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Abstract

Motivation: The construction of the compacted de Bruijn graph from collections of reference genomes is a task of
increasing interest in genomic analyses. These graphs are increasingly used as sequence indices for short- and
long-read alignment. Also, as we sequence and assemble a greater diversity of genomes, the colored compacted de
Bruijn graph is being used more and more as the basis for efficient methods to perform comparative genomic analy-
ses on these genomes. Therefore, time- and memory-efficient construction of the graph from reference sequences
is an important problem.

Results: We introduce a new algorithm, implemented in the tool Cuttlefish, to construct the (colored) compacted de
Bruijn graph from a collection of one or more genome references. Cuttlefish introduces a novel approach of model-
ing de Bruijn graph vertices as finite-state automata, and constrains these automata’s state-space to enable tracking
their transitioning states with very low memory usage. Cuttlefish is also fast and highly parallelizable. Experimental
results demonstrate that it scales much better than existing approaches, especially as the number and the scale of
the input references grow. On a typical shared-memory machine, Cuttlefish constructed the graph for 100 human
genomes in under 9 h, using �29 GB of memory. On 11 diverse conifer plant genomes, the compacted graph was
constructed by Cuttlefish in under 9 h, using �84 GB of memory. The only other tool completing these tasks on the
hardware took over 23 h using �126 GB of memory, and over 16 h using �289 GB of memory, respectively.

Availability and implementation: Cuttlefish is implemented in Cþþ14, and is available under an open source license
at https://github.com/COMBINE-lab/cuttlefish.

Contact: rob@cs.umd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the increasing affordability and throughput of sequencing, the
set of whole genome references available for comparative analyses
and indexing has been growing tremendously. Modern sequencing
technologies can generate billions of short-read sequences per-sam-
ple, and with state-of-the-art de novo and reference-guided assembly
algorithms, we now have thousands of mammalian-sized genomes
available. Moreover, we now have successfully assembled genomes
that are an order of magnitude larger than typical mammalian
genomes, with the largest ones among these being the sugar pine
(�31 Gbp) (Stevens et al., 2016) and the Mexican walking fish (�32
Gbp) (Nowoshilow et al., 2018). With modern long-read sequencing
technologies and assembly techniques, the diversity and the com-
pleteness of reference-quality genomes is expected to continue
increasing rapidly. Representation of these reference collections in
compact forms facilitating common genomic analyses is thus of
acute interest and importance, as are efficient algorithms for con-
structing these representations.

To this end, the de Bruijn graph has become an object of central
importance in many genomic analysis tasks. While it was initially
used mostly in the context of genome (and transcriptome) assembly

[EULER (Pevzner et al., 2001), EULER-SR (Chaisson and Pevzner,
2008), Velvet (Zerbino and Birney, 2008; Zerbino et al., 2009),
ALLPATHS (Butler et al., 2008; MacCallum et al., 2009), ABySS
(Simpson et al., 2009), Trans-AByss (Robertson et al., 2010),
SPAdes (Bankevich et al., 2012), Minia (Chikhi and Rizk, 2013),
and SOAPdenovo (Li et al., 2010; Luo et al., 2015)], it has seen
increasing use in comparative genomics [Cortex (Iqbal et al., 2012),
DISCOSNP (Uricaru et al., 2014), Scalpel (Fang et al., 2016), and
BubbZ (Minkin and Medvedev, 2020)], and has also been used in-
creasingly in the context of indexing genomic data, either from raw
sequencing reads [Vari (Muggli et al., 2017), Mantis (Pandey et al.,
2018; Almodaresi et al., 2019), VariMerge (Muggli et al., 2019),
and MetaGraph (Karasikov et al., 2020)] or from assembled refer-
ence sequences [deBGA (Liu et al., 2016), Pufferfish (Almodaresi
et al., 2018), and deSALT (Liu et al., 2019)], or from both [BLight
(Marchet et al., 2019) and Bifrost (Holley and Melsted, 2020)].
These latter applications most frequently make use of the (colored)
compacted de Bruijn graph, a variant of the de Bruijn graph in
which the maximal non-branching paths (also referred to as unitigs)
are condensed into single vertices in the underlying graph structure.
This retains all the information of the original graph, while typically
requiring much less space to store, index and process. The set of
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maximal unitigs for a de Bruijn graph is unique and forms a node
decomposition of the graph (Chikhi et al., 2016). The colored vari-
ant is built over multiple references.

The (colored) compacted de Bruijn graph has become an increas-
ingly useful data structure in computational genomics, for its use in
detecting and representing variation within a population of
genomes, comparing whole genome sequences, as well as, more re-
cently, its accelerated use as a foundational structure to assist with
indexing one or more related biological sequences. Applying de
Bruijn graphs for these whole genome analysis tasks highlights a col-
lection of algorithmic challenges, such as efficient construction of
the graphs [out-of-core (Kundeti et al., 2010), khmer (Pell et al.,
2012), BOSS (Bowe et al., 2012), Minia (Chikhi and Rizk, 2013),
kFM-index (Rødland, 2013), and BFT (Holley et al., 2016)], mem-
ory-efficient representations for the graphs and their construction
[SplitMEM (Marcus et al., 2014), DBGFM (Chikhi et al., 2014),
BWT-based algorithm (Baier et al., 2015), BCALM2 (Chikhi et al.,
2016), TwoPaCo (Minkin et al., 2016), deGSM (Guo et al., 2019),
and Bifrost (Holley and Melsted, 2020)], building space- and time-
efficient indices on these representations [BFT (Holley et al., 2016),
Pufferfish (Almodaresi et al., 2018), and BLight (Marchet et al.,
2019)], and performing read-alignment on the graphs using the indi-
ces [deBGA (Liu et al., 2016), deSALT (Liu et al., 2019), and
PuffAligner (Almodaresi et al., 2020)], to mention a few.

In this work, we tackle the initial step of the pipelines associated
with whole genome and pan-genome analysis tasks based on de
Bruijn graphs: the time- and memory-efficient construction of (col-
ored) compacted de Bruijn graphs. We present a novel algorithm,
implemented in the tool Cuttlefish, for this purpose. It has excellent
scaling behavior and low memory requirements, exhibiting better
performance than state-of-the-art tools for compacting de Bruijn
graphs from reference collections. The algorithm models each dis-
tinct k-mer (i.e. vertex of the de Bruijn graph) of the input reference
collection as a finite-state automaton, and designs a compact hash
table structure to store succinct encodings of the states of the autom-
ata. It characterizes the k-mers that flank maximal unitigs through
an implicit traversal over the original graph—without building it ex-
plicitly—and dynamically transitions the states of the automata with
the local information obtained along the way. The maximal unitigs
are then extracted through another implicit traversal, using the
obtained k-mer characterizations.

We assess the algorithm on both individual genomes, and collec-
tions of genomes with diverse structural characteristics: 7 closely
related humans; 7 related but different apes; 11 related, different
and huge conifer plants; and 100 humans. We compare our tool to
three existing state-of-the-art tools: Bifrost, deGSM and TwoPaCo.
Cuttlefish is competitive with or faster than these tools under vari-
ous settings of k-mer length and thread count, and uses less memory
(often multiple times less) on all but the smallest datasets.

Note that, based on the input to the construction of a de Bruijn
graph being a set of either reference sequences or sequencing reads,
we distinguish the graphs as reference de Bruijn graphs and read de
Bruijn graphs, respectively (De Bruijn graphs may also be con-
structed from k-mer sets directly, which themselves are generated
from sets of references or reads.). The presented Cuttlefish algorithm
works with de Bruijn graphs based on reference sequences, i.e. it
constructs compacted reference de Bruijn graphs.

2 Related work

The amount of short-read sequences produced from samples, like
whole-genome DNA, RNA or metagenomic samples, can be in the
order of billions. Construction of long-enough contiguous sequen-
ces, also referred to as contigs (Staden, 1980), from the sets of reads
is known as the fragment assembly problem, and is a central and
long-standing problem in computational biology. Many short-read
fragment assembly algorithms [BCALM (Chikhi et al., 2014),
BCALM2 (Chikhi et al., 2016), Bruno (Pan et al., 2018), and
deGSM (Guo et al., 2019)] use the de Bruijn graph to represent the
input set of reads, and assemble fragments through graph compac-
tion. More generally, fragment assembly algorithms are typically

present as parts of larger and more complex genome assembly algo-
rithms. In this work, we study the closely related problem of con-
structing and compacting de Bruijn graphs in the whole genome
setting. While the computational requirements for the compacted de
Bruijn graph construction from genome references are typically sub-
stantial compared to the latter phases of sequence analysis (whole-
and pan-genome) tasks, only a few tools have focused on the specific
problem.

SplitMEM (Marcus et al., 2014) exploits topological relation-
ships between suffix trees and compacted de Bruijn graphs. It intro-
duces a construct called suffix skips, which is a generalization of
suffix links and is similar to pointer jumping techniques, to fast navi-
gate suffix trees for identifying MEMs (maximal exact matches),
and then transforms those into vertices and edges of the output
graph. SplitMEM is improved upon by Baier et al. (2015) using two
algorithms: based on a compressed suffix tree, and on the Burrows–
Wheeler Transform (BWT) (Burrows and Wheeler, 1994).

TwoPaCo (Minkin et al., 2016) takes the approach of enumerat-
ing the edges of the original de Bruijn graph, which aids in identify-
ing the junction positions in the genomes, i.e. positions that
correspond to vertices in TwoPaCo’s compacted graph format.
Initially having the entire set of vertices as junction candidates, it
shrinks the candidates set using a Bloom filter (Bloom, 1970), with a
pass over the graph. Since the Bloom filter may contain false positive
junctions, TwoPaCo makes another pass over the graph, this time
keeping a hash table for the reduced set of candidates and thus filter-
ing out the false positives.deGSM (Guo et al., 2019) builds a BWT
of the maximal unitigs without explicitly constructing the unitigs
themselves. It partitions the (kþ2)-mers of the input into a collec-
tion of buckets, and applies parallel external sorting on the buckets.
Then characterizing the k-mers at the ends of the maximal unitigs
using the sorted information, it merges the buckets in a way to pro-
duce the unitigs-BWT.

Bifrost (Holley and Melsted, 2020) initially builds an approxi-
mate de Bruijn graph using blocked Bloom filters. Then for each k-
mer in the input, it extracts the maximal unitig that contains that k-
mer, by extending the k-mer forward (and backward), constructing
the suffix (and prefix) of the unitig. This produces an approximate
compacted de Bruijn graph. Then using a k-mer counting and min-
imizer-based policy, it refines the extracted unitigs by removing the
false positive k-mers present in the compacted graph.

3 Preliminaries

We consider all strings to be over the alphabet R ¼ fA;C;G;Tg.
For some string s, jsj denotes its length. s½i::j� denotes the substring
of s from the i’th to the j’th character, inclusive (with 1-based index-
ing). suf‘ðsÞ and pre‘ðsÞ denote the suffix and the prefix of s with
length ‘, respectively. For two strings, x and y such that suf‘ðxÞ ¼
pre‘ðyÞ, the glue operation � is defined as x�‘y ¼ x � y½‘þ 1::jyj�,
where ð�Þ is the append operation.

A k-mer is a string of length k. For some string x, its reverse com-
plement x is the string obtained by reversing the order of the charac-
ters in x and complementing each character according to the
nucleotide bases’ complementarity. The canonical form x̂ of a string
x is the string x̂ ¼ minðx;xÞ, according to the lexicographic
ordering.

For a set S of strings and an integer k>0, the corresponding de
Bruijn graph is defined as a bidirected graph with: (i) its set of verti-
ces being exactly the set of canonical k-mers from S; and (ii) two ver-
tices u and v being connected with an edge iff there is some ðkþ 1Þ-
mer e in S such that u and v are the canonical forms of the k-mers
prekðeÞ and sufkðeÞ, respectively, i.e. ^prekðeÞ ¼ u and ^sufkðeÞ ¼ v
(This is the bidirected variant of de Bruijn graphs, applicable prac-
tically with the treatment of double-stranded DNA. For a discussion
on the simpler directed variant, see Chikhi et al. (2021). We adopt
an edge-centric definition of the de Bruijn graph where an edge
exists iff there is some corresponding ðkþ 1Þ-mer present in S, as
opposed to the node-centric definition where the edges are implicit
given the vertices, i.e. an edge u! v exists iff sufk�1ðuÞ ¼
prek�1ðvÞ.). A vertex v is said to have exactly two sides, referred to
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as the front side svf and the back side svb. An edge e between two
vertices u and v is incident to exactly one side of u and one side of v.
These incidence sides are determined using the following rule:

1. If prekðeÞ ¼ u, i.e. prekðeÞ is in its canonical form, then e is inci-

dent to the back side sub of u; otherwise it is incident to u’s front

side suf .

2. If sufkðeÞ ¼ v, i.e. sufkðeÞ is in its canonical form, then e is inci-

dent to the front side svf of v; otherwise it is incident to v’s back

side svb.

If u¼ v, then e is said to be a loop. So, an edge e can be defined
as a 4-tuple ðu; su; v; svÞ, with su and sv being the sides of the vertices
u and v, respectively to which e is incident to. The canonical k-mer
x̂ corresponding to a vertex v is referred to as its label, i.e.
labelðvÞ ¼ x̂. An example illustration of a de Bruijn graph is given in
Figure 1a.

A walk is defined as an alternating sequence of vertices and
edges, w ¼ ðv0; e1; v1; . . . ; vm�1; em; vmÞ, such that any two succes-
sive vertices vi�1 and vi in w are connected with the edge ei (through
any side). v0 and vm are called the endpoints, and the vi for 0 < i <
m are called the internal vertices of the walk. w is said to enter vi

using ei, and exit vi using eiþ1. For the endpoints v0 and vm, w does
not have an entering and an exiting edge, respectively. For
0 < i � m, w is said to enter vi through its front side svi f if ei is inci-
dent to svi f . Otherwise, it is said to enter vi through its back side svi b.
For 0 � i < m, the terminology for the exiting side is similarly
defined using the incidence side of eiþ1 to vi.w is said to be input-
consistent if, for each of its internal vertices vi, the sides of vi to
which ei and eiþ1 are incident are different. Intuitively, an input-con-
sistent walk enters and exits a vertex through different sides. We
prove in lemma 1 (see Supplementary Section S2) that the recon-
struction (spelling) of the input strings s 2 S are possible only from
input-consistent walks over G(S, k). Therefore, we are only inter-
ested in such walks, and refer to input-consistent walks whenever
using the term walk onward.

For a vertex vi in w, let its label be li, i.e. li ¼ labelðviÞ. We say
that w sees the spelling si for the vertex vi (for 0 < i � m), such
that si is li if w enters vi from the front, and is li otherwise. s0 is
defined analogously but using the exiting edge e1 for v0. The spelling
of w is defined as s0�k�1s1�k�1 . . .�k�1sm.

A path p ¼ ðv0; e1; v1; . . . ; em; vmÞ is said to be a unitig if jpj ¼ 1,
or in G(S, k):

1. each internal vertex vi has exactly two incident edges, ei and

eiþ1;

2. and v0 has exactly one edge e1 and vm has exactly one edge em in-

cident to the sides respectively through which p exits v0 and

enters vm.

A unitig is said to be maximal if it cannot be extended by a ver-
tex on either side. Figure 1 illustrates examples of walks, paths, their
spellings and maximal unitigs in de Bruijn graphs.

The compacted de Bruijn graph GcðS;kÞ of the graph G(S, k) is
obtained by collapsing each of its maximal unitigs into a single ver-
tex. Figure 1b shows the compacted form GcðS; kÞ of the graph G(S,
k) from Figure 1a. The problem of compacting a de Bruijn graph is
to compute the set of its maximal unitigs.

To ensure that each s 2 S can be expressed as a sequence tiling of
complete maximal unitigs, a unitig needs to be prevented from span-
ning multiple input strings. We effectuate this through using a slight-
ly altered topology of the de Bruijn graph G(S, k). During
construction of GcðS;kÞ, we treat each s 2 S as ð� � s � �Þ, where �
denotes the empty symbol. We refer a vertex v as a sentinel if the
first or the last k-mer x of some input string s 2 S corresponds to v.
In this occurrence of x, at least one side sv of v does not have any in-
cident edge—we refer to these sides as sentinel-sides. Thus, each sen-
tinel-side sv has an incident edge that can be encoded with �. The �-
encoded edge connects sv to a special vertex, say !. All such edges
connect to an arbitrary but fixed side of !. Thus, ! has one side
with 0 incident edges, and another with 2� jSj. Therefore, ! will be
a maximal unitig by itself. Furthermore, for a sentinel v connecting
to some vertex u through its sentinel-side sv, a unitig containing v
cannot extend to u through sv, as sv has multiple incident edges—
restraining unitigs from spanning multiple input strings.

4 Algorithm

4.1 Motivation
Given a set S of strings and an odd integer k>0, a simple naive algo-
rithm to construct the corresponding compacted de Bruijn graph
GcðS; kÞ is to first construct the ordinary de Bruijn graph G(S, k),
and then enumerate all the maximal non-branching paths from G(S,
k). The graph construction can be performed by a linear scan over
each s 2 S storing information along the way in some graph repre-
sentation format, like an adjacency list. Enumeration of the non-
branching paths can be obtained using a linear-time graph traversal
algorithm (Cormen et al., 2009). However, storing the ordinary
graph G(S, k) usually takes an enormous space for large genomes,
and there is no simple way to traverse it without having the entire
graph present in memory. This motivates the design of methods able
to build GcðS; kÞ directly from S without having to construct
G(S, k).

For some s 2 S, it is important to note that by definition of edge-
centric de Bruijn graphs, each ðkþ 1Þ-mer in s is an edge of G(s, k).
Therefore, we can obtain a complete walk traversal w(s) over G(s,
k) through a linear scan over s, without having to build G(s, k) ex-
plicitly. Also, each maximal unitig of the graph is contained as a
subpath in this walk, as proven in lemma 2 (see Supplementary

(a)

(b)

Fig. 1. For G(S, k) in Figure (1a), w1 ¼ ðGAC;ACA;ATG;ATGÞ (edges not listed) is a walk. w1 spells the string GACATG. It is not a path as the vertex ATG is repeated here.

Whereas the walk w2 ¼ ðGAC;ACA;ATGÞ is a path, spelling GACAT. Besides, it is a unitig, and also a maximal one as it cannot be extended on either side while retaining it-

self a unitig. There are four maximal unitigs in the graph (the paths referred with the arrows), with the canonical spellings: CGA, ATGTC, CTAAGA and GAGC. (a) A (bidir-

ected) de Bruijn graph for S ¼ fCGACATGTCTTAG;GCTCTTAGg, with k ¼ 3. The vertices are the canonical k-mers from S, and each edge corresponds to some 4-mer(s)

in S. Each pentagon is a vertex, with the flat and the pointy sides (vertically) denoting its front and back, respectively. For each vertex v, the string inside it is label(v), to be

read in the visual direction from the front to the back. The string below it is labelðvÞ, to be read in the opposite direction. For example, the 4-mers CGAC and GCTC corres-

pond to the edges fCGA, GACg and fAGC, CTCg, respectively. The edge corresponding to the 4-mer CATG is a loop fATG, ATGg. (b) The corresponding compacted de

Bruijn graph, with each maximal unitig in its canonical form
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Section S2). For the set of strings S, the maximal unitigs are similarly
contained in a collection of walks W(S).

Thus, to construct GcðS;kÞ efficiently, one approach is to extract
off the maximal unitigs from these walks W(S), without building
G(S, k). We describe below an asymptotically and practically effi-
cient algorithm that performs this task.

4.2 Flanking vertices of the maximal unitigs
Similar to the TwoPaCo (Minkin et al., 2016) algorithm, our algo-
rithm is based on the observation that there exists a bijection be-
tween the maximal unitigs of G(S, k) and the substrings of the input
strings in S whose terminal k-mers correspond to the endpoints of
the maximal unitigs. We refer to these endpoint vertices as flanking
vertices. This observation reduces the graph compaction problem to
the problem of determining the set of the flanking vertices. Once
each vertex in G(S, k) can be characterized as either flanking or in-
ternal with respect to the maximal unitig containing it, the unitigs
themselves can then be enumerated using a walk over G(S, k), by
identifying subpaths having flanking k-mers at both ends.

Consider a maximal unitig p and one of its endpoints v. Say that
v is connected to p through its side sv in, and its other side is svout. v is
a flanking vertex as it is not possible to extend p through svout while
retaining itself a unitig, due to one of the following cases:

i. there are either multiple edges incident to svout; or

ii. there is exactly one edge ðv; svout;u; suÞ incident to svout, but su

has multiple incident edges (Due to the �-encoded edges for sen-

tinel-sides, it is not possible for any side to have zero incident

edges—except for the special vertex ! (see Section 3).).

For trivial unitigs (i.e. unitigs with exactly one k-mer), extending
the unitig through svout in both the cases violates the second prop-
erty of (non-trivial) unitigs; while for non-trivial unitigs, the first
property is violated in case (i) and the other one is violated in case
(ii).

From this, we can observe that the adjacency information of the
sides of the vertices can be used to determine the flanking vertices.
As per lemma 4 (see Supplementary Section S2), a side of a vertex
can have at most four distinct edges. This being finite, the adjacency
information (including the presence of an �-encoded edge) can be
tracked using some data structure. Through a set of walks over G(S,
k), each encountered edge ðu; su; v; svÞ can be recorded for the sides
su and sv. With another set of walks, the maximal unitigs can then
be extracted as per the flanking vertices, determined using the
obtained adjacency information.

Another approach—adopted in TwoPaCo (Minkin et al.,
2016)—is to have an edge list data structure supporting queries, and
filling it up with the graph edges (i.e. ðkþ 1Þ-mers) with a set of
walks. In another set of walks, the flanking vertices can be charac-
terized using incidence queries (four per side), and the maximal uni-
tigs can be extracted on the fly.

4.3 A deterministic finite-state automaton model for

vertices
In these characterization approaches of the flanking vertices, a
source of redundancy in the information stored is the vertex sides
that have multiple incident edges, or are sentinel-sides. By definition,
these sides belong to the flanking vertices of the maximal unitigs.
So, in a first set of walks over the graph, once a side of a vertex has
been determined to have more than one distinct edge, or to be a sen-
tinel-side, the adjacency information for the side becomes redun-
dant: for our purposes, we do not need to be able to enumerate the
incident edges for this side, or to differentiate between them. Only
the information that this side makes the vertex flanking is sufficient.
Complementarily, another source of redundant information is the
vertex sides observed to have exactly one incident edge (excluding
an �-encoded edge) up-to some point in the walks. For such a side,
keeping track of only that single edge is sufficient, instead of having
options to track more distinct edges: when a different edge is

encountered, or the side is observed to be a sentinel-side, distinguish-
ing between the edges becomes redundant.

Thus, we observe that the only required information to keep per
side of a vertex is:

i. whether it has exactly one distinct edge (excluding the �-encoded

edge), and if so, which edge it is among the four possibilities (as

per lemma 4, see Supplementary Section S2); or

ii. if it has either multiple distinct incident edges, or an �-encoded

edge.

Hence, a side can have one of five different configurations: one
for each possible singleton edge (excluding the � one), and one for
when it has either multiple edges or an �-encoded edge. This implies
that each vertex can be in one of ð5� 5Þ ¼ 25 different configura-
tions. We refer to such a configuration as a state for a vertex.
Figuring out the states of the vertices provides us with enough infor-
mation to extract the maximal unitigs.

To compute the actual state of each vertex v in G(S, k), we treat
v as a deterministic finite-state automaton (DFA). Prior to traversing
G(S, k), no information is available for v—we designate a special
state for such, the unvisited state. Then in response to each incident
edge or sentinel k-mer visited for v, an appropriate state-transition is
made.

Formally, a vertex v in G(S, k) is treated as a DFA
ðQ; R0; d; q0; Q0Þ, where—

States: Q ¼ Q0 [ fq0g is the set of all possible 26 states. The 25
actual states (configurations) of the vertices in G(S, k) can be parti-
tioned into four disjoint classes based on their properties, as in
Figure 2a.

Input symbols: R0 ¼ f ðc1; c2Þ j c1; c2 2 R [ f�g g (where � denotes

the empty symbol, used for sentinel-sides) is the set of input symbols
for the automaton. In the algorithm, we actually make state-transi-
tions not per edge, but per vertex. That is, for some walk
w ¼ ðv0; . . . ; ei; vi; eiþ1; . . . ; vmÞ, we process the vertices vi.
Processing vi means checking the edges ei and eiþ1 simultaneously
and only for vi (excluding the edges’ other endpoints); making state
transitions for vi’s automaton as required (This shrinks the state-
space for the automata. For the subwalk ðei; vi; eiþ1Þ, if the edges ei

and eiþ1 are to be processed independent of each other, then during
each processing, only one side of vi can be seen. This requires each

side to have an unvisited state independently, making the state-space
size ð6� 6Þ ¼ 36. From lemma 1 (see Supplementary Section S2),
the edges ei and eiþ1 are incident to different sides of vi. Processing
them simultaneously for vi thus ensures that both the sides are seen
together, making one state sufficient to denote the unvisited status’
of both the sides together. This reduces the state-space size to
ð5� 5þ 1Þ ¼ 26.). Thus, the two incident edges fei; eiþ1g are being
used as input for the automaton of vi. The edges can be represented
succinctly with a pair of characters (c1, c2) for vi. c1 and c2 encode
the edges incident to vi’s front and back respectively, in the subwalk

ðei; vi; eiþ1Þ (c1 and c2 do not necessarily correspond to ei and eiþ1, in
this order; the order can also be the opposite based on the side of en-
trance of w to vi.).

Transition function: d : Q� R0 ! Q is the function governing
the state-transitions. Figure 2b presents a high-level view of the pos-

sible types of transitions between states of the four classes.
Supplementary Figure S1 illustrates a detailed overview of the transi-
tions defined for the states as per various input symbols.

Initial state:q0 is the initial state for the automaton, which is the
unvisited state.

Accept states: Q0 is the set of the possible 25 different configura-
tions (i.e. states) for the vertices (Formally, this parameter denotes
the set of states reachable from the initial state under certain pat-
terns of the input symbols. As our purpose is not the acceptance of
any specific input patterns, rather just to compute the final state of
each automaton, we define the accept states as the entire set of pos-
sible final states.).
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4.4 The Cuttlefish algorithm
For a set S of input strings, the proposed algorithm, CuttlefishðSÞ,
works briefly as follows. Cuttlefish treats each vertex of the de
Bruijn graph G(S, k) as a DFA—based on the novel modeling
scheme introduced in Section 4.3. First, it enumerates the set K of
vertices of G(S, k), applying a k-mer counting algorithm on S. Then
it builds a compact hash table structure for K—employing a minimal
perfect hash function—to associate the automata to their states (yet
to be determined). Having instantiated a DFA Mv for each vertex
v 2 K, with Mv being in the initial state q0 (i.e. the unvisited state), it
makes an implicit traversal W(S) over G(S, k). For each instance (i.e.
k-mer) x of each vertex v visited along W(S), it makes an appropri-
ate state transition for v’s automaton Mv—using the local informa-
tion obtained for x, i.e. the two incident edges of x in W(S). Having
finished the traversal, the computed final states of the automata cor-
respond to their actual states in the underlying graph G(S, k)—
which had not been built explicitly. Cuttlefish then characterizes the
flanking vertices of the maximal unitigs in another implicit traversal
over G(S, k), using the states information of the automata computed
in the preceding step, and extracts the maximal unitigs on the fly.

Cuttlefish(S)
1 K Extract� Unique� k�mersðSÞ
2 h Construct�Minimal� Perfect�Hash� FunctionðKÞ
3 B Compute� StatesðS;h; jKjÞ
4 for each s 2 S
5 Extract-Maximal-Unitigs(s, h, B)

The major components of the algorithm—an efficient associative
data structure for the automata and their states, computing the ac-
tual states of the automata and extraction of the maximal unitigs
from the input strings are discussed in the next subsections. Finally,
the correctness of the algorithm is proven in theorem 1 in
Supplementary Section S2.

4.5 Hash table structure for the automata
To maintain the (transitioning) states of the automata for the verti-
ces in G(S, k) throughout the algorithm, some associative data struc-
ture for the vertices (i.e. canonical k-mers) and their states is
required. We design a hash table for this purpose, with a (k-mer,
state) key-value pairing. An efficient representation of hash tables
for k-mers is a significant data structure problem in its own right,
and some attempts even relate back to the compacted de Bruijn
graph (Marchet et al., 2019). In solving the subproblem efficiently

for our case, we exploit the fact that the set K of the keys, i.e. canon-
ical k-mers, are static here, and it can be built prior to computing
the states. We build the set K efficiently from the provided set S of
input strings using the KMC3 algorithm (Kokot et al., 2017).
Afterwards, we construct a minimal perfect hash function (MPHF) h
over the set K, employing the BBHash algorithm (Limasset et al.,
2017).

A perfect hash function hp for a set K of keys is an injective func-
tion from K to the set of integers, i.e. for x1; x2 2 K, if x1 6¼ x2, then
hpðx1Þ 6¼ hpðx2Þ. Perfect hash functions guarantee that no hashing
collisions are made for the keys in K. A perfect hash function is min-
imal if it maps K to the set ½0; jKjÞ. Since we do not need to support
lookup of k-mers nonexistent in the input strings, i.e. no alien keys
will be queried, an MPHF works correctly in this case. Also, as an
MPHF produces no collisions, we do not need to store the keys with
the hash table structure for collision resolution—reducing the space
requirement for the structure. Although instead of the keys, we need
to store the function itself with the structure, it takes much less space
than the set of keys. In our setting, the function constructed using
BBHash takes 	3:7 bits/k-mer, irrespective of the k-mer size k.
Whereas storing the keys would take 2k bits/k-mer.

As the hash value h(x) for some key x 2 K is at most ðjKj � 1Þ,
we use a linear array of size jKj, indexed by h(x), to store the state of
the vertices (canonical k-mers) x as the hash table values. We call
this array the buckets table B. So, the hash table structure consists of
two components: an MPHF h, and an array B. For a canonical k-
mer x̂, its associated bucket is in the hðx̂Þ’th index of B—Bhðx̂Þ stores
the state of x̂ throughout the algorithm.

4.6 Computing the states and extracting the maximal

unitigs
For a set S of input strings with n distinct canonical k-mers and an
MPHF h over those k-mers, the algorithm Compute-States(S, h, n)
computes the state of each vertex in G(S, k). Initially, it marks all
the n vertices (i.e. their automata) with the unvisited state, in a buck-
ets table B. Then it makes a collection of walks over G(S, k)—a
walk w ¼ ðv0; . . . ; ei; vi; eiþ1; . . . ; vmÞ for each s 2 S. For each vertex
vi in w(s), i.e. its associated k-mer instance x in s, it examines the
two incident edges of vi in w(s), i.e. ei and eiþ1, making appropriate
state transition of the automaton of vi accordingly. Supplementary
Figure S1 provides a detailed overview of the DFA transition func-
tion d. After the implicit complete traversal over G(S, k), the actual

(a) (b)

Fig. 2. Classes of states of the vertices, and the transition relationships among those. (a) Time taken by each step. (b) Speedup for each step. (a) Four disjoint classes of states of

the vertices, based on the properties of their sides. The pictorial shape of the classes correspond to the actual incidence properties of the vertices. For example, the first class of

states is for vertices that have exactly one edge incident per side: the edges incident to the front and to the back being encoded with the characters X1 and X2, respectively.

There can be ð4� 4Þ ¼ 16 different configurations of this shape, and this class contains those 16 states. Whereas the second class is for vertices that have either an �-edge or >

1 distinct edges incident to the front, and one unique edge incident to the back. Due to four possible configurations with this property, this class contains four states. Note that,

pictorially, a singular incident edge denotes a unique edge, whereas multiple incident edges mean either >1 edge or an �-edge being incident. (b) Possible transition types be-

tween the various classes of the states. For example, consider a state of the class single-in single-out, with the unique edges incident to its front and back being encoded with

the characters X1 and X2, respectively. Now, if the state is provided with the input (Y1, Y2), then based on the four different joint outcomes of the conditionals ðX1 ¼ Y1Þ and

ðX2 ¼ Y2Þ, the following transitions can happen: 1. ðY1 ¼ X1Þ ^ ðY2 ¼ X2Þ: self-transition; 2. ðY1 6¼ X1Þ ^ ðY2 ¼ X2Þ: transition to a state of the class multi-in single-out that

has X2 at the back; 3. ðY1 ¼ X1Þ ^ ðY2 6¼ X2Þ: transition to a state of the class single-in multi-out that has X1 at the front; 4. ðY1 6¼ X1Þ ^ ðY2 6¼ X2Þ: transition to the only state

of the class multi-in multi-out
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states of the vertices (automata) in the graph are computed
correctly.

For an input string s 2 S and the MPHF h, the algorithm
Extract-Maximal-Unitigs(s, h, B) enumerates all the maximal unitigs
present in s, using the states information of the automata present in

the buckets table B. The enumeration is done through another impli-
cit complete traversal over G(S, k). For a walk w ¼
ðv0; e1; v1; . . . ; ei; vi; eiþ1; . . . ; em; vmÞ over G(S, k) spelling s, say w
enters vi through its side si, and the class of the state of vi is ci (see
Fig. 2a for state-classes). Then, vi initiates a maximal unitig traversal

in w if:

1. ci ¼ multi-in multi-out; or

2. si is the front of vi and ci ¼ multi-in single-out; or

3. si is the back of vi and ci ¼ single-in multi-out; or

4. vi�1 terminates a maximal unitig traversal in w.
vi terminates a maximal unitig traversal in w if:

1. ci ¼ multi-in multi-out; or

2. si is the front of vi and ci ¼ single-in multi-out; or

3. si is the back of vi and ci ¼multi-in single-out; or

4. viþ1 initiates a maximal unitig traversal in w.

The last conditions for initiation and termination do not recurse,
i.e. only the first three conditions of the other case are checked for
such a cross-referring condition—avoiding circular-reasoning.

Supplementary Section S1.2 contains the pseudo-codes of the
algorithms Compute-States(S, h, n) and its principal component

Process-k-merðx; s; h;BÞ, and Extract-Maximal-Unitigs(s, h, B).

4.7 Parallelization scheme
The Cuttlefish algorithm is designed to be efficiently parallelizable
on a shared-memory multi-core machine. The first step, i.e. the gen-

eration of the set K of canonical k-mers is parallelized in the KMC3
algorithm (Kokot et al., 2017) itself. The two major steps of it—
splitting the collection of k-mers from the input strings into different

bins and then sorting and compacting the bins—are highly
parallelized.

The next step of constructing the MPHF with the BBHash algo-
rithm (Limasset et al., 2017) is also parallelized by partitioning its

input key set K to multiple threads—distributing subsets of keys
with some threshold size to the threads as soon as it is read off disk.

The next step of computing the states of the vertices is parallel-
ized as follows. For each input string s 2 S, s is partitioned into a
number of uniform sized substrings. Each substring is provided to

an available thread, and each thread is responsible to process the k-
mers having their starting indices in its substring. Although the

threads process disjoint sets of k-mer instances, they query and up-
date the same entry in the hash table structure for identical canonic-
al k-mers. Accessing the MPHF h concurrently from multiple

threads is safe, as the accesses are read-only; whereas accessing a
hash table entry itself, i.e. an entry into the buckets table B, is not,
since all the threads are (read-/write-) accessing the same table B.

We ensure that only a single thread can probe and/or update some
specific entry at any given time through maintaining a sparse collec-

tion of access-locks into B. To ensure low memory usage, we use a
bit-packed table for B. As such, even with access-locks, multiple
threads may access the same underlying memory-word concurrently

while accessing nearby indices. To avoid such data races, we use a
thread-safe bit-packed vector (Marçais, 2020).

The last step of extracting the maximal unitigs is parallelized
similarly, by distributing disjoint substrings of an input string s to

different threads, where each thread is responsible to extract each
maximal unitig that has its starting k-mer (in the walk spelling s) in
its substring. Each maximal unitig is assigned a unique k-mer as its

signature, and unique extraction of a maximal unitig is ensured by
transitioning its signature k-mer to some special “output”-tagged
state of the same state-class when the unitig is extracted first.

4.8 Asymptotics
Given a collection of strings S, let m be the total length of the input
strings, and n be the number of distinct k-mers in the input. Then
the running time of Cuttlefish is loosely bounded by
Oððmþ nÞHðkÞÞ, where H(k) is the expected time to hash a k-mer
by Cuttlefish. Assuming that BBHash takes O(h) time (an expected
constant) to hash a machine word of 64-bits, HðkÞ ¼ Oðdk 32eþhÞ= .
See Supplementary Section S3.1 for a detailed analysis. The depend-
ence of the running time on both the input size (m) and the variation
in the input (expressed through n) is exhibited for an apes dataset in
Supplementary Figures S2a–c. The dependence on k is discussed in
Section 5.4, with benchmarking in Table 3.

The maximum memory usage of Cuttlefish is completely defined
by the space requirement of the hash table structure. In our setting,
the MPHF takes �3:7 bits/k-mer (For further memory savings, this
can be reduced to 3-bits/k-mer, trading off the speed of the hash
function.). Each vertex (canonical k-mer) of G(S, k) can be in one of
26 different states (the state-space size for the DFA is jQj ¼ 26). At
least d log 2ð26Þe ¼ 5 bits are necessary to represent such a state
uniquely. Thus, the buckets table consume 5n bits in total.
Therefore, the maximum memory usage of the algorithm is ð8:7�
nÞ ¼ OðnÞ bits—translating to roughly a byte per distinct k-mer
(The explicit adjacency information based algorithm outlined in
Section 4.2 requires 5-bits per side: one for each possible edge, and a
sentinel marker—making 2�5¼10 bits to be required for each ver-
tex. Thus, the DFA model makes the memory savings 50% for the
hash buckets (10 versus 5 bits), and 36% as a whole (13.7 versus 8.7
bits).). This linear relationship between the memory usage and the
distinct k-mers count is illustrated for a human and an apes dataset
at Supplementary Figures S2b and d. See Supplementary Section
S3.2 for a detailed analysis.

5 Results

We evaluated the performance of Cuttlefish compared to other
state-of-the-art tools for constructing (colored) compacted de Bruijn
graphs from whole genome references. See Supplementary Section
S4.1 for a discussion on the definition of ‘color’ that we adopt here.
We also assessed its scaling properties, and effects of the input struc-
ture on performance. Experiments are performed on a server with
an Intel Xeon CPU (E5-2699 v4) with 44 cores and clocked at
2.20 GHz, 512 GB of memory, and a 3.6 TB Toshiba MG03ACA4
HDD. The runtime and the peak resident memory usage statistics
are obtained using the GNU time command.

5.1 Dataset characteristics
We use a varied collection of datasets to benchmark Cuttlefish in
evaluating its performance on diverse input characteristics. First, we
assess its performance on single input genomes. We use individual
references of (i) a human (Homo sapiens, �3.2 Gbp), (ii) a western
gorilla (Gorilla gorilla, �3 Gbp) and (iii) a sugar pine (Pinus lam-
bertiana, �27.6 Gbp). We also evaluate its performance in building
(colored) compacted de Bruijn graphs, i.e. for collections of referen-
ces as inputs. We use a number of genome collections exhibiting di-
verse structural characteristics: (i) 62 E. coli (Escherichia coli) (�
310 Mbp), a dataset with small bacterial genomes; (ii) 7 Humans
(Homo sapiens) (�21 Gbp), very closely related moderate-sized
mammalian genomes from the same species; (iii) 7 Apes (Hominoid)
(�18 Gbp), related moderate-sized mammalian genomes from the
same order (Primate) and superfamily, but different species; and (iv)
11 Conifers (Pinophyta) (�204 Gbp), related huge plant genomes
from the same order (Pinales), but different species.

The E. coli dataset with 62 strains (available at NCBI) was used
in benchmarking SplitMEM (Marcus et al., 2014). The human data-
set was used in benchmarking a BWT-based algorithm (Baier et al.,
2015) for compacted de Bruijn graph construction, and includes five
different assemblies of the human genome (from the UCSC Genome
Browser), as well as the maternal and paternal haplotype of an indi-
vidual NA12878 (Utah female), from the 1000 Genomes Project.
The ape dataset includes seven available references from the
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orangutan and the chimp genera, a western gorilla, a human and a
bonobo. The conifer dataset consists of nine references belonging to
the pine (Pinaceae) family: from the pine, the spruce and the larch

genera, and a douglas fir; and two references from the redwoods
(Sequoioideae) subfamily. We assembled the ape and the conifer

datasets from the GenBank database (Sayers et al., 2018) of NCBI.
We also assessed Cuttlefish’s performance on compacting a huge

number of closely related genomes. For such, we used the 93 human
references generated using the FIGG genome simulator (Killcoyne
and Sol, 2014), that was used to benchmark TwoPaCo (Minkin

et al., 2016). Coupled with the previous 7 human genomes, this
gives us a dataset of 100 human references (�322 Gbp).

5.2 Benchmarking comparisons
We benchmarked Cuttlefish against three other implementations of

whole genome reference de Bruijn graph compaction algorithms:
Bifrost (Holley and Melsted, 2020), deGSM (Guo et al., 2019) and

TwoPaCo (Minkin et al., 2016). While TwoPaCo, like Cuttlefish, is
specialized to work with reference sequences, Bifrost and deGSM
are also capable of constructing the compacted graph from short-

read sequences as well. We compare against Bifrost and deGSM
using their appropriate settings for construction from references. We

also note that among the tools, only Bifrost constructs the com-
pacted de Bruijn graph without using any intermediate disk space.
See Supplementary Section S4.2 for a discussion on the disk space

usage of the benchmarked tools.
All these tools have multi-threading capability. deGSM has a

max-memory option, and it is set to the best memory-usage obtained
from the other tools. The rest of the tools are run without any mem-

ory restrictions. All the results reported for each tool are produced
with a warm cache. Tables 1 and 2 contain a summary of the com-
parison results. Note that, the benchmark performances include all

the steps of the pipelines to construct the compacted reference de
Bruijn graphs, which for deGSM and Cuttlefish include the k-mer
counting.

We do not compare against compaction algorithms designed for
constructing the compacted de Bruijn graph only for sequencing

data. These tools usually filter k-mers and alter the topology of the
resulting de Bruijn graph based on certain conditions (branch length,

path coverage, etc.), and these filters cannot always be finely tuned.
Thus, even if ideally configured, these approaches will produce (po-
tentially non-trivially) different compacted graphs. More important-

ly, however, methods that explicitly build the compacted de Bruijn
graph from reference sequences can adopt or even center their algo-

rithms around certain optimizations that are not available to meth-
ods building the compacted de Bruijn graph from reads—it therefore
seems most fair not to compare methods that do not explicitly sup-

port the compacted de Bruijn graph construction from references
against methods that explicitly support or are explicitly designed for

this purpose. This is evident when evaluating methods that construct
compacted de Bruijn graphs from reference sequences for other pur-
poses (Minkin and Medvedev, 2020). In such cases, even authors

who have worked on both state-of-the-art construction methods for
compacted reference- (Minkin et al., 2016) and read- (Chikhi et al.,
2016) de Bruijn graphs select the former over the latter.

We verified the correctness of the produced unitigs by designing
a validator, that confirms: (i) the unique existence of each k-mer in

the output unitigs collection [the set of maximal unitigs is unique
and forms a node decomposition of the graph (Chikhi et al., 2016)];

and (ii) the complete spelling-ability of the set of input references by
the unitigs (i.e. each input reference is correctly constructible from
the compacted graph).

A direct correspondence between the outputs of the different
tools is not straightforward. See Supplementary Section S4.3 for a

detailed discussion. The command line configurations for executing
the tools, and the dataset sources are present in Supplementary
Section S5.

5.3 Parallel scalability
To assess the scalability of Cuttlefish across varying number of pro-
cessor-threads, we used the human genome and set k¼31, and exe-
cuted Cuttlefish using 1–32 processor threads. Figures 3a and b
show the scaling performance charts.

Generation of the set of keys (i.e. k-mers) using KMC3 (Kokot
et al., 2017) is very fast for individual references, and the timing is
quite low to begin with—the speedup is almost linear up-to around
eight threads, and then saturates afterwards. The MPHF (minimal
perfect hash function) construction does not scale past 24 threads;
which we perceive as due to limitations involving bottlenecks in
disk-access throughput, and memory access bottlenecks associated
to the increasing cache misses in BBHash (Limasset et al., 2017).
The next two steps: computing the states of the vertices and extract-
ing the maximal unitigs, both scale roughly linearly all the way up-
to 32 threads. For the extraction step, we chose to report each max-
imal unitig, and skipped outputting the edges for the compacted
graph in some GFA format.

5.4 Scaling with k
Next, we assess Cuttlefish’s performance with a range of different k-
values. We use the 7 human genomes dataset for this experiment,
and use 16 threads during construction. Table 3 shows the perform-
ance of each step with varying k-values.

We observe that the k-mer set construction step slows down
with the increasing k, which may be attributable to overhead associ-
ated with the KMC3 algorithm (Kokot et al., 2017) in processing
larger k-mer sizes. Although the count of distinct k-mers grows
slowly with increasing k, the MPHF construction slows down. Since
the MPHF is constructed by iterating over the k-mer set on disk, the
decreased speed in this step is mostly related to disk-access through-
put. The steps involving graph traversals, computing the vertices’
states and extracting the maximal unitigs, are affected little in their
running time by altering the value of k. Outputting the compacted
graph in the GFA2 (and in GFA1) format takes much longer than
outputting only the unitigs for lower values of k, due to structural
properties of the compacted graph (see Supplementary Section S4.4
for a discussion).

The memory usage by Cuttlefish is directly proportional to the
distinct k-mers-count n, which typically increases with k. Thus, the
maximum memory usage also grows with k.

Referring back to Section 4.8, the running time of Cuttlefish is
Oððmþ nÞðdk 32eþhÞÞ= , and its memory usage is Oð8:7� nÞ. Table 3
demonstrates this asymptotic increase in running time with k (also
with effects from n), and the increase in memory usage with n
(which typically grows with k).

5.5 Effects of the input structure
Next, we evaluate the effects of some of the structural characteristics
of the input genomes on the performance of Cuttlefish. Specifically,
we assess the impact of the genome sizes (total reference length, m)
and their structural variations (through distinct k-mers count, n) on
the time and memory consumptions of Cuttlefish. The running time
is Oððmþ nÞHðkÞÞ and the memory usage is Oð8:7� nÞ (see Section
4.8). The input size determines the total number of k-mers to be
processed at the k-mer set construction, vertices’ states computation
and the maximal unitigs extraction steps. The variation in the input
determines the performance of the MPHF construction, and indir-
ectly affects the states computation and the unitigs extraction steps
through their use of the hash table structure. We use the 7 humans
and the 7 apes datasets with k¼31 for such, using 16 processor
threads. References are incrementally added to the input set, and the
performances are measured for each input instance. The benchmarks
include both the steps of building the compacted graph and extract-
ing the maximal unitigs, and are illustrated in Supplementary Figure
S2.

We observe that the running time varies both with the input size
and with the structural variation. For the humans dataset, the dis-
tinct k-mers count does not increase much from one reference to
seven: the increase is just � 5%. This is because the dataset contains
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Table 2 Time- and memory-performance benchmarking for compacting colored de Bruijn graphs (i.e. multiple input references) for k¼ 31,

using 16 threads

Dataset Total genome-length (bp) Distinct k-mers count Bifrost deGSM TwoPaCo Cuttlefish

62 E.coli 310 M 24 M 1 (0.47) 1 (3.34) 1 (0.80) 1 (0.96)

7 Humans 21 G 2.6 B 95 (29.06) 30 (37.94) 62 (6.14) 21 (2.88)

7 Apes 18 G 7.1 B 294 (100.25) 172 (145.23) 59 (28.87) 25 (7.42)

11 Conifers 204 G 82 B — — 981 (288.99) 525 (84.12)

100 Humans 322 G 28 B — — 1395 (126.25) 523 (28.75)

Note: Each cell contains the running time in minutes, and the maximum memory usage in gigabytes, in parentheses. The output step is excluded from executions.

The best value with respect to each metric in each row is highlighted.

The filter-sizes for the TwoPaCo executions are set as described in Table 1. Dashed cells in the Bifrost and the deGSM columns indicate that the experiments were

not performed, as it is anticipated that insufficient memory would be available given their memory usages for smaller datasets (w.r.t. k-mer count).

Table 1. Time- and memory-performance benchmarking for compacting single input reference de Bruijn graphs

Bifrost deGSM TwoPaCo Cuttlefish

Dataset Thread-

count

k Build Output Build Output Build Output Build Output

Human 1 31 04:54:50 (27.23) 15:18 01:54:41 (37.94) 25:06 (9.79) 01:13:19 (4.15) 39:38 (4.50) 32:59 (2.79) 19:23 (2.84)

61 05:16:51 (50.19) 01:49 02:20:57 (84.16) 21:37 (8.77) 01:10:18 (6.02) 12:25 (4.35) 38:21 (3.06) 15:37 (3.08)

8 31 01:33:54 (27.23) 03:59 25:20 (37.94) 05:37 (9.80) 12:57 (5.04) — 05:49 (2.79) 05:13 (2.92)

61 01:20:28 (50.18) 00:40 47:52 (84.16) 03:55 (8.80) 11:28 (5.46) — 07:45 (3.06) 03:20 (3.18)

16 31 01:24:40 (27.24) 03:30 18:19 (37.94) 03:56 (9.80) 06:24 (5.57) — 03:26 (2.79) 02:57 (2.93)

61 01:12:33 (50.18) 00:52 46:34 (84.16) 02:35 (8.80) 07:12 (5.55) — 04:23 (3.06) 01:54 (3.19)

Gorilla 1 31 05:44:10 (28.08) 16:30 01:34:29 (37.94) 24:26 (9.75) 01:00:15 (5.04) 43:25 (4.49) 31:46 (2.74) 17:07 (2.77)

61 05:31:06 (50.13) 02:05 02:11:33 (84.16) 22:03 (8.94) 01:11:29 (5.83) 17:52 (4.30) 38:15 (3.02) 15:59 (3.03)

8 31 02:06:52 (28.08) 03:44 28:52 (37.94) 05:43 (9.76) 13:02 (5.82) — 05:30 (2.74) 04:37 (2.87)

61 01:24:21 (50.13) 00:54 47:45 (84.16) 03:59 (8.98) 10:03 (6.00) — 07:58 (3.02) 02:54 (3.12)

16 31 01:50:26 (28.08) 02:59 20:47 (37.94) 04:07 (9.76) 07:29 (5.52) — 03:13 (2.74) 03:25 (2.87)

61 01:10:06 (50.13) 04:04 38:45 (84.16) 02:40 (8.98) 06:24 (6.09) — 04:29 (3.02) 02:06 (3.14)

Sugar

pine

16 31 22:18:24 (229.17) 01:20:51 09:29:24 (145.23) 01:10:55 (119.18) 01:49:01 (61.93) — 51:30 (14.24) 01:56:52

(14.28)

61 X (364.25) — X (166.54) — 01:26:39 (64.86) — 03:14:44 (20.88) 01:26:26

(20.90)

Note: Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses. The output steps report the com-

pacted graph in the GFA2 format. The best value with respect to each metric in each row is highlighted.

Bifrost builds the compacted graph and outputs it using the same command; we could split the timing of the steps but were unable to tease apart the maximum

memory for the output step. The discrepancy between the memory usage of deGSM and its memory-limit input parameter, �m, is attributable to their initial k-

mer enumeration step—run internally by deGSM using the Jellyfish tool (Marçais and Kingsford, 2011), with parameters set by deGSM—these resources must be

accounted for as the input for the problem is a set of references (from which deGSM first produces a k-mer database, much like Cuttlefish). TwoPaCo takes a loga-

rithmic filter-size parameter f as input, and f is critical to the performance. It uses ð2f =8Þ bytes of memory for a bloom filter in the first-pass, which significantly

affects the memory usage in the second-pass. We used f¼ 35 in both k¼31 and k¼61 for human and gorilla; and f¼ 38 in k¼ 31 and f¼ 39 in k¼61 for sugar

pine. We have set f such that the maximum memory usage is minimized, by first approximating its optimal value, and then trying it with a few of the nearby val-

ues. The best executions found (w.r.t. memory) are reported. Also, the output step of TwoPaCo is single-threaded, and the dashes in their output column indicate

this inapplicability of multi-threading. The cells with X indicate abnormal program terminations—Bifrost ran out of memory (with std::bad_alloc), and deGSM

had a segmentation fault. The peak memory usages until the point of termination are reported.

Fig. 3. Scalability metrics of Cuttlefish for varying number of threads, using k¼ 31 for the human genome
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references from the same species, hence the genomes are very closely
related. Thus, the effect of the distinct k-mers count remains roughly
similar on all the instances of the dataset. The increase in running
time is almost completely dominated by the total workload, i.e. the
total size of the genomes. For the apes dataset, however, the
genomes are not from the same species, and the variations in the
genomes contribute to increasing the distinct k-mers count to
�294% from one reference to seven. Thus, the running time on this
dataset increases with the total genome size, with additional non-
trivial effects from the varying k-mers count.

On the other hand, the memory usage by the algorithm is com-
pletely determined by the distinct k-mers count, with no effect from
the input size. As described in Section 4.8, the memory usage of the
algorithm is constant per distinct k-mer, taking �8.7 bits/k-mer.
Supplementary Figures 2b and d conform to the theory—the shapes
of the memory consumption and the distinct k-mers count plots are
identical.

6 Conclusion

We present a highly scalable and very low-memory algorithm,
Cuttlefish, to construct the (colored) compacted de Bruijn graph for
collections of whole genome references. It models each vertex of the
original graph as a deterministic finite-state automaton; and without
building the original graph, it correctly determines the state of each
automaton. These states characterize the vertices of the graph that
flank the maximal unitigs (non-branching paths), allowing efficient
extraction of those unitigs. The algorithm is very scalable in terms
of time, and it uses a small and constant number of bits per distinct
k-mer in the dataset.

Besides being efficient for medium and large-scale genomes, e.g.
common mammalian genomes, the algorithm is highly applicable
for huge collections of (very) large genomes. For example, Cuttlefish
constructed the compacted de Bruijn graph for 100 closely related
human genomes of total length �322 Gbp in <9 h, taking just �29
GB of memory. For 11 conifer plants that are from the same taxo-
nomic order, each with very large individual genomes and having a
total genome length of �204 Gbp, Cuttlefish constructed the com-
pacted graph in <9 h, using �84 GB of memory. For these datasets,
the next best method required more than 23 h using �126 GB of
memory, and more than 16 h using �289 GB of memory,
respectively.

The improvement in performance over the state-of-the-art tools
stems from the novel modeling of the graph vertices as deterministic
finite-state automata. The core data structure is a fast hash table,
designed using a minimal perfect hash function to assign k-mers to
indices, and a bit-packed buckets table storing succinct encodings of
the states of the automata. This compact data structure obtains a
memory usage of 8.7 bits/k-mer, leading the algorithm to greatly
outperform existing tools at scale in terms of memory consumption,
while being equally fast if not faster. For scenarios with further
memory savings requirements, the memory usage can be reduced to
8 bits/k-mer, trading off the speed of the hash function.

The algorithm is currently only applicable for whole genome
references. The assumption of the absence of sequencing errors in
these references makes complete walk traversals over the original de
Bruijn graph possible without having the graph at hand. This is not
the case for short-read sequences, and the sequencing errors make
such implicit traversals difficult. A significant line of future research
is to extend Cuttlefish to be applicable on raw sequencing data.

On repositories with large databases containing many genome
references, Cuttlefish can be applied very fast in an on-demand man-
ner, as follows. First, one can build and store a set of hash functions,
each one over some class of related genome references. This consists
of the first two steps of the algorithm and is a one-time procedure,
containing the bottleneck part of the algorithm. Then, whenever
some set of references is to be compacted, the hash function of the
appropriate super-class can be loaded into memory, and the algo-
rithm then executes only the last two steps, which are quite fast and
scalable. This works correctly because the sets of keys that these
hash functions are built upon are supersets of the sets of keys being
used later for the construction. Cuttlefish provides the option to
save and load hash functions, making the scheme feasible.

As the number of sequenced and assembled reference genomes
increases, the (colored) compacted de Bruijn graph will likely con-
tinue to be an important foundational representation for compara-
tive analysis and indexing. To this end, Cuttlefish makes a notable
advancement in the number and scale of the genomes to build com-
pacted de Bruijn graphs upon. The algorithm is fast, highly paralle-
lizable and very memory-frugal; and we provide a comprehensive
analysis, both theoretical and experimental, of its performance. We
believe that the progression will further improve the role of the de
Bruijn graph in comparative genomics, computational pan-genomics
and sequence analysis pipelines; also facilitating novel biological
studies—especially for large-scale genome collections that may not
have been possible earlier.
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