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ABSTRACT

Third generation sequencing (TGS) are highly
promising technologies but the long and noisy reads
from TGS are difficult to align using existing algo-
rithms. Here, we present COSINE, a conceptually new
method designed specifically for aligning long reads
contaminated by a high level of errors. COSINE com-
putes the context similarity of two stretches of nucle-
obases given the similarity over distributions of their
short k-mers (k = 3–4) along the sequences. The re-
sults on simulated and real data show that COSINE
achieves high sensitivity and specificity under a wide
range of read accuracies. When the error rate is high,
COSINE can offer substantial advantages over exist-
ing alignment methods.

INTRODUCTION

The advent of next generation sequencing technologies
(NGS) has revolutionized many areas of biology and
medicine (1–5). NGS technologies can be classified into sec-
ond generation sequencing (SGS) or third generation se-
quencing (TGS) technologies, as summarized in Table 1.
SGS methods measure signals from a colony of identical
copies of the template to reach high signal to noise ratio (6).
Hence they achieve high accuracy (>98%) in base calling
in the early cycles of a synchronized chain growing process,
however, the synchronization deteriorates with each new cy-
cle and this leads to loss of accuracy in the later cycles. As a
result, SGS can only generate short reads of no more than
a few hundred base pairs long. In contrast, TGS methods
measure real time signal from a single DNA template and
the read length is limited only by stochastic events such as
dissociation of the DNA polymerase from the template or
DNA molecule length. Currently, a TGS run typically pro-
duces a set of reads of variable lengths ranging from 500 bp
to ∼70 kb, with median length around 5–15 kb. Although its
throughput (currently up to 106 templates per run) is much
lower than that of SGS (109 reads per run), TGS technolo-
gies are highly scalable and can be expected to achieve very

high throughput eventually. Furthermore, some semicon-
ductor based TGS instruments are portable, require little
input DNA, and have a simple workflow. These are highly
desirable properties for many applications.

Since TGS is based on a single molecule measurement,
it is intrinsically noisy. The base-calls from raw TGS signal
has error rate in the range of 15–35% (7–10). To improve se-
quencing accuracy, the primary strategy is to identify a set
of noisy reads (call a read cluster) covering the same target
sequence (e.g. a particular region of the genome being se-
quenced) and infer a consensus sequence from such reads.
This is illustrated in Figure 1 which has two parts: (a) read
cluster identified by alignment to a reference and (b) read
cluster identified by pairwise alignments. The situations de-
picted in Figures 1A and 1 B arise respectively in sequence
alignment and sequence assembly applications. In Figure 1
A we need to map a noisy long read to a location within a
large reference sequence. The word ‘map’ is used to indicate
that the alignment does not have to be precise as long as
the alignment location on the reference is roughly correct.
Afterwards, detailed alignment can be performed by more
time consuming algorithms based on dynamic programing.
On the other hand, in Figure 1B we need to align two noisy
long reads to each other to determine if they overlap. Note
that in this case the aligner must be able to handle a very
high level of error, as the level of mismatches between two
reads is about two times that between a read and the ref-
erence. In this paper, we propose a new approach for the
mapping task of Figure 1A. Although the proposed method
should also be relevant for assembly task of Figure 1B, we
will treat that topic in a separate paper.

There are many algorithms available to map sequence
reads to a reference, and several of them have been designed
to handle long reads (see paragraph below). These align-
ers are mostly based on the seed-and-extend concept, where
exact matches of k-mers (seeds) between the read and the
reference are first identified, and then more detailed align-
ment is performed around the seed locations in the refer-
ence. The high error rate in TGS reads causes serious diffi-
culty for seed-based methods in alignment to large genomes.
First, k has to be large enough so that the expected num-
ber of exact matches is small. However when the error rate
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Table 1. Summary of characteristics of different next generation sequencing technologies

Name Single molecule Cycling Semi-conductor Read length Generation

Illumina No No No Short 2nd
Ion torrent No No Yes Short 2nd
Pacific biosciences Yes Yes No Long 3rd
Oxford nanopore Yes Yes Yes Long 3rd

Figure 1. Highly accurate consensus sequence is generated from a set of noisy reads covering the same region of the target sequence. (A) Cluster of reads
are generated from aligning reads to the reference. (B) Cluster of reads are generated from pairwise alignments.

is high, the chance for a long k-mer match to be correct
is very small. Here ‘correct’ means that the k-mer in the
read is a faithful, error-free copy of the reference sequence
at the matched position. What is worse, the chance for an
incorrect match increases not only with the error rate but
also with the size of the reference. To illustrate, two popular
seed-based aligners, BLASR and BWA-MEM were used in
high-sensitivity mode to align 10 kb reads simulated from
the human genome. It is seen that when the per-base er-
ror rate in the read increases from 15% to 45%, the per-
centage of missed and incorrectly aligned reads for BLASR
rose from 0.1% to 13.9%, and that for BWA-MEM rose
from 1.2% to 8.7% (Table 3). To realize the full potential
of TGS technology, it is thus important to develop alterna-
tive alignment approaches with performance scaling more
gracefully with increase in error rate and reference genome
size. In this paper, we propose a ‘non-seeding’ approach
that uses the distributions of short k-mers along the se-
quence as an identifiable characteristic between a reference
region and noisy reads sequenced from the same region. In
our approach, content similarity nearness (COSINE), we
compute the number of occurrence of short k-mers (k =
3–4) in spaced windows of several hundred bases long (w
= 100–500) for both target and query sequences. Our hy-
pothesis is that similarity of short k-mer distribution is a
more robust alignment criterion (i.e. less sensitive to base-
call errors) than exact matches of long k-mers. Indeed, our
numerical experiments show that the performance of CO-
SINE remains acceptable for very noisy reads. For human
genome reads with 45% errors, the proportion of reads that

are missed or aligned to a wrong location by COSINE is
1.6%, which is much lower than that of seed-based meth-
ods (13.9% for BLASR and 8.7% for BWA-MEM, Table 3).
Figure 2 illustrates an example of computing k-mer count
vectors and detecting the sequencing position.

Currently common aligners for TGS reads are mainly
based on different variations of seed-and-extend concept.
LAST(11) builds spaced suffix array of the reference se-
quence to find spaced adaptive seeds. In adaptive seed tech-
nique, LAST finds variable length matches instead of fixed-
length seeds depending on the number of occurrences of
each match. It then extends initial hits with gapped align-
ments using X-drop algorithm. BLASR(12) uses suffix ar-
ray or BWT-FM data structure to index the target sequence
and then finds exact matches shorter than the longest
common prefix (LCP) at each read position. BLASR se-
lects top scoring chains of seeds based on the rareness
of seeds to perform sparse dynamic programming (SDP).
High scored SDP alignment paths are then used to restrict
the search region for detailed banded dynamic program-
ming. BWA-MEM (https://arxiv.org/abs/1303.3997) is de-
signed for mapping long sequences to a reference, support-
ing both single-end (SE) and paired-end (PE) reads. It starts
with finding the maximal exact matches at each read posi-
tion and extending optimal chains of seeds using Z-dropoff
banded dynamic programming.

There are also previous works to find sequence similar-
ity between protein or DNA sequences using direct cross-
correlation. For instance, MAFFT(13) transforms protein
sequences to two vectors based on volume and polarity of

https://arxiv.org/abs/1303.3997
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Figure 2. An example illustrating the computation of k-mer count vectors for target and query sequences and comparing their pairwise distance. (A)
Example of a read sequenced from the target region marked in bold. Mutated and deleted bases are labeled with ‘*’ and ‘-’, respectively. Unique k-mers of
length 2 are counted within windows of length w = 10, each starting with offset d = 2 from the previous one. (B) The target k-mer count vectors for each
window starting at position i. (C) The query k-mer count vectors for each window starting at position j. (D, E) Euclidean and cosine distances between
pairs of k-mer count vectors from target and query sequences. The associated vectors have the lowest distance within the expected alignment region of i =
6, 8.

amino-acid residues or in (14,15) DNA sequences are con-
verted to four indicator vectors for each nucleotide acid type
A, T, C and G, or a vector of complex values assigning dis-
tinct 1, –1, i and –i values to each one. Cross-correlation be-
tween these numeric vectors has distinguishably higher val-
ues when homologous regions in two protein sequences or
similar DNA regions are aligned. However these methods
are limited to substitution variations and do not support
frequent insertions and deletions as matched segments are
expected to be aligned at the same offset.

MATERIALS AND METHODS

COSINE similarity score

COSINE finds the content similarity of two sequences at
different aligned offsets, which is a different approach com-
pared to the seeding concept that finds groups of perfect or
near-perfect matches between the two sequences (see Figure
3). COSINE starts with computing the number of occur-
rences of consecutive short k-mers (k = 3 or 4) in windows
of length w along the sequence. For a window starting at
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Figure 3. To determine the sequencing location, COSINE computes the
overall similarity score of the query sequence across the target, instead of
finding clusters of exact matches as in seed-based methods. Each colored
arrow indicates a different matched sequence between the query (gray bar)
and the target sequence (black bar), a notion used in seed-based methods
to determine the sequencing location. Here, the direction of arrow indicates
the strand of matched sequence.

position i in a sequence of length l

Vi = [n0, n1, ..., nq ], 0 ≤ i < l − w + 1

where

q = |�|k, � = {A, T, C, G}
Q = list of k-mers {v j }, 0 ≤ j < q

n j = count(v j ) in a window of length w

The local similarity of two sequences, distinguished by su-
perscripts 1 and 2, at positions i1 and i2 is defined as the
cosine similarity between their k-mer count vectors at posi-
tions i1 and i2, respectively .

Si1i2 = V1
i1 · V2

i2

‖V1
i1‖2‖V2

i2‖2
(1)

Here, sequence 1 may represent the query sequence while
sequence 2 represents the reference. The overall similarity
score between the two sequences of length l1 and l2, aligned
at offset m is defined as the average over Si1i2 on sampled po-
sitions. Assuming positions are selected equally apart with
distance d

S[m] = 1
|Im|

∑

(i1,i2)∈Im

Si1i2 (2)

where

Im = {(0, m), (d, m + d), ..., (pd, m + pd)}
l̃. = l. − w + 1

p = min(
l̃1

d
,

l̃2 − m
d

)

In presence of deletions and insertions, two aligned se-
quences at offset m have their error-free segments shifted at
different offsets m̃. Therefore, instead of directly correlating
sequence nucleotide bases at a fixed offset m, the distribu-
tion of short k-mers in a series of windows are compared as
a measure of similarity. Here, the advantage of using cosine
similarity score compared to other metrics, for instance eu-
clidean distance, is its easy implementation and that compu-
tation of S can be done efficiently using fast Fourier trans-
form (FFT) (Supplementary Note S4).

Short k-mer counts performance

COSINE uses distribution of short k-mers within fixed-
length windows to detect similar regions and accordingly
alignment positions. To demonstrate the effectiveness of
this approach, 1000 locations from Escherichia coli genome
are randomly selected and the cosine similarity is com-
puted between k-mer count vectors of non-overlapping win-
dows and between each window and its randomly muted
sequences with average error rates of 15% and 35% (sim-
ilar performance is achieved using euclidean distance. Re-
sults are not shown). Figure 4 presents histograms of co-
sine similarities for w = 100 and k = 3, 4 (See Supplemen-
tary Figure S1 for different window sizes of w = 50, 100,
500 and 1000). This shows that extracted sequences have
higher similarity with their mutated versions than from un-
related locations in the genome, but the difference becomes
less distinguishable for the higher error rate of 35%. Sup-
plementary Figure S2, represents similar results for more
challenging genomes, S. coelicolor genome with 72% GC
content and human genome. Here, we also observe that the
high GC content of S. coelicolor genome, increases the over-
all cosine similarity of unrelated locations, which adversely
affects the separation between the two distributions, espe-
cially with higher error rate of 35%.

To enhance the discriminatory power, COSINE uses se-
ries of spaced windows along the two sequences and com-
putes the similarity score as the average over cosine sim-
ilarities of k-mer count vectors between associated win-
dows from the two sequences. Figure 5 shows the distribu-
tion of COSINE similarity scores for 1000 sequences of 5
kb long selected randomly from E. coli genome. The score
is computed between each sequence and ten other non-
overlapping sequences (in red) and ten simulated sequences
by applying random errors to the original read (in blue).
The error pattern is an equal distribution over substitution,
insertion and deletion error types. The accumulation over
cosine similarities of corresponding k-mer count vectors im-
proves the separation of two distributions especially in the
case of high error rate.

COSINE accuracy mainly depends on the choice of k-
mer size (k), window size (w) and windows shift (d). In gen-
eral, k = 4 has better sensitivity compared to k = 3 in higher
error rate cases. Smaller window shift (d) increases the ac-
curacy but as it is shown in Results section, setting d up
to half the size of window, would not noticeably affect the
alignment performance. For three E. coli, S. coelicolor and
human genomes, Supplementary Figures S3–S8 represent
the above-mentioned results with different window sizes of
w = 50, 100, 500 and 1000 and two different simulated er-
ror patterns (sub:ins:del proportions) of 34:33:33 with equal
insertion and deletion rates and 10:62:28 with about two
times insertion rate compared to deletion, which is typi-
cal for PacBio reads (12,16). Use of large window size (w
= 250–500 bp) increases alignment sensitivity in high indel
rates, especially with unequal proportions but the resulting
alignment locations are of lower resolution. On the other
hand, the choice of short windows (w = 50–100 bp) has
higher alignment sensitivity in presence of higher substitu-
tion errors and equal insertions and deletions error rates. In
general, with only substitution type of error, direct cross-
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Figure 4. Simulated probability distribution of cosine similarity of k-mer count vectors between random positions in E. coli genome and with their mutated
versions. 1000 locations are randomly selected from E. coli genome and the cosine similarity is computed between each position and other non-overlapping
windows (in red) and between each position and its 100 randomly mutated sequences (in blue). Parameter settings are w =100 with error rate = 15%, 35%
(equal sub, del and ins error ratio). (A, B) k = 3. (C, D) k = 4.

correlation between nucleotide-acid types, as introduced in
(17) gives the strongest signal between similar sequences.
However, indels alter the offset between exact matches and
degrade its performance. For comparison, the same afore-
mentioned data is used to generate the two similarity dis-
tributions between unrelated sequences and each sequence
and its noisy versions (see Supplementary Figure S11). The
score in direct cross-correlation approach is the sum of four
cross-correlation values computed between nucleobase in-
dicator vectors of the two sequences (similar to COSINE
setting of k = 1, w = 1, d = 1) at offset zero. This is the
same as finding the match rate of their gapless alignment.
In Supplementary Figure S11A and B, noisy reads are sim-
ulated with only substitution errors and results in Supple-
mentary Figures S11C–F include insertions and deletions,
as well. As expected, in presence of indels, and especially
out of proportion insertions and deletion rates, the original
sequence and its noisy simulated reads become less distin-
guishable compared to sequences from other parts of the
genome.

As third generation sequencing technologies have consis-
tent increase on their average read length; to examine the
effect of read length on the performance of COSINE ap-
proach, above-mentioned analyses are repeated for simu-
lated reads of 5, 10, 15 and 20 kb long from E. coli genome

(Supplementary Figures S9 and S10). Specifically, in the
case of unequal insertion and deletion error rates, increase
of read length has negative effect on the average similarity
score computation (Equation 2), due to the drift in align-
ment offset between matched fragments along the two se-
quences. As discussed in the following subsection on align-
ment procedure, depending on the error profile, longer reads
should be split to shorter fragments to limit the bias in align-
ment offsets.

Alignment procedure

As an example, Figure 6 shows the similarity score for a
simulated noisy read across the whole E. coli genome with
setting k = 3, d = 10, w = 500. The 5 kb read sequence is
extracted from E. coli K12 region 2,720,230–2,725,230 and
simulated with error rates of 15% and 35% where the highest
similarity is detectable close to the sampled position. Offset
position m with a high score S[m] (Equation 2) gives the ap-
proximate start position for locating the read sequence. A
detailed alignment is then derived using local banded dy-
namic programming (BDP) at the detected region.

In the alignment process, COSINE first selects local
peaks as positions with maximum similarity score within
consecutive segments along the target sequence (default:
segment size = read length). Local peaks with compara-
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Figure 5. Simulated probability distribution of average cosine similarity of associated k-mer count vectors between 1000 sequences of 5 kb long, randomly
selected from E. coli genome and with their own simulated noisy versions. The average similarity score is computed between each sequence and 10 other
random non-overlapping sequences (in red) and between each sequence and its 10 randomly mutated sequences (in blue). Parameter settings are d = 10
and w = 100 with error rate = 15%, 35% (equal sub, del and ins error ratio). (A, B) k = 3. (C, D) k = 4.

ble higher similarity scores are marked as significant. The
position pmax with pmax = arg maxp S[p] and S[pmax] ≥
mean(S) + f × std(S) (default: f = 2.0) is considered a sig-
nificant peak compared to the noise level of mapping the
read to unrelated locations (the mean and standard devi-
ation are estimated from randomly sampled score values).
Other local peaks with score not less than g × std(S) from
the maximum score are also considered significant (i.e. S[p]
≥ S[pmax] − g × std(S), default: g = 1.0), limited to a max-
imum number Nmax (default: Nmax = 10). Supplementary
Figures S12 and S13 show the distribution of peak ranks
for correctly mapped reads from aligning simulated reads
to E. coli and human genome (simulated datasets are gen-
erated using PBSIM tool, explained in Results section). For
dataset with average simulated error rate of 15%, the high-
est scored peak (rank = 1) indicates the correct alignment
location for ≥99.9% and ≥98.5% of reads in E. coli and hu-
man genome, respectively. And with average error rate of
35%, ≥99.7% and ≥97.4% of the maximum scored peaks
indicate correct mapping positions, respectively. It is natu-
ral that with higher error rate and larger genome size, simi-
larity score for repeat and homologous regions become less
distinguishable. Therefore, BDP is applied to top candidates
to detect the regions with longer stretches of exact matches.

To better examine the effect of repetitive regions on de-
tecting significant peaks, 5000 reads are simulated from
a human genome segment with low repetitiveness and a
segment with relatively high repetitiveness (Supplementary
Note 3). Supplementary Figures S14 and S15 illustrate the
distribution of peak ranks for 10 kb long and 5 kb long
reads from human genome segments of chr5:0–10 Mb (a
lower repetitive region) and chrX:70–80 Mb (a higher repet-
itive region). As expected, the repeat areas degrade the
alignment performance. With average simulated error rate
of 15%, the highest scored peaks correctly refer to sequenc-
ing location of ≥99.7% and ≥97.4% reads from chr5:0–10
Mb and chrX:70–80 Mb segments, respectively. And with
35% error rate, they correctly determine the alignment lo-
cation for ≥98.9% and ≥94.6% of reads, respectively. How-
ever, with higher error rate of 45% (see Supplementary Fig-
ures S14E–S14F and S15E–S15F), there is a clear drop in
performance in both scenarios, which indicates the domi-
nant effect of high number of errors irrespective of the com-
plexity of genome sequence.

For long noisy reads, the standard banded dynamic pro-
gramming is not efficient as the band length is still O(l)
due to the high error rate (where l = read length). As a re-
sult, COSINE first finds chains of exact matches between
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Figure 6. COSINE similarity score for a 5 kb read extracted from E. coli genome with simulated error rates of 15% and 35% and parameter settings k = 3,
d = 10, w = 500. Error pattern is insertion = 62%, deletion = 28%, substitution = 10% (typical for PacBio reads (12,16)). Figures on the right are centered
at the sequenced position. (A, B) error rate = 15%. (C, D) error rate= 35%.

the read sequence and segments of the target sequence de-
tected as highly similar (t[p − o, p + l + o] where t = target
sequence, p = a significant peak position, l = read length
and o = margin to compensate for the detected peak res-
olution and read length inaccuracy due to indels). It then
computes the optimal path within a banded area along the
longest chain of exact matches (default: band length = 2
× 100). This is a similar approach to SDP step in BLASR.
COSINE computes pairs of k-mers and their locations (k =
8–11 depending on the read length) in the read and selected
fragments of the reference sequence. To generate the list of
maximal exact matches (MEMs) between the read and ref-
erence, all consecutive exact matched k-mers between the
read and a reference segment are merged; then the longest
chain of MEMs is found using dynamic programming. The
condition to chain two MEMs is if the difference between
the distance of the two in the read and reference is within
an acceptable range considering the indel rate. The refer-
ence segment with the longest chain of MEMs is selected
for the BDP step. Lastly, COSINE reports the alignment if
its BDP score is higher than the minimum score threshold
(default: 100).

The case of very long reads requires special treatment,
specifically when the rates of insertion and deletion are dif-
ferent (for instance, PacBio reads have higher rate of inser-

tion than deletion error). In such cases, absolute value of
#insertions – #deletions becomes comparable to the win-
dow size as the window moves toward the end of the read
(see Supplementary Figure S15). In order to reduce the bi-
ases caused by the accumulated indel errors, reads longer
than Lt (default: Lt = 5000) are split to fragments of length
Lt and located separately; significant peak positions of dif-
ferent fragments within expected distance range are then
merged back together.

RESULTS

COSINE performance in simulations

Simulation settings. Performance of COSINE is evaluated
using E. coli, S. coelicolor and human simulated datasets
with various accuracy levels of 95%, 90%, 85%, 75%, 65%
and 55%. Reads are simulated using PBSIM (18) (Supple-
mentary Note S1). COSINE (version 1.00) is run with k-
mer sizes of k = 3 and 4 as two sensitivity modes. Reads
are skipped by COSINE if the read length is shorter that
the window size (w), or if no significant peak is detected or
BDP score is less than the minimum threshold. For com-
parison, BLASR (version 1.3.1) is run with -bestn 1 (re-
ports the best alignment) and also with -maxScore (max-
imum score threshold) set to a large positive value 10,000
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to output alignments of lower accuracy. BWA-MEM (ver-
sion 0.7.12) is run with (-x ont2d) and a more sensitive set-
ting (-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0). A BWA-MEM
alignment is accepted only if it has alignment quality score
not <20 (i.e. MAPQ ≥ 20), otherwise the result is counted
as a skipped read. This quality filter is imposed otherwise,
the false alignment rate may become unacceptably high; for
instance, >20% of 5 kb long human reads (with 45% error)
are mapped to incorrect locations by the unfiltered BWA-
MEM. LAST (version 719) is run with recommended set-
tings for ONT reads (-r 1 -a 1 -b 1 -q1) (19). For all meth-
ods, read alignment is marked as correct if the start posi-
tion of primary alignment or in the case of multiple pri-
mary alignments, the one with highest alignment score (AS
tag), is within the read length of original simulated loca-
tion (start alignment position is compensated for clipped se-
quences). Simulated reads overlapped with unassembled re-
gions of human genome are excluded in the evaluation. Fi-
nally, each tool is run with multiple configurations to eval-
uate the range of sensitivity and computational efficiency.

Comparing aligners performance. Full reports of CO-
SINE, BLASR, BWA-MEM and LAST in these simula-
tions are presented in Supplementary Tables S1–S4. We
summarize some of the results in Table 2 (for 5 kb reads)
and Table 3 (for 10 kp reads) in order to illustrate the per-
formance of COSINE relative to other methods. With rel-
atively high quality long reads (accuracy levels of 95% and
90%), all tools can achive high alignment rates with recom-
mended settings. As a result, Tables 2 and 3 represent results
for each tool from three accuracy levels of 85%, 65% and
55% and from two sensitivity modes, with rows containing
results from the high sensitivity mode listed immediately be-
low those from the default or lower sensitivity mode. In the
case of a small reference genome (E. coli), it is seen from Ta-
bles 2 and 3 that there is little difference between COSINE
(k = 4) and two of its competitors: BWA-MEM (high sensi-
tivity) and LAST. For both read sizes (5 and 10 kb) and all
three noise levels (15%, 35%, 45%), each of them achieves
>99% mapping accuracy (i.e. <1% skipped or incorrectly
mapped reads relative to the total number of reads in the
relevant simulation). While COSINE (k = 3) suffers a slight
loss of sensitivity, it runs 2–4× faster than COSINE (k =
4). Compared to the other methods, BLASR performs rel-
atively poorly (>5% skipped or incorrectly mapped), and
perplexingly, its performance becomes worse as the read
length increases.

In the case of more challenging S. coelicolor genome
with high GC content (72%), all aligners have slightly lower
alignment sensitivity compared to E. coli genome. For in-
stance, with reads of 10 kb long from E. coli genome, CO-
SINE, BWA-MEM and LAST can achieve 100% correct
alignment rate, while in S. coelicolor genome, there is a
performance drop with lower quality reads (accuracy level
55%). Regarding the high error rate of 45%, LAST (with
setting -r 1 -a 1 -b 1 -q2) and COSINE (with setting k = 4,
w = 500 and d = 50) achieve the best correctly alignment
rates of 96.6% and 96.1%, respectively for 5 kb long reads
and 99.5% and 99.4% for 10 kb reads. Although, for reads
of higher accuracy, all aligners reach mapping rate of >99%
(see Supplementary Tables S1–S4). Furthermore, compar-

ing the mapping accuracy between reads of 5 and 10 kb
long, longer reads achieve higher correctly alignment rate
as they usually extend to unique sequences next to repeti-
tive and complex regions.

In the case of a large reference genome (human), all meth-
ods achieve very high mapping accuracy when the error rate
is low (15%). As the error rate increases, the mapping accu-
racy declines for each method but the decline for COSINE
is by far the slowest. For 5 kb reads at 45% error rate, CO-
SINE (k = 4) maintains a mapping accuracy of 93.8% (2.3%
incorrect, 3.9% skipped) while the other methods suffers ei-
ther very high rates for incorrectly mapped reads (>14%
for both modes of BLASR) or very high rates for skipped
reads (>23% for both modes of BWA-MEM and LAST).
For 10 kb reads at 45%, the performance of all methods
improves but the 98.4% mapping accuracy of COSINE (k
= 4) (0.8% incorrect, 0.8% skipped) is still substantially
better than that of the other methods: 13.9% incorrect for
BLASR (high sensitivity), 0.5% incorrect and 8.2% skipped
for BWA-MEM (high sensitivity), 3.8% incorrect and 6.4%
skipped for LAST (high sensitivity). We note that the per-
formance by COSINE (k = 4) in this case would likely be
good enough to support downstream analysis such as infer-
ring consensus sequence by multiple alignment.

In this section, we have simulated reads with PBSIM de-
fault error pattern of PacBio CLR reads (substitution =
10%, insertion = 60%, deletion = 30%). For comparison, E.
coli reads are also simulated with equal error types propor-
tion of substitution = 34%, insertion = 33% and deletion
= 33% (see Supplementary Table S1). As discussed in sub-
section Short k-mer count performance, unequal insertions
and deletions rates require a choice of larger window sizes
(w = 250–500) to overcome the relative shifts in alignment
offset of matched segments. In contrast, in this case of equal
ratio, even with a smaller window size of w = 100, COSINE
achieves >99.9% correctly alignment rate for reads of aver-
age 55% (and above) accuracy level.

Next, we discuss the computational feasibility of the
methods. Since this does not seems to be an issue for smaller
genomes such as E. coli, we will focus on the human sim-
ulations. When error rate is low (15%), COSINE has sub-
stantially higher computational cost compared to the other
methods. For instance, for 5 kb reads, the clock time for CO-
SINE (k = 4) is ∼50 times of those needed for BWA-MEM
(high sensitivity). However, as the error rate increases, the
computational cost increases rapidly for the high sensitiv-
ity modes of the other methods, but not for COSINE. Thus
for 5 kb reads at 45% error, the computational cost for CO-
SINE (k = 4) is much more comparable to that of BWA-
MEM (high sensitivity): its clock time is 3 times higher. Fur-
thermore, the clock time for BWA-MEM (high sensitivity)
increases by 60% when the read length increases from 5 to
10 kbp, while the clock time for COSINE (k = 4) remains
unchanged. Further examination of the full results in Sup-
plementary Tables S1–S4 reveals that while the computa-
tional costs of the other three methods vary wildly depend-
ing on the parameter settings, noise level and read length,
there is very little variation for COSINE. The highly pre-
dictable computational requirement for COSINE makes it
easy to plan for distributed computation.
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Table 2. COSINE, BLASR, BWA-MEM and LAST alignment performance on simulated datasets from E. coli and human genome with different error
rates and average read length of 5 kb

Read accuracy
Correctly mapped
reads

Incorrectly mapped
reads Skipped reads Wall clock time CPU max resident size

20× simulated E. coli dataset, average read length of 5 kb
COSINE (k = 3, d = 50, w = 250, f = 1.5)
85% 18456 (1.000) 2 (0.000) 0 (0.000) 00:01:38 0.286G
65% 18619 (1.000) 3 (0.000) 2 (0.000) 00:01:41 0.289G
55% 18320 (0.987) 18 (0.001) 220 (0.012) 00:01:53 0.290G
COSINE (k = 4, d = 50, w = 250)
85% 18454 (1.000) 4 (0.000) 0 (0.000) 00:02:18 0.304G
65% 18617 (1.000) 6 (0.000) 1 (0.000) 00:02:23 0.304G
55% 18536 (0.999) 17 (0.001) 5 (0.000) 00:02:29 0.304G
BLASR (-bestn 1 -maxScore 10000)
85% 18458 (1.000) 0 (0.000) 0 (0.000) 00:01:12 0.528G
65% 18494 (0.993) 130 (0.007) 0 (0.000) 00:01:12 0.511G
55% 17457 (0.941) 1101 (0.059) 0 (0.000) 00:00:59 0.398G
BLASR (-bestn 1 -minMatch 12 -maxLCPLength 13 -maxScore 10000)
85% 18458 (1.000) 0 (0.000) 0 (0.000) 00:01:25 0.527G
65% 18496 (0.993) 128 (0.007) 0 (0.000) 00:01:16 0.508G
55% 17512 (0.944) 1046 (0.056) 0 (0.000) 00:01:02 0.407G
BWA-MEM (-x ont2d) (MAPQ >= 20)
85% 18432 (0.999) 0 (0.000) 26 (0.001) 00:01:25 0.564G
65% 18556 (0.996) 1 (0.000) 67 (0.004) 00:02:36 0.661G
55% 15884 (0.856) 8 (0.000) 2666 (0.144) 00:01:39 0.618G
BWA-MEM (-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0) (MAPQ >= 20)
85% 18431 (0.999) 1 (0.000) 26 (0.001) 00:01:42 0.561G
65% 18576 (0.997) 0 (0.000) 48 (0.003) 00:03:37 0.779G
55% 18482 (0.996) 3 (0.000) 73 (0.004) 00:06:27 1.616G
LAST (-s 2 -T 0 -a 1 -q 1 -b 1 -r 1)
85% 18458 (1.000) 0 (0.000) 0 (0.000) 00:01:51 0.459G
65% 18621 (1.000) 0 (0.000) 3 (0.000) 00:01:41 0.464G
55% 18418 (0.992) 2 (0.000) 138 (0.007) 00:01:38 0.472G
0.15× simulated human dataset, average read length of 5 kb
COSINE (k = 3, d = 200, w = 500, f = 1.5)
85% 85092 (0.995) 420 (0.005) 2 (0.000) 05:29:27 4.133G
65% 84131 (0.982) 1267 (0.015) 299 (0.003) 04:58:28 4.133G
55% 72155 (0.841) 3017 (0.035) 10601 (0.124) 05:12:53 4.133G
COSINE (k = 4, d = 200, w = 500)
85% 85169 (0.996) 344 (0.004) 1 (0.000) 10:33:43 7.894G
65% 84912 (0.991) 761 (0.009) 24 (0.000) 10:01:56 7.894G
55% 80428 (0.938) 2005 (0.023) 3340 (0.039) 09:55:25 7.895G
BLASR (-bestn 1 -maxScore 10000)
85% 85378 (0.998) 136 (0.002) 0 (0.000) 00:26:04 19.380G
65% 83999 (0.980) 1698 (0.020) 0 (0.000) 00:23:57 17.233G
55% 50871 (0.593) 34902 (0.407) 0 (0.000) 00:23:36 16.258G
BLASR (-bestn 1 -minMatch 12 -maxLCPLength 13 -maxScore 10000)
85% 85393 (0.999) 121 (0.001) 0 (0.000) 02:09:00 20.111G
65% 85093 (0.993) 604 (0.007) 0 (0.000) 01:55:36 17.961G
55% 73386 (0.856) 12387 (0.144) 0 (0.000) 01:49:04 16.933G
BWA-MEM (-x ont2d) (MAPQ >= 20)
85% 84111 (0.984) 37 (0.000) 1366 (0.016) 00:15:40 5.765G
65% 77988 (0.910) 474 (0.006) 7235 (0.084) 00:23:10 5.952G
55% 36106 (0.421) 1209 (0.014) 48458 (0.565) 00:13:25 6.074G
BWA-MEM (-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0) (MAPQ >= 20)
85% 84111 (0.984) 39 (0.000) 1364 (0.016) 00:21:32 5.992G
65% 82073 (0.958) 240 (0.003) 3384 (0.039) 02:45:46 18.695G
55% 65726 (0.766) 275 (0.003) 19772 (0.231) 03:17:49 23.571G
LAST (-s 2 -T 0 -a 1 -q 1 -b 1 -r 1)
85% - - - - -
65% 72419 (0.845) 9108 (0.106) 4170 (0.049) 00:30:44 17.965G
55% 32503 (0.379) 29182 (0.340) 24088 (0.281) 00:17:43 16.235G
LAST (-s 2 -T 0 -a 1 -q 1 -b 1 -r 1 -e 120 -m 100)
85% - - - - -
65% 83211 (0.971) 957 (0.011) 1529 (0.018) 05:54:16 26.331G
55% 59333 (0.692) 5907 (0.069) 20533 (0.239) 16:53:24 18.609G

COSINE similarity score computation is done on GPU (Nvidia Titan X, 12GB DDR5) and the GPU memory usage is not accounted in ‘CPU max
resident size’ column. BLASR results are shown with settings ([ |-minMatch 12 -maxLCPLength 13] -bestn 1 -maxScore 10000 -sa index file -nproc 10),
BWA-MEM with ([-x ont2d |-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0] -t10) and LAST with (lastal [ |-m 100 -e 120 ] -s 2 -T 0 -a 1 -q 1 -b 1 -r 1 -P 10 |last-split
|maf-convert -n sam). COSINE is run with default parameter settings explained in subsection Alignment procedure (unless otherwise noted) and DP step
is run using 10 CPU threads. Blank rows are unsuccessful runs due to exceeding memory limit of 40G.
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Table 3. COSINE, BLASR, BWA-MEM and LAST alignment performance on simulated datasets from E. coli and human genome with different error
rates and average read length of 10 kb

Read accuracy
Correctly mapped
reads

Incorrectly mapped
reads Skipped reads Wall clock time CPU max resident size

20× simulated E. coli dataset, average read length of 10 kb
COSINE (k = 3, d = 50, w = 250, f = 1.5)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:01:31 0.271G
65% 9280 (1.000) 0 (0.000) 0 (0.000) 00:01:33 0.279G
55% 9268 (0.998) 0 (0.000) 16 (0.002) 00:01:48 0.281G
COSINE (k = 4, d = 50, w = 250)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:02:06 0.304G
65% 9280 (1.000) 0 (0.000) 0 (0.000) 00:02:09 0.304G
55% 9284 (1.000) 0 (0.000) 0 (0.000) 00:02:14 0.304G
BLASR (-bestn 1 -maxScore 10000)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:01:51 0.466G
65% 8517 (0.918) 763 (0.082) 0 (0.000) 00:01:49 0.449G
55% 8473 (0.913) 810 (0.087) 1 (0.000) 00:01:28 0.350G
BLASR (-bestn 1 -minMatch 12 -maxLCPLength 13 -maxScore 10000)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:02:24 0.463G
65% 8539 (0.920) 741 (0.080) 0 (0.000) 00:02:01 0.443G
55% 8497 (0.915) 786 (0.085) 1 (0.000) 00:01:39 0.349G
BWA-MEM (-x ont2d) (MAPQ >= 20)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:02:20 0.586G
65% 9280 (1.000) 0 (0.000) 0 (0.000) 00:04:47 0.765G
55% 9084 (0.978) 3 (0.000) 197 (0.021) 00:02:49 0.768G
BWA-MEM (-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0) (MAPQ >= 20)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:02:44 0.589G
65% 9279 (1.000) 1 (0.000) 0 (0.000) 00:06:18 0.920G
55% 9283 (1.000) 1 (0.000) 0 (0.000) 00:11:40 1.625G
LAST (-s 2 -T 0 -a 1 -q 1 -b 1 -r 1)
85% 9274 (1.000) 0 (0.000) 0 (0.000) 00:01:53 0.512G
65% 9280 (1.000) 0 (0.000) 0 (0.000) 00:01:45 0.476G
55% 9283 (1.000) 0 (0.000) 1 (0.000) 00:01:40 0.479G
0.15× simulated human dataset, average read length of 10 kbp
COSINE (k = 3, d = 200, w = 500, f = 1.5)
85% 42712 (0.998) 100 (0.002) 1 (0.000) 05:09:56 4.133G
65% 42712 (0.996) 155 (0.004) 11 (0.000) 04:46:24 4.133G
55% 40462 (0.945) 726 (0.017) 1608 (0.038) 04:41:56 4.133G
COSINE (k = 4, d = 200, w = 500)
85% 42712 (0.998) 100 (0.002) 1 (0.000) 10:28:28 7.894G
65% 42741 (0.997) 135 (0.003) 2 (0.000) 09:50:19 7.894G
55% 42097 (0.984) 339 (0.008) 360 (0.008) 09:47:59 7.894G
BLASR (-bestn 1 -maxScore 10000)
85% 42767 (0.999) 46 (0.001) 0 (0.000) 00:25:41 18.614G
65% 41982 (0.979) 896 (0.021) 0 (0.000) 00:24:06 16.773G
55% 32196 (0.752) 10600 (0.248) 0 (0.000) 00:24:18 15.930G
BLASR (-bestn 1 -minMatch 12 -maxLCPLength 13 -maxScore 10000)
85% 42771 (0.999) 42 (0.001) 0 (0.000) 03:02:56 19.514G
65% 42005 (0.980) 873 (0.020) 0 (0.000) 02:27:51 17.669G
55% 36838 (0.861) 5955 (0.139) 3 (0.000) 02:17:37 16.783G
BWA-MEM (-x ont2d) (MAPQ >= 20)
85% 42280 (0.988) 48 (0.001) 485 (0.011) 00:20:11 5.813G
65% 41438 (0.966) 227 (0.005) 1213 (0.028) 00:32:57 6.184G
55% 27702 (0.647) 624 (0.015) 14470 (0.338) 00:15:44 6.306G
BWA-MEM (-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0) (MAPQ >= 20)
85% 42279 (0.988) 52 (0.001) 482 (0.011) 00:24:49 5.837G
65% 41773 (0.974) 185 (0.004) 920 (0.021) 03:59:17 18.054G
55% 39078 (0.913) 227 (0.005) 3491 (0.082) 05:11:33 25.116G
LAST (-s 2 -T 0 -a 1 -q 1 -b 1 -r 1)
85% Job did not finish successfully in 0:51:43, 50.409G
65% 41554 (0.969) 1067 (0.025) 257 (0.006) 00:33:42 18.405G
55% 26155 (0.611) 12785 (0.299) 3856 (0.090) 00:19:21 16.586G
LAST (-s 2 -T 0 -a 1 -q 1 -b 1 -r 1 -e 120 -m 100)
85% - - - - -
65% 42693 (0.996) 33 (0.001) 152 (0.004) 23:43:59 29.085G
55% 38400 (0.897) 1642 (0.038) 2754 (0.064) 20:56:51 20.211G

COSINE similarity score computation is done on GPU (Nvidia Titan X, 12GB DDR5) and the GPU memory usage is not accounted in ‘CPU max
resident size’ column. BLASR results are shown with settings ([ |-minMatch 12 -maxLCPLength 13] -bestn 1 -maxScore 10000 -sa index file -nproc 10),
BWA-MEM with ([-x ont2d |-k12 -W12 -r10 -A1 -B1 -O1 -E1 -L0] -t10) and LAST with (lastal [ |-m 100 -e 120 ] -s 2 -T 0 -a 1 -q 1 -b 1 -r 1 -P 10 |last-split
|maf-convert -n sam). COSINE is run with default parameter settings explained in subsection Alignment procedure (unless otherwise noted) and DP step
is run using 10 CPU threads. Blank rows are unsuccessful runs due to exceeding memory limit of 40G.
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Table 4. COSINE, BLASR, BWA-MEM and LAST alignment performance on ONT real dataset downloaded from (http://bit.ly/loman006)

Dataset

Correctly
mapped
reads

Incorrectly
mapped
reads

Skipped
reads

Correctly
mapped
bases
(Mbp)

Incorrectly
mapped
bases
(Mbp)

Wall clock
time

CPU max
resident size

MAP006–1 pass COSINE 49289 33 605 451.97M 0.17M 00:26:08 0.687G
BLASR 48048 1869 10 414.55M 0.50M 00:16:40 1.452G
BWA-
MEM

48733 9 1185 437.43M 0.09M 00:11:37 0.868G

LAST 49442 18 467 424.03M 0.15M 00:09:21 0.802G
fail COSINE 9936 132 932 79.42M 0.76M 00:16:40 0.728G

BLASR 8643 2341 16 42.01M 0.97M 00:11:15 0.862G
BWA-
MEM

8869 116 2015 67.36M 0.67M 00:05:20 0.996G

LAST 9937 121 942 71.12M 0.65M 00:04:18 0.720G
MAP006–2 pass COSINE 28220 10 228 256.38M 0.04M 00:14:40 0.685G

BLASR 27136 1306 16 230.16M 0.30M 00:06:27 0.868G
BWA-
MEM

27979 2 477 249.69M 0.01M 00:06:31 0.791G

LAST 28259 8 191 242.30M 0.05M 00:05:16 0.765G
fail COSINE 9443 97 772 78.11M 0.53M 00:12:04 0.730G

BLASR 7965 2331 16 37.29M 0.79M 00:13:53 0.682G
BWA-
MEM

8497 76 1739 67.43M 0.45M 00:04:09 0.769G

LAST 9422 81 809 70.35M 0.44M 00:03:12 0.723G
MAP006-
PCR-1

pass COSINE 39917 19 442 255.67M 0.08M 00:15:03 0.684G

BLASR 39579 798 1 239.66M 0.19M 00:04:31 0.942G
BWA-
MEM

39515 3 860 250.02M 0.01M 00:04:48 0.640G

LAST 40143 4 231 246.02M 0.01M 00:05:07 0.624G
fail COSINE 6817 50 726 40.63M 0.13M 00:06:33 0.702G

BLASR 6328 1264 1 22.27M 0.28M 00:01:59 0.439G
BWA-
MEM

5998 34 1561 34.18M 0.10M 00:01:41 0.525G

LAST 6846 35 712 37.00M 0.10M 00:01:46 0.490G
MAP006-
PCR-2

pass COSINE 79159 62 1094 505.02M 0.21M 00:30:33 0.685G

BLASR 77274 3041 0 457.41M 0.60M 00:08:47 1.724G
BWA-
MEM

78213 14 2088 493.31M 0.05M 00:09:58 0.669G

LAST 79269 18 1028 485.32M 0.07M 00:10:55 0.636G
fail COSINE 22842 90 2379 135.72M 0.23M 00:20:00 0.721G

BLASR 19954 5353 4 68.28M 0.93M 00:11:14 1.038G
BWA-
MEM

19822 55 5434 116.04M 0.16M 00:04:57 0.589G

LAST 22214 64 3033 124.67M 0.18M 00:05:00 0.563G

Alignment accuracies are computed based on ‘1D’ reads from ‘known’ dataset. COSINE results are shown with setting (-k 4 –window size 100 –
window shift 10 –min sig score 2. –min dp score 50.), BLASR with setting (-bestn 1 -minMatch 12 -maxLCPLength 13 -nCandidates 10 -maxScore 10000
-nproc 10 -sa index file). BWA-MEM results are shown with setting (-k12 -W20 -r10 -A1 -B1 -O1 -E1 -L0 -t10) and filtering alignments with mapping
quality less than 20 and LAST with setting (lastal -s 2 -T 0 -a 1 -q 1 -b 1 -r 1 -P 10 |last-split |maf-convert -n sam). Full reports on four aligners with multiple
parameter settings are in Supplementary Table S5.

Evaluation on real data

In order to assess the performance of COSINE with real
ONT data, E. coli Oxford Nanopore sequencing data
(R7.3 chemistry, SQR-MAP006 protocol) is downloaded
from (http://bit.ly/loman006). Metrichor software catego-
rizes based-called data to two ‘pass’ and ‘fail’ categories
based on their quality. We used poretools (version 0.5.1)
(20) to generate ‘2D’ and ‘1D’ (template and complement
reads) fasta files from basecalled fast5 data. As the sequenc-
ing location for real data is unknown, we estimated true se-
quencing locations for ‘1D’ reads using the higher quality
‘2D’ reads. ‘2D’ reads are obtained from the consensus se-
quence of both template and complement strands, if avail-
able. We first aligned ‘2D’ reads using all four aligners CO-

SINE, BLASR, BWA-MEM and LAST to the reference.
If all tools aligned the read to the same region, then the
read and its alignment position (average of individual tool
start positions), are added to the ‘known’ dataset. ‘Known’
dataset is the set of ‘2D’ reads that we estimated their se-
quencing location as explained above. ‘1D’ reads that have
their respective ‘2D’ read in the ‘known’ dataset are used
in evaluating tools mapping accuracy (Supplementary Note
S2). The performance evaluation is done on four datasets
from different runs (MAP-006-1, MAP-006-2, MAP-006-
PCR-1, MAP-006-PCR-2) with average read length of �8
and �6 kbps for runs without and with PCR step, respec-
tively (Supplementary Table S8). Supplementary Table S5
report each tool alignment performance with different set-

http://bit.ly/loman006
http://bit.ly/loman006
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tings. Table 4 has the summary of alignment statistics from
all four tools. In general, BLASR (Supplementary Table S5)
had relatively lower mapping accuracy compared to other
tools for noisy ‘1D’ reads and COSINE and LAST have
comparable alignment rate in both ‘pass’ and ‘fail’ cate-
gories. Overall, the comparisons based on real ONT reads
is largely consistent with those from simulated E. coli data
sets. Finally, we note that as COSINE is currently designed
as a global aligner which evaluates the similarity of the
whole read fragment against the target, it is expected to miss
partially mappable and short sequences. In this regard, run-
ning COSINE with Lt = 3000 (instead of default 5000) in-
creases its correct alignment ∼2% for noisy ‘1D’ reads in
‘fail’ categories. This is due to the computation of similar-
ity scores over shorter fragments of the read which reduces
the noise from unmappable segments (Supplementary Table
S5).

Cluster setup

All runs with BLASR, BWA-MEM and LAST are done
with 10 CPU threads and 40G allocated memory on In-
tel(R) Xeon(R) CPU E5-2660 0 @ 2.20 GHz. COSINE sim-
ilarity score computation is implemented using NVIDIA
cuFFT library. All COSINE runs are on Nvidia Titan X
12GB DDR5 and Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40 GHz. COSINE DP step is run with 10 CPU threads.
The runtime for COSINE similarity score computation,
which mainly relies on GPU, is reported in parentheses in
Supplementary Tables S1, S5 and S6 (see ‘wallclock time’
column).

Alignment runtimes are reported with precomputed ref-
erence index files for all aligners. Indexing step for COISNE
(i.e. computation of FFT blocks of reference sequence) is
≤2 min and ≤5 min for E. coli and human genome, faster
compared to other aligners.

DISCUSSION

Herein, we present a method (COSINE) based on a new ap-
proach of comparing short k-mer distributions to align long
sequences with high variations or errors including inser-
tions and deletions to the target. From analyses presented in
Results section, COSINE is a robust method and has a pre-
dictable computational resource usage for mapping reads
from E. coli genome, S. coelicolor genome with high GC
conect or complex human genome. In the case of repetitive
or high GC/AT content sequences, there is no systematic
limitation found compared to other aligners.

The advantage of COSINE is to maintain a high align-
ment accuracy in a wide range of error rates and genome
sizes with minimal tuning. Currently, TGS reads reach
multi-kbp long but they have relativity lower accuracy.
While other available aligners supporting TGS technologies
have acceptable performance given current reads error pro-
file, ONT reads in low quality category still contain con-
siderable portion of sequencing data (10) which are mostly
not considered in downstream analysis due to its high er-
ror rate. In these cases, COSINE could be used as a stand-
alone aligner or in addition to other mappers to retrieve
skipped reads. Furthermore, high alignment accuracy be-
comes more important in applications such as assembly. In

assembly, mapping error rate is about twice the original raw
reads and high sensitivity and precision in detecting over-
laps among noisy reads is a crucial step in this process. We
intend to further apply this technique in assembly applica-
tions.
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