the
other algorithms.

In summary, the main contributions of this paper are as follows:

• A novel trust management system, AntTrust, is proposed using a problem-specific
heuristic to increase the success rate of good peers and reduce execution time.

• A reward formula is suggested to recompense peers that provide valid contents and
honest recommendations.

• A new formula is introduced for the trust calculation between any two peers in the
network based on four parameters: local trust value, recommendation, feedback, and
friends’ trust values.

• A well-controlled evaluation framework is presented for evaluating the proposed
approach.

• Validation of the proposed system is carried out against well-established trust man-
agement paradigms.

The paper is organized as follows: Section 2 reviews the main trust and reputation
models related to this paper. Section 3 introduces the AntTrust algorithm, while Section 4
explains the evaluation methodology. The experimental results are presented and discussed
in Section 5. Lastly, Section 6 summarizes the conclusions and suggests possible future
directions of this research.

2. Related Work

Trust and reputation models can be classified into traditional systems and bioinspired
systems. Traditional systems constitute any trust management system with a basis that
does not stem from a biological system, e.g., EigenTrust [9] and TNA-SL [16]. In EigenTrust,
each peer in the network is assigned a global trust value that can be calculated using
the eigenvector. EigenTrust depends heavily on pre-trusted peers in trust calculations,
making them the focal point of failures if overloaded or misled by malicious peers. To
overcome this problem, HonestPeer [17] was introduced, where honest peers shoulder the
load with pre-trusted peers. PeerTrust [11] considers several factors in trust calculations,
such as feedback about a specific peer by other peers in the community, the number of
transactions, the credibility of the feedback provider and transaction, and community
context factors, weighted by the level of trust in the feedback provider. FuzzyTrust [18] is
another way to handle trust. FuzzyTrust uses fuzzy inference to calculate local trust values

Sensors 2022, 22, 533 3 of 15

and then aggregates these local values to produce a global reputation. PowerTrust [19]
is a reputation system that utilizes a trust overlay network (TON). The system uses a
regular random walk for the initial reputation value and a lookahead random walk for
updating the reputation values from the power nodes. In [16], the Trust Network Analysis
with Subjective Logic (TNA-SL) was proposed as a method based on subjective logic to
evaluate the trust between peers in a P2P network. Trust is represented by the opinion of
a peer about another peer. The opinion is a relationship between two peers and consists
of four components: belief, disbelief, uncertainty, and base rate. TCR [20] classifies nodes
with similar research topics into local subnetworks. The trust score calculation considers
different weights: the node’s weight according to its contribution score, the node’s weight
according to its cooperation times, and the weight of the distance of the research field
between two nodes. Misbehaving nodes are punished based on the distance between
misbehaving and requesting nodes. TrueTrust [21] calculates the service responder’s
credibility as a function of all collected feedback on a service responder without using any
feedback filtering mechanisms. However, the main factor in this calculation is the service
requester’s feedback on a service responder, which reflects the concept of retributive justice.
In [22], a system was presented that collects statistics of the participating peers’ activity in
the network and defines two factors (local contribution and trustworthiness) based on the
collected statistics. According to the trustworthiness factor, each peer is assigned a rank,
which is then propagated to all participating peers in the network. In [23], a system using
the best linear unbiased estimator was proposed that takes into account the uncertainties in
the input variables to define the trust estimation method. The calculation of the trust value
is based on requested and actual transfer rates and other parameters. AbsoluteTrust [24] is
an algorithm that aggregates local trust without normalization. The algorithm depends on
the concept of weighted averaging and scaling of local trust, which is then used to calculate
the global trust. AuthenticPeer++ [25] is a hybrid technique that combines peer-based and
file-based reputation system approaches. To reduce the impact of collective malicious peers,
AuthenticPeer++ utilizes the global trust value of a peer to weigh its opinion. In [26], the
trust calculation approach is based on direct transactions and the reputation of a set of
neighbors. Each peer has a trust vector for every other peer, which stores the outcomes
of the past transactions. A time-sensitive and context-dependent reputation model was
developed in [27] for mobile ad hoc networks. The reputation value is built upon direct
trust and recommendations from other peers according to their trust value. The cyclic
ranking method was utilized in [28] for a P2P sharing system, where each peer uses its
direct observation as well as recommendations collected from reputable neighbors about
effective exchanges known as provision cycles. In [29], a multiagent robotic system with
decentralized control was presented, where robots-agents calculate levels of trust for each
other to protect the system from hidden attacks of robots-saboteurs by considering their
previous interactions. The trust level of the agent is increased when the agent executes
functions for the target and provides correct feedback about other robots. Trust-X [30] is
a comprehensive XML-based framework for trust negotiations in a peer-to-peer network.
Trust tickets are issued by involved parties after successful completion of a negotiation and
used to speed up the following negotiations for the same resource.

In contrast to the large number of trust management systems that follow traditional
approaches, very few systems have considered nature as a source of inspiration to target
the trust problem. Here, we shed some light on them. In [31], a trust management system
for P2P networks based on a genetic algorithm was presented, where the algorithm detects
abnormal behavior as a function of a comparison with the peer profile. The algorithm
defines the trustworthiness of peers based on anomaly detection using the behaviors
of good peers as historical data, where each peer maintains a separate profile of other
peers’ behaviors. The profile information is extracted from the direct interactions between
peers in the network. TrustIs [32] is a trust model inspired by the human immune system
(IS). It uses concepts from the body’s defense against viral attacks. This model combines
peer reputation and object reputation to prevent the distribution of polluted files and the

Sensors 2022, 22, 533 4 of 15

communication of malicious peers. AntRep [10,12], TACS [8], and AntPS [33] are trust
and reputation trust management systems for P2P networks that rely on the ACO to find
the best (most trustworthy) node. The ACO algorithm was inspired by the behavior of
ant colonies [34–36], where a pheromone value is used to select a trustworthy provider.
In AntRep [10], ants are dispatched to collect evidence about a peer’s reputation and
forward it to the requester. In TACS [8], ants follow pheromone values in addition to
some heuristic values to find a trustworthy provider. In AntPS [33], the selection of the
trustworthy provider is based on two pheromone values: resource similarity and trust
similarity. Another reputation model for P2P networks based on ACO was presented
in [12], which uses pheromone values as recommendations about target peers. Table 1
shows a comparison between reviewed bioinspired trust models.

Table 1. Comparison between reviewed bioinspired trust models.

System Trust Evaluation Bioinspiration Malicious Models Performance Measures Evaluation Tool

Peer profile-based
trust [31]

Detect abnormal behavior using
anomaly detector
based on profile

GA
Selfish peers, traitor
attack, Sybil attack,

collusion attack

• Number of rules
• Number of transactions N/A

TrustIs [32]

Detect malicious peer based on
peer reputation, object reputation,

and index reputation received
from an immune peer

IS Pure malicious
• Normal file upload rate
• Polluted file filtered rate PeerSim

AntRep [10] ACO AC N/A • Hop count
• Success rate

FreeNet simulator

TACS [8] ACO AC N/A • Percentage of selected
trustworthy servers

Custom Java-based
simulator

ACO-based
reputation [12]

ACO and combining trust values
from different paths AC Strategic deception,

malicious collusion
• Success rate
• Number of messages

PeerSim

AntPS [33] ACO with a combination of trust
similarity and resource similarity AC N/A • Request response ratio

• Malicious file downloads
Query Cycle

Simulator

However, all of the abovementioned ant-inspired trust models were based on meta-
heuristic approaches and, hence, suffer from high computation overheads and long running
times due to their iterative nature. In contrast, AntTrust is designed as a problem-specific
heuristic to overcome these limitations. It strives to make a “good” guess for the path
leading to the most trustworthy provider from the first try rather than iteratively working
on optimizing a random path. Additionally, a flaw found in all ant-inspired trust models
mentioned earlier is that they do not offer a way to reward good providers. Moreover, some
of the models do not consider punishing misbehaving malicious nodes, except for TACS [8],
which evaporates pheromones along the path to the misbehaving provider. However,
this method is unfair to good nodes located along the “punished” path. AntTrust applies
explicit strategies to reward and punish peers based on their trustworthiness.

3. Algorithm Design
3.1. Ant Inspiration

The primary idea of AntTrust is based on ant foraging behavior. Ants start their
food-foraging journey from the nest, trying to find food sources randomly around the
surrounding area, as shown in Figure 1a. If an ant finds a good food source, it then assesses
its profitability before going back to the nest. During its return journey, the ant releases a
chemical substance (pheromone) on the ground. The density of the pheromone released by
the ant is in proportion to the profitability of the food source, thereby allowing other ants
to identify the path to the most profitable food sources, as shown in Figure 1b. Other ants
then follow the path that has the highest density of the pheromone, as shown in Figure 1c.
The pheromone evaporates over time, which leads to fewer visited paths. In sum, this
behavior is a well-known example of indirect communication and is usually referred to as
stigmergy [34–39].

Sensors 2022, 22, 533 5 of 15

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

AntTrust applies explicit strategies to reward and punish peers based on their trustwor-
thiness.

3. Algorithm Design
3.1. Ant Inspiration

The primary idea of AntTrust is based on ant foraging behavior. Ants start their food-
foraging journey from the nest, trying to find food sources randomly around the sur-
rounding area, as shown in Figure 1a. If an ant finds a good food source, it then assesses
its profitability before going back to the nest. During its return journey, the ant releases a
chemical substance (pheromone) on the ground. The density of the pheromone released
by the ant is in proportion to the profitability of the food source, thereby allowing other
ants to identify the path to the most profitable food sources, as shown in Figure 1b. Other
ants then follow the path that has the highest density of the pheromone, as shown in Fig-
ure 1c. The pheromone evaporates over time, which leads to fewer visited paths. In sum,
this behavior is a well-known example of indirect communication and is usually referred
to as stigmergy [34–39].

In the AntTrust system, a file requester (which corresponds to the nest in the ant
colony analogy) sends a file request (ant) to its neighboring peers (food sources). After
receiving the file (reaching a food source), the requester peer gives a rating to the provider
peer (pheromone deposition) based on the validity of the file received (the profitability of
the food source). Furthermore, the trust value can be increased by a reward value or de-
creased by a punishment value depending on the validity of the received file, which mim-
ics the idea of pheromone concentration and evaporation.

(a)

(b)

(c)

Figure 1. Ant foraging behavior. (a) With no pheromone trail in the environment, ants start explor-
ing the environment randomly. (b) Ants return to the nest while depositing a pheromone trail
proportional to food source profitability. (c) Other ants take the path that has the highest density

Figure 1. Ant foraging behavior. (a) With no pheromone trail in the environment, ants start ex-
ploring the environment randomly. (b) Ants return to the nest while depositing a pheromone trail
proportional to food source profitability. (c) Other ants take the path that has the highest density of
pheromone. The pheromone on the trails to less profitable sources evaporates gradually, while it
becomes more concentrated on the path to the more profitable source.

In the AntTrust system, a file requester (which corresponds to the nest in the ant colony
analogy) sends a file request (ant) to its neighboring peers (food sources). After receiving
the file (reaching a food source), the requester peer gives a rating to the provider peer
(pheromone deposition) based on the validity of the file received (the profitability of the
food source). Furthermore, the trust value can be increased by a reward value or decreased
by a punishment value depending on the validity of the received file, which mimics the
idea of pheromone concentration and evaporation.

3.2. AntTrust System Architecture

The underlying architecture, shown in Figure 2, is a centralized P2P network where a
system registry keeps a dynamic list of all peers that joined the system at any time and a
list of the files that they offer. However, the processing and calculations in the proposed
trust management system are distributed where each node internally calculates the trust
value based on its past communications with the other nodes. No single calculation or
decision is made by a central entity. As stated earlier, the system registry serves only as a
shared memory for the underlying P2P network to keep track of current available peers
and resources.

Sensors 2022, 22, 533 6 of 15

Sensors 2022, 22, x FOR PEER REVIEW 7 of 17

• Feedback manager: This component is responsible for exchanging ratings and feed-
backs. The feedback list (FL) is used to record the received feedback from acquaint-
ances in a list. The feedback handler is responsible for calculating the feedback using
information that is received from the FL whenever necessary as a function of the total
number of instances of positive feedback and negative feedback.

• Recommendation manager: This component is responsible for retrieving recommen-
dations about a specific file provider from a friend with current trust values above
the best-friend threshold (δf), where δf is a positive real number.

Figure 2. System architecture.

3.3. Definitions
The AntTrust system defines the following terms in the trust context to ease the un-

derstanding of the relationship between peers in the network:
• Requester (Pq): A peer that requests a file in a transaction.
• Provider (Pv): A peer that has the requested file in a transaction.
• Friend: A peer Pj is a friend of peer Pi if Pi has previously received a file or recom-

mendation from Pj. The friendship relationship is transitive for a friend of a friend
(FoF) and a friend of a friend of a friend (FoFoF). For simplicity, we assume a maxi-
mum friend chain length of three.

• Best friend: A peer Pj is a best friend of peer Pi if the current trust of Pi by Pj is above
δf.

• Acquaintance: A peer Pj is an cquaintance of peer Pi if Pi has previously sent a file to
Pj.

• Unknown peer: A peer Pj is unknown to peer Pi if Pi has not previously received a
file, recommendation, or feedback from Pj (it is neither a friend nor an acquaintance).

• Current trust: This is the last saved trust value in the trust list (TL). During system
initialization, all current trust values are set to zero.

Figure 2. System architecture.

Each peer maintains three local lists to support the decentralization, as described
below:

• Rating list (RL): Each peer Pi has an RL, which keeps records of friend IDs, the total
number of positive transactions (TP), and the total number of negative transactions
(TN) completed with each friend of the peer. The list is dynamically updated once the
peer completes a transaction.

• Feedback list (FL): The FL is a two-dimensional matrix maintained by each peer. It
keeps track of the total number of positive feedback (TPFoA) events and the total
number of negative feedback (TNFoA) events according to the rating received after
each transaction performed by a peer’s acquaintance with a friend of the acquaintance,
for instance, if peer Pi has n acquaintances and m friends of acquaintances.

• Trust list (TL): This list records the current trust (CT) values of Pi for each of the peer’s
friends. The trust value is calculated based on the ratings in the rating list.

The main components of the AntTrust system are as follows:

• Transaction manager: This component is responsible for selecting the most trustwor-
thy file provider for the requester peer in each transaction by considering four trust
parameters (current trust, feedback, recommendations, and collective trust). The Trans-
action manager receives the current trust located in the trust list (TL) and uses it to
select the file provider peer. In the absence of current trust, the selection depends
on the recommendation received from the Recommendation manager. In the latter
case, feedback (the value received from the Feedback manager) is used to help select
a provider peer. If all three of these values are unavailable, the Transaction manager
uses collective trust to select a trustworthy file provider. After selecting a trustworthy
file provider, the transaction takes place between the requester and the selected file
provider. The requester peer then evaluates the received file and submits the file’s
validity to the Rating manager and the Feedback manager.

Sensors 2022, 22, 533 7 of 15

• Rating manager: This component submits either a positive (1) or negative (0) rating
for a transaction. These ratings are based on the validity of the received file from the
Transaction manager.

• Trust manager: This is the main component in the system. It is responsible for
calculating the new trust after each transaction as a function of assigned reward or
punishment values. Our system is proactive because it calculates trust after each
transaction; thus, there is no need to compute trust before the transaction, which
reduces the time taken to calculate trust before any transaction. The calculation of the
new trust value differs as a function of the validity of the file received. If the file is
valid, the calculation depends on the total number of positive (TP) ratings and the total
number of negative (TN) ratings received from the rating list (RL) as a reward to the
file provider. If the file is invalid, the calculation is based on subtracting a punishment
from the current trust value. The component then records the calculated new trust in
the trust list (TL).

• Feedback manager: This component is responsible for exchanging ratings and feed-
backs. The feedback list (FL) is used to record the received feedback from acquain-
tances in a list. The feedback handler is responsible for calculating the feedback using
information that is received from the FL whenever necessary as a function of the total
number of instances of positive feedback and negative feedback.

• Recommendation manager: This component is responsible for retrieving recommen-
dations about a specific file provider from a friend with current trust values above the
best-friend threshold (δf), where δf is a positive real number.

3.3. Definitions

The AntTrust system defines the following terms in the trust context to ease the
understanding of the relationship between peers in the network:

• Requester (Pq): A peer that requests a file in a transaction.
• Provider (Pv): A peer that has the requested file in a transaction.
• Friend: A peer Pj is a friend of peer Pi if Pi has previously received a file or recommen-

dation from Pj. The friendship relationship is transitive for a friend of a friend (FoF)
and a friend of a friend of a friend (FoFoF). For simplicity, we assume a maximum
friend chain length of three.

• Best friend: A peer Pj is a best friend of peer Pi if the current trust of Pi by Pj is above δf.
• Acquaintance: A peer Pj is an cquaintance of peer Pi if Pi has previously sent a file

to Pj.
• Unknown peer: A peer Pj is unknown to peer Pi if Pi has not previously received a

file, recommendation, or feedback from Pj (it is neither a friend nor an acquaintance).
• Current trust: This is the last saved trust value in the trust list (TL). During system

initialization, all current trust values are set to zero.

3.4. How AntTrust Works

This section explains the two algorithms used in the AntTrust system in detail: the
main AntTrust algorithm and the sub-algorithm named File provider selection algorithm.

3.4.1. AntTrust Algorithm

The AntTrust algorithm, as shown in Algorithm 1, has three main parts: file provider
selection, file validation, and file provider recommendation, as described below.

(a) File provider selection: Initially, when all peers P in the network have no experience,
Pq selects Pv randomly. However, after some transactions have been processed, a list
of friends and their current trust values can be generated, and the provider selection
process is then based on the file provider selection algorithm presented in Section 3.4.2.

(b) File validation: After Pq receives a file from Pv, Pq rates the transaction based on the
validity of the received file based on Equation (1).

Sensors 2022, 22, 533 8 of 15

Rating =

{
1 if the received file is valid

0 otherwise
. (1)

(c) File provider recommendation: Consequently, Pq evaluates Pv according to the validity
of the received file or the received recommendations. If the file and recommendations
are valid, a reward is calculated according to Equation (2) for Pv and all recommender
friends Fi, if any, between Pq and Pv.

Reward =

(
1−

(
1

Nt − 1
(TP− µ)2

))
, (2)

where Nt is the total number of positive and negative transactions in which Pv provided a
file to Pq, and Nt 6= 1. TP is the total number of positive transactions in which Pv provided
a file to Pq, and µ is the mean of all ratings of Pv by Pq or Fi.

The proposed reward formula focuses on the normalized ratio of the positive ratings
and total ratings of the provider that are given by the requester and its friends. Based on
this reward value and the current trust value, a new trust value is calculated according to
Equation (3):

New Trust =
Reward

1 + (Reward− CurrentTrust)
. (3)

Afterward, CurrentTrust is updated by the NewTrust value, and Pv is added to the Pq
trust list.

Conversely, if the file or recommendation is invalid, punishment and a new trust value
are calculated according to Equations (4) and (5), respectively, for Pv and the recommender.

Punishment = PunishmentRate ∗ CurrentTrust, (4)

where PunishmentRate is an experimentally set variable. A higher value results in a more
aggressive system toward invalid transactions, even by good peers.

New Trust =
Punishment

1 + (Punishment− CurrentTrust)
. (5)

Then, CurrentTrust is updated by the NewTrust value.

Algorithm 1: AntTrust

Data: Rating List (RL), Trust List (TL)
Result: send a file to Pq, update RL and TL
while num of transaction <= max num of transaction do
// 1. File provider selection
if Pq request a file then
if Pq has previous experience with any Pi then
Select Pv based on File provider selection algorithm
else Select Pv randomly
// 2. File validation
if accepted file is valid then
Rating= 1
// 3. File provider recommendation
if Pv recommended by Fi then
Calculate Reward and Trust value of all recommended Fi between the Pq and Pv
Calculate Reward and Trust value of Pv
else
Rating = 0
if Pv recommended by Fi then
Calculate the Punishment and Trust value of Fi
Calculate the Punishment and Trust value of Pv
Send feedback to friends
else Go to step 1
end while

3.4.2. File Provider Selection Algorithm

The file provider selection algorithm, as shown in Algorithm 2, locates a trustworthy
file provider Pv based on four consecutive trust factors: current trust, recommendation,
feedback, and collective trust. For each factor, there are three scenarios: when more than

Sensors 2022, 22, 533 9 of 15

one provider satisfies the factor, when only one provider satisfies the factor, and when no
provider satisfies the factor. Below, an explanation of the algorithm is presented in detail.

Algorithm 2: File provider selection

Data: Trust List (TL), Feedback List (FL)
Result: select trustworthy provider
// Step 1: check Trust list
if the number of direct friend providers > 1 then
if max Trust value > δt then accept the file from Pv
else request and calculate Recommendation from friends with trust value> δf
else if the number of direct friend providers = 1 then
if Trust value > δt then accept the file from Pv
else deny transaction
else request and calculate Recommendation from friends with trust value > δf
// Step 2: check Recommendation
if the number of recommendation > 1 then
if max Recommendation > δt then accept the file from Pv
else calculate Feedback
else if the number of recommendation = 1 then
if Recommendation> δt then accept the file from Pv
else deny transaction
else calculate Feedback
// Step 3: check Feedback
if the number of Feedback >1 then
if max feedback> δt then accept the file from Pv
else collect Trust value from all friends
else if the number of Feedback = 1 then
if feedback > δt then accept the file from Pv
else deny transaction
else collect Trust value from all friends
// Step 4: check Collective trust
if the number of Collective trust > 1 then
if max collective trust > δt then accept the file from Pv
else select a random Pv
else if the number of Collective trust = 1 then
if Collective trust > δt then accept the file from Pv
else deny transaction
else select a random Pv

• Step 1: Based on Current Trust

When Pq requests a file and more than one Pv is available, Pq checks its trust list
first and selects a Pv with a current trust value above the minimum trust threshold (δt);
otherwise, Pq sends a recommendation to its friends, as described in Step 2.

When only one direct Pv exists, Pq should select that Pv only if its current value is
above δt; otherwise, the transaction should be rejected. When no Pv exist, Pq sends a
recommendation request to its friends.

• Step 2: Based on Recommendation

The recommendation request from Pq is propagated through the friend chain until it
reaches a friend Fi that has direct experience with Pv. However, only recommendations from
best friends are considered. Recommendations are calculated according to Equation (6).

Recommendation = CurrentTrustPqF1 ∗ . . . ∗ CurrentTrustFNc pv , (6)

where Nc is the number of friends in the friend chain between Pq and Pv with a CurrentTrust
value greater than δf. CurrentTrustPqF1 is the current trust of requester peer Pq for the first
friend F1 in the friend chain between Pq and Pv, and CurrentTrustFNc pv is the current trust
of Pc, i.e., the last friend in the friend chain between Pq and Pv, for the provider peer Pv.

After calculating the recommendations, when more than one recommendation exists, Pq
checks the calculated recommendations and selects a Pv with a recommendation above δt;
otherwise, feedback is calculated, as described in Step 3.

When only one recommendation exists, Pq should select Pv if its recommendation is
above δt; otherwise, the transaction should be rejected. When no recommendations exist,
feedback is calculated.

• Step 3: Based on Feedback

Sensors 2022, 22, 533 10 of 15

When no recommendation is available, Pq calculates feedback about Pv based on the
ratings received by Pi from all acquaintances of Pq. Feedback is calculated according to
Equation (7).

Feedback = 1− (

1
N f−1 (FP− µ)2

1 +
(

1−
(

1
N f−1 (FP− µ)2 − CurrentTrust PqPv

))), (7)

where Nf 6= 1, and it represents the total number of instances of positive and negative
feedback provided for Pv from all acquaintances of Pq, FP is the total number of instances of
positive feedback provided for Pv from all acquaintances of Pq, µ is the mean of all received
feedback for Pv from Pi, and CurrentTrust PqPv is the current trust of Pq for Pv.

After calculating the feedback, when more than one feedback is available, Pq checks the
calculated feedback and selects a Pv with a feedback value above δt; otherwise, a collective
trust is calculated, as described in Step 4.

However, when only one feedback exists, Pq should select Pv only if its feedback value
is above δt; otherwise, the transaction should be rejected. If no feedback exists, a collective
trust is calculated.

• Step 4: Based on Collective Trust

The last factor is collective trust, which is the summation of the current trust val-
ues collected from all Fi in the friend chain between Pq and Pv, calculated according to
Equation (8).

CollectiveTrust = CurrentTrustF1pv + . . . + CurrentTrustFNc pv . (8)

After calculating the collective trust value, when more than one collective trust value
exists, Pq checks the calculated collective trust values and selects a Pv with a collective trust
value above δt; otherwise, Pv is selected randomly.

However, when only one collective trust value exists, Pq should select Pv only if its
collective trust value is above δt; otherwise, the transaction should be rejected. When
no collective trust values exist, Pv is selected randomly.

A close inspection of Algorithms 1 and 2 reveals that neither algorithm includes any
nested loops or recursive calls; hence, they have a linear running time. Accordingly, the time
complexity of AntTrust is O(n), which indicates high scalability and is well aligned with
the experimental results presented in Section 5. On the other hand, the time complexities of
EigenTrust, TACS, and TNA-SL are O(n2) [40], O(n3) [8], and O(2n) [16], respectively.

4. Evaluation Framework

We implemented the proposed algorithm using the simulation tool QTM using an
approach similar to [17,32,41], as QTM was developed specifically for evaluating trust
management systems in P2P networks. We controlled the experiments by varying the
percentage of the malicious file providers, the number of transactions, and the size of the
network. AntTrust considers two malicious strategies: naïve and collective. The size of
the network varied in the range [132...512]. We considered two different network loads:
2500 and 5000 transactions. For each number of transactions, the percentage of malicious
providers varied in the range [20%...60%]. The value of PunishmentRate was constant at 0.15.
The considered threshold values were δt = 0 and δf = 0.5. Values of both thresholds were
determined empirically over several runs. The benchmarks considered in the evaluation
were TACS [8], EigenTrust [9], and TNA-SL [16].

All experiments were run on a SANAM cluster computer [42,43]. Each simulation
scenario was executed 10 times for AntTrust and EigenTrust [9], whereas for TACS [8]
and TNA-SL [16], the simulation was run once because of the overhead demanded to run
such algorithms.

In a similar approach to [8], the TACS parameters used in the experiments were
as follows: alpha and beta = 1, initial pheromone = 0.4928, number of iterations = 3,
number of ants = 4, punishment threshold = 0.6806, path length factor = 0.5651, and transi-
tion threshold = 0.4972.

Sensors 2022, 22, 533 11 of 15

Two performance metrics were used to test the effectiveness of the developed al-
gorithm: the success rate and execution time. The success rate is important for testing
the effectiveness of the delivered algorithm in terms of providing the selection of a good
provider. The equation divides the valid files received by good peers by the total number
of transactions made by good peers according to Equation (9).

Success rate =
of valid files received by good peers

of transactions completed by good peers
. (9)

The execution time (running time) represents the time taken to execute the algorithm
and should be minimized. Given the importance of this measure, we aimed to show how
fast AntTrust is. This measure distinguishes the AntTrust algorithm (problem-specific
heuristic) from metaheuristic algorithms because it generates an efficient solution in terms
of time.

5. Results and Discussions

As mentioned before, only a few studies have focused on reputation and trust man-
agement systems in P2P networks by employing bioinspired heuristics. To the best of our
knowledge, all of the proposed bioinspired trust and management algorithms were based
on metaheuristics rather than problem-specific heuristics. We compared AntTrust with
EigenTrust [9], TACS [8], and TNA-SL [16]. A no-trust system (None), where the selection
of a file provider was random, was used as the baseline case.

5.1. Success Rate

The success rate is calculated as the total number of valid files received by good peers
divided by the total number of files received by good peers.

In Tables 2 and 3, the success rate is presented against the percentage of malicious
peers (naïve and collective) as the number of transactions increased from 2500 to 5000,
respectively, for AntTrust and the benchmark algorithms, TACS, EigenTrust, and TNA-SL,
and the baseline scenario, None.

Table 2. The success rate for 2500 transactions.

Malicious %
AntTrust EigenTrust None TNA-SL TACS

Naive Collective Naive Collective Naive Collective Naive Collective Naive Collective

132 peers

20 93.57 92.13 92.32 85.83 76.95 57.09 84.00 82.98 91.29 90.08

40 91.56 94.42 72.80 90.08 40.15 77.02 74.40 75.45 81.23 80.17

60 92.78 92.57 73.68 72.85 57.17 41.39 60.53 69.82 61.68 60.53

256 peers

20 94.92 94.88 90.37 81.37 76.27 58.96 83.53 84.50 * *

40 92.69 96.25 82.62 91.42 39.29 76.23 69.18 70.28 * *

60 95.04 94.07 70.20 69.94 58.88 40.81 60.71 59.92 * *

512 peers

20 92.71 92.98 89.90 81.74 77.59 58.59 81.65 84.32 * *

40 94.47 95.89 82.88 88.75 40.77 77.40 73.33 71.41 * *

60 94.16 96.13 75.98 70.08 58.21 41.06 64.68 60.24 * *

* Running time exceeds 24 h.

When the number of transactions was 2500 and the number of peers was 132, and the
percentage of collective malicious providers increased to 60%, the success rates of TACS,
EigenTrust, TNL-SL, and None dropped significantly; TNL-SL converged with EigenTrust,
attaining a success rate of around 70%, while it reached 60% in TACS. On the other hand,
the success rate of AntTrust remained stable (≥91%) in both naïve and collective strategies,
and regardless of the number of providers. As expected, the no-trust system produced

Sensors 2022, 22, 533 12 of 15

the lowest success rate and was significantly impacted by the increasing percentage of
malicious peers.

Table 3. The success rate for 5000 transactions.

Malicious %
AntTrust EigenTrust None TNA-SL TACS

Naive Collective Naive Collective Naive Collective Naive Collective Naive Collective

132 peers

20 95.26 93.76 94.07 92.81 76.89 77.11 83.25 * * *

40 93.62 94.22 87.81 85.21 57.30 58.28 72.13 * * *

60 89.28 91.88 74.49 69.22 39.88 39.83 57.59 * * *

256 peers

20 94.66 95.60 93.55 92.41 76.72 77.17 84.27 * * *

40 94.06 93.72 87.67 82.33 58.19 57.99 69.95 * * *

60 94.02 93.69 62.86 72.84 40.19 39.49 62.39 * * *

512 peers

20 95.25 93.89 93.15 90.84 76.93 77.07 82.60 * * *

40 95.11 94.90 84.35 85.47 58.56 59.01 71.38 * * *

60 94.31 95.03 71.06 70.76 40.39 40.63 60.88 * * *

* Runtime exceeds 24 h.

The variations in the success rate of AntTrust and the benchmark algorithms were
more evident as the number of transactions was increased to 5000. AntTrust exhibited a
high success rate (≥90%) in all experiments. However, the success rate of other algorithms
decreased gradually to 60% in TNA-SL and approximately 70% in EigenTrust when the
percentage of naive malicious peers was 60% and the number of providers was 512. For
heavy scenarios of a large number of peers or transactions, we were unable to calculate the
success rates of TNA-SL and TACS algorithms, as their running times exceeded 24 h.

Overall, we can observe that AntTrust outperformed the other algorithms in all sce-
narios. In AntTrust, with an increasing number of transactions, the requester gains more
experience and more friends, which helps the algorithm in identifying the best (most
trustworthy) provider. AntTrust is based on four trust components instead of selecting
the provider based on aggregated trust values, as in EigenTrust, or based on a trust value
(pheromone), as in TACS.

5.2. Execution Time

In Tables 4 and 5, the running time is presented against the percentage of malicious
peers (naïve and collective) as the number of transactions increased from 2500 to 5000,
respectively, for AntTrust and the benchmark algorithms, TACS, EigenTrust, and TNA-
SL, and the baseline scenario, None. The None system took the least time to execute in
both strategies, which is reasonable because it randomly selects the provider. Next were
AntTrust and EigenTrust, while TACS took the longest time to execute due to its nature.

As the number of transactions increased to 5000, EigenTrust exhibited slightly better
performance than AntTrust when using the naïve strategy. However, this was not the
case with the collective strategy, where AntTrust outperformed EigenTrust. TNA-SL with
collective pure malicious peers and TACS algorithms presented a significantly high running
time exceeding 24 h.

The empirical running time results align with the asymptotic complexity analyses of
AntTrust and EigenTrust. However, although the asymptotic complexity analysis suggests
that TNA-SL is the most complex among the studied algorithms, when implemented, TACS
was the worst. This might be related to the fact that TNA-SL displays an extended running
time only for lengthy FoF chains, as complex matrix chain multiplications are needed,
which is not a very common scenario.

Sensors 2022, 22, 533 13 of 15

Table 4. Running time for 2500 transactions.

Malicious %
AntTrust EigenTrust None TNA-SL TACS

Naive Collective Naive Collective Naive Collective Naive Collective Naive Collective

132 peers

20 1.49 1.48 0.92 0.90 0.52 0.52 1669.33 1228.88 59,679.53 56,978.25

40 1.48 1.43 0.90 4.38 0.51 0.59 546.72 941.26 52,061.91 52,918.49

60 1.98 2.76 0.93 32.65 0.80 1.17 626.48 20,793.53 61,600.76 53,821.82

256 peers

20 4.15 4.19 2.29 2.53 1.06 1.05 9594.23 9119.80 * *

40 4.17 4.39 2.22 33.19 1.03 1.87 3254.11 15,212.95 * *

60 7.26 12.62 2.35 276.89 4.46 9.39 7501.21 16,774.92 * *

512 peers

20 18.19 19.05 10.66 10.35 5.02 4.92 20,816.17 58,293.70 * *

40 19.15 21.17 9.99 254.18 5.04 9.13 28,986.47 73,275.82 * *

60 30.41 49.67 10.47 2293.28 21.83 41.85 25,337.93 78,108.66 * *

* Running time exceeds 24 h.

Table 5. Running time for 5000 transactions.

Malicious %
AntTrust EigenTrust None TNA-SL TACS

Naive Collective Naive Collective Naive Collective Naive Collective Naive Collective

132 peers

20 1.94 2.27 1.28 8.45 0.74 0.91 9041.24 * * *

40 2.22 3.25 1.27 31.71 0.73 1.48 21,101.89 * * *

60 2.29 4.92 1.32 69.02 0.69 2.24 33,176.29 * * *

256 peers

20 7.26 8.09 4.66 62.00 1.61 3.96 24,619.67 * * *

40 7.42 13.71 4.59 248.70 1.56 9.98 28,800.96 * * *

60 7.91 23.83 4.29 574.24 1.59 21.73 36,182.73 * * *

512 peers

20 31.87 36.51 19.43 522.13 8.74 15.10 70,962.73 * * *

40 34.03 60.32 19.37 2113.92 7.30 39.16 66,033.12 * * *

60 36.58 97.35 19.15 4750.10 7.33 80.78 72,107.74 * * *

* Running time exceeds 24 h.

6. Conclusions

This paper presents a trust management system named AntTrust that is based on a
problem-specific heuristic inspired by ant colonies. The goal of our system is to increase
the success rate of good peers and reduce the execution running time by adopting a new
algorithm that measures trust between peers in P2P networks. The main AntTrust algorithm
rates the transaction on the basis of the validity of the received file and applies explicit
strategies to reward and punish peers as a function of their trustworthiness. Another sub-
algorithm, named the file provider selection algorithm, locates a trustworthy file provider
on the basis of four consecutive trust factors (current trust, recommendation, feedback, and
collective trust).

Evaluation of our system through a comprehensive framework showed that AntTrust
has a strong positive effect in terms of providing a more trustful environment by increasing
the success rate of good peers. Regarding the tested malicious strategies, AntTrust showed
considerable ability, compared to the other algorithms, to distinguish the collective strategy
from the naïve strategy due to its multiplicity of trust parameters and the punishment
process for misbehaving malicious nodes. Additionally, AntTrust showed a low running

Sensors 2022, 22, 533 14 of 15

time, which can be attributed to its proactivity in immediately calculating trust rather than
waiting for a new transaction.

The results presented herein open a path toward research on various interesting
issues. Future studies should assess whether trustworthiness on some nodes converges and
stabilizes after some rounds. It is also important to consider a strategy to reward or punish
an acquaintance based on the honesty of its provided feedback. In addition, the system
can be tested against other malicious models, such as strategic deception. Furthermore,
a special strategy can be adopted to handle the problem of multiple responses arising
from the same remote friend via multiple possible chains of friends, which might occur
as a result of trust propagation through a network. Lastly, future research should look
at extending the application domain to other platforms, such as cloud computing, grid
computing, and WSNs.

Author Contributions: Conceptualization, A.A.; formal analysis, N.A.-O., H.K., and A.A.; funding
acquisition, H.K.; investigation, N.A.-O. and A.A.; methodology, H.K. and A.A.; software, N.A.-O.
and A.A.; writing—original draft, N.A.-O. and H.K.; writing—review and editing, H.K. and A.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from the Researchers Supporting Program, project
number (RSP-2021/204), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest associated with this paper.

References
1. Fu, X.; Yang, Y. Analysis on invulnerability of wireless sensor networks based on cellular automata. Reliab. Eng. Syst. Saf. 2021,

212, 107616. [CrossRef]
2. Fu, X.; Yang, Y. Modeling and analyzing cascading failures for Internet of Things. Inf. Sci. 2021, 545, 753–770. [CrossRef]
3. Fu, X.; Yao, H.; Yang, Y. Modeling and Optimizing the Cascading Robustness of Multisink Wireless Sensor Networks.

IEEE Trans. Reliab. 2021, 70, 121–133. [CrossRef]
4. Frahat, R.T.; Monowar, M.M.; Buhari, S.M. Secure and Scalable Trust Management Model for IoT P2P Network. In Proceedings

of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia,
19–21 March 2019; pp. 1–6.

5. Wu, Y.; Chen, J.; Qian, L.P.; Huang, J.; Shen, X.S. Energy-aware cooperative traffic offloading via device-to-device cooperations:
An analytical approach. IEEE Trans. Mob. Comput. 2016, 16, 97–114. [CrossRef]

6. Androutsellis-Theotokis, S.; Spinellis, D. A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 2004, 36,
335–371. [CrossRef]

7. Bhise, A.M.; Kamble, S.D. Detection and Mitigation of Sybil Attack in Peer-to-peer Network. Int. J. Comput. Netw. Inf. Secur. 2016,
8, 56–63. [CrossRef]

8. Mármol, F.G.; Pérez, G.M.; Skarmeta, A.F.G. TACS, a Trust Model for P2P Networks. Wirel. Pers. Commun. 2008, 51, 153–164.
[CrossRef]

9. Kamvar, S.D.; Schlosser, M.T.; Garcia-Molina, H. The eigentrust algorithm for reputation management in P2P networks. In
Proceedings of the 12th International Conference on World Wide Web, Budapest, Hungary, 20–24 May 2003; ACM: New York, NY,
USA; pp. 640–651.

10. Wang, W.; Zeng, G.; Yuan, L. Ant-based Reputation Evidence Distribution in P2P Networks. In Proceedings of the 2006 Fifth
International Conference on Grid and Cooperative Computing (GCC’06), Hunan, China, 21–23 October 2006; pp. 129–132.

11. Xiong, L.; Liu, L. PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic Communities. IEEE Trans. Knowl.
Data Eng. 2004, 16, 843–857. [CrossRef]

12. Yang, L.; Qin, Z.; Wang, C.; Liu, Y.; Feng, C. A P2P reputation model based on Ant Colony Algorithm. In Proceedings of the 2010
International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 28–30 July 2010; pp. 236–240.

13. Mahdavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in large-scale global continues optimization: A survey. Inf. Sci. 2015, 295,
407–428. [CrossRef]

14. Andre, C.; Pinheiro, R.; McNeill, F. The Heuristic Approach and Why We Use It. In Heuristics in Analytics; Wiley: Hoboken, NJ,
USA, 2012; pp. 45–68.

15. Said, G.A.E.N.; Mahmoud, A.; El-Horbarty, E.S. A comparative study of meta-heuristic algorithms for solving quadratic
assignment problem. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 1–6. [CrossRef]

http://doi.org/10.1016/j.ress.2021.107616
http://doi.org/10.1016/j.ins.2020.09.054
http://doi.org/10.1109/TR.2020.3024797
http://doi.org/10.1109/TMC.2016.2539950
http://doi.org/10.1145/1041680.1041681
http://doi.org/10.5815/ijcnis.2016.09.08
http://doi.org/10.1007/s11277-008-9596-9
http://doi.org/10.1109/TKDE.2004.1318566
http://doi.org/10.1016/j.ins.2014.10.042
http://doi.org/10.14569/ijacsa.2014.050101

Sensors 2022, 22, 533 15 of 15

16. Josang, A.; Hayward, R.F.; Simon, P. Trust network analysis with subjective logic. In Proceedings of the Conference of the
Twenty-Ninth Australasian Computer Science Conference (ACSW 2006), Sydney, NSW, Australia, 29–31 January 2019; Australian
Computer Society: Hobart, Tasmania, Australia, 2006; pp. 85–94.

17. Kurdi, H.A. HonestPeer: An enhanced EigenTrust algorithm for reputation management in P2P systems. J. King Saud Univ.
Comput. Inf. Sci. 2015, 27, 315–322. [CrossRef]

18. Song, S.; Hwang, K.; Zhou, R.; Kwok, Y.-K. Trusted P2P Transactions with Fuzzy Reputation Aggregation. IEEE Internet Comput.
2005, 9, 24–34. [CrossRef]

19. Zhou, R.; Hwang, K. PowerTrust: A Robust and Scalable Reputation System for Trusted Peer-to-Peer Computing. IEEE Trans.
Parallel Distrib. Syst. 2007, 18, 460–473. [CrossRef]

20. Chuang, Y.-T.; Li, F.-W. TCR: A trustworthy and churn-resilient academic distribution and retrieval system in P2P networks.
J. Supercomput. 2020, 76, 7107–7139. [CrossRef]

21. Meng, X.; Zhang, G. TrueTrust: A feedback-based trust management model without filtering feedbacks in P2P networks.
Peer-to-Peer Netw. Appl. 2020, 13, 175–189. [CrossRef]

22. Singh, S.K.; Kumar, C.; Nath, P. Local Contribution (LC) and Trustworthiness Factors to Induce Fairness in P2P Networks.
Wirel. Pers. Commun. 2019, 107, 303–323. [CrossRef]

23. Gupta, R.; Singh, Y.N.; Goswami, A. Trust estimation in peer-to-peer network using BLUE. Peer-to-Peer Netw. Appl. 2021, 14,
888–897. [CrossRef]

24. Awasthi, S.K.; Singh, Y. AbsoluteTrust: Algorithm for Aggregation of Trust in Peer-to-Peer Networks. arXiv 2020, arXiv:1601.01419.
[CrossRef]

25. Alkharji, S.; Kurdi, H.; Altamimi, R.; Aloboud, E. AuthenticPeer++: A Trust Management System for P2P Networks. In Proceed-
ings of the 2017 European Modelling Symposium (EMS), Manchester, UK, 20–21 November 2017; pp. 191–196. [CrossRef]

26. Selçuk, A.A.; Uzun, E.; Pariente, M.R. A reputation-based trust management system for p2p networks. In Proceedings of the
IEEE International Symposium on Cluster Computing and the Grid, 2004. CCGrid 2004, Chicago, IL, USA, 19–22 April 2004;
pp. 251–258. [CrossRef]

27. Liu, J.; Issarny, V. Enhanced Reputation Mechanism for Mobile Ad Hoc Networks. In Trust Management; Jensen, C., Poslad, S.,
Dimitrakos, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2995.

28. Gurtov, A.; Koskela, J.; Korzun, D. Cyclic ranking in single-resource peer-to-peer exchange. Peer-to-Peer Netw. Appl. 2018, 11,
632–643. [CrossRef]

29. Zikratov, I.A.; Lebedev, I.; Gurtov, A. Trust and Reputation Mechanisms for Multi-agent Robotic Systems. In Progress in Artificial
Intelligence and Pattern Recognition; Springer Science and Business Media LLC: Cham, Switzerland, 2014; Volume 8638, pp. 106–120.

30. Bertino, E.; Ferrari, E.; Squicciarini, A.C. Trust-X: A Peer-to-Peer Framework for Trust Establishment. IEEE Trans. Knowl. Data Eng.
2004, 16, 827–842. [CrossRef]

31. Selvaraj, C.; Anand, S. Peer profile based trust model for P2P systems using genetic algorithm. Peer-to-Peer Netw. Appl. 2011, 5,
92–103. [CrossRef]

32. Xu, X. A Trust-based Immune Strategy for File Pollution in P2P Networks. Int. J. Secur. Its Appl. 2015, 9, 271–280. [CrossRef]
33. Li, J.-Q.; Pan, Q.-K.; Xie, S.-X. Research on Peer Selection in Peer-to-Peer Networks using Ant Colony Optimization. In Proceedings

of the 2008 Fourth International Conference on Natural Computation, Washington, DC, USA, 18–20 October 2008; Volume 7,
pp. 516–520.

34. Blum, C. Ant colony optimization: Introduction and recent trends. Phys. Life Rev. 2005, 2, 353–373. [CrossRef]
35. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: Oxford,

UK, 1999.
36. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Inspiration for optimization from social insect behaviour. Nature 2000, 406, 39–42.

[CrossRef] [PubMed]
37. Deneubourg, J.-L.; Aron, S.; Goss, S.; Pasteels, J.M. The self-organizing exploratory pattern of the argentine ant. J. Insect Behav.

1990, 3, 159–168. [CrossRef]
38. Dorigo, M.; Bonabeau, E.; Theraulaz, G. Ant algorithms and stigmergy. Future Gener. Comput. Syst. 2000, 16, 851–871. [CrossRef]
39. Sun, E.C. Progressive organization of co-operating colonies/collections of ants/agents (POOCA) for competent phero-mone-

based navigation and multi-agent learning. In Ant Colonies: Behavior in Insects and Computer Applications; Sun, E.C., Ed.; Nova
Science Publisher: New York, NY, USA, 2011; pp. 5–7.

40. Fan, X.; Liu, L.; Li, M.; Su, Z. EigenTrustp++: Attack resilient trust management. In Proceedings of the 8th International
Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), Pittsburgh, PA, USA,
14–17 October 2012; pp. 416–425.

41. Kurdi, H.; Alshayban, B.; Altoaimy, L.; Alsalamah, S. TrustyFeer: A Subjective Logic Trust Model for Smart City Peer-to-Peer
Federated Clouds. Wirel. Commun. Mob. Comput. 2018, 2018, 1073216. [CrossRef]

42. Rohr, D.; Kalcher, S.; Bach, M.; Alaqeeli, A.; Alzaid, H.; Eschweiler, D.; Lindenstruth, V.; Sakhar, A.; Alharthi, A.;
Almubarak, A.; et al. An energy-efficient multi-GPU supercomputer. In Proceedings of the 16th IEEE International Con-
ference on High Per-formance Computing and Communications, Paris, France, 20–22 August 2014; pp. 42–45.

43. Kacst High Performance Computing. Available online: https://hpc.kacst.edu.sa (accessed on 17 September 2021).

http://doi.org/10.1016/j.jksuci.2014.10.002
http://doi.org/10.1109/MIC.2005.136
http://doi.org/10.1109/TPDS.2007.1021
http://doi.org/10.1007/s11227-020-03146-9
http://doi.org/10.1007/s12083-019-00742-2
http://doi.org/10.1007/s11277-019-06256-7
http://doi.org/10.1007/s12083-020-01049-3
http://doi.org/10.1109/TDSC.2020.2977641
http://doi.org/10.1109/ems.2017.41
http://doi.org/10.1109/ccgrid.2004.1336575
http://doi.org/10.1007/s12083-017-0578-0
http://doi.org/10.1109/TKDE.2004.1318565
http://doi.org/10.1007/s12083-011-0111-9
http://doi.org/10.14257/ijsia.2015.9.11.25
http://doi.org/10.1016/j.plrev.2005.10.001
http://doi.org/10.1038/35017500
http://www.ncbi.nlm.nih.gov/pubmed/10894532
http://doi.org/10.1007/BF01417909
http://doi.org/10.1016/S0167-739X(00)00042-X
http://doi.org/10.1155/2018/1073216
https://hpc.kacst.edu.sa

	Introduction
	Related Work
	Algorithm Design
	Ant Inspiration
	AntTrust System Architecture
	Definitions
	How AntTrust Works
	AntTrust Algorithm
	File Provider Selection Algorithm

	Evaluation Framework
	Results and Discussions
	Success Rate
	Execution Time

	Conclusions
	References

