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Abstract: The recent explosive growth in the number of smart technologies relying on data collected
from sensors and processed with machine learning classifiers made the training data imbalance
problem more visible than ever before. Class-imbalanced sets used to train models of various events of
interest are among the main reasons for a smart technology to work incorrectly or even to completely
fail. This paper presents an attempt to resolve the imbalance problem in sensor sequential (time-
series) data through training data augmentation. An Unrolled Generative Adversarial Networks
(Unrolled GAN)-powered framework is developed and successfully used to balance the training
data of smartphone accelerometer and gyroscope sensors in different contexts of road surface
monitoring. Experiments with other sensor data from an open data collection are also conducted. It is
demonstrated that the proposed approach allows for improving the classification performance in the
case of heavily imbalanced data (the F1 score increased from 0.69 to 0.72, p < 0.01, in the presented
case study). However, the effect is negligible in the case of slightly imbalanced or inadequate training
sets. The latter determines the limitations of this study that would be resolved in future work aimed
at incorporating mechanisms for assessing the training data quality into the proposed framework
and improving its computational efficiency.

Keywords: class-imbalanced data; sensor sequential data; Unrolled GAN

1. Introduction

As modern society increasingly relies on smart technologies, sensors become om-
nipresent and are used to supply the technologies with ever-growing volumes of data.
Many ongoing global initiatives, from Industry 4.0 [1] to IoT and Smart Cities [2], as-
sume collecting data from heterogeneous sensors installed at specific locations that is then
subjected to analysis with machine learning algorithms trained to detect and recognize
various patterns of interest in the data. At the same time, on the very “local” level of
daily life, current and future communication technologies enable an additional layer of
data collection—the so-called “human (activity) data” (body movements, physiological
parameters, etc.) that are typically obtained from wearable devices, such as smartphones,
and used for various purposes [3]. The processing of this data follows the same logic as
in the “non-human” case and usually entails finding and classifying data patterns with
machine learning algorithms as well [4].

Pattern recognition in machine learning relies on pre-collected “training” datasets
which are translated, through learning, to a model that then is used to detect characteristic
patterns of the training sets in newly collected data [5]. The learning process implemented
with a specific algorithm determines the performance quality of the model; however, that
also critically depends on the quality of the pre-collected datasets, i.e., on the representa-
tiveness of the training data. A “good” classification model can only be developed with a
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representative—“large enough and all-inclusive”—training data. Therefore, when building
a model for multiple pattern recognition, a major challenge is to assemble a balanced, in
terms of samples per pattern of interest (i.e., per class), training dataset. The latter is often
difficult to achieve in practice, as many important events, such as, for example, engineering
system failure [6], health ailment [7], and hazardous behavior [8], are relatively rare. Sensor
signal patterns corresponding to such events would naturally be underrepresented in the
data, especially in the case of time-series, resulting in imbalanced training sets. Models
built through the learning process with imbalanced data would most likely perform poorly,
allowing for reliably detecting patterns corresponding to “normal” or “background” but
not rare or less prevalent events. Thus, imbalanced data cause serious problems for the
application of popular machine learning algorithms in smart technologies [9].

The study presented in this paper aims to develop a machine learning framework
that would allow for addressing the imbalanced data problem. This problem could be
resolved, among other possible approaches, either through resampling (i.e., reducing the
number of dominant patterns in the training set) or by increasing the number of marginal
patterns (i.e., data augmentation by, for example, generating synthetic samples for the
underrepresented classes, based on empirical samples available). The presented study
focuses on the latter approach to minimize the time and effort required for collecting
training sets but also to preserve as much as possible the data representativeness. As most
of the sensors used in practice (e.g., for monitoring purposes) produce time-series data [10],
the study’s scope is limited to sensor sequential data streams.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of related work. Section 3 introduces a framework for data augmentation powered by
Unrolled Generative Adversarial Networks (Unrolled GAN) that is the main result of the
presented research. The framework is exemplified in a case study described in Section 4 that
deals with road surface monitoring, which is an important task in realizing the smart city,
smart transportation, and e-government concepts. Then, the proposed approach to data
augmentation is additionally tested in several experiments conducted with various data
from open data collections, as detailed in Section 5. Section 6 discusses the experimental
results obtained and formulates the limitations of the study. Finally, Section 7 concludes
the paper.

The main contributions of the presented study are as follows: (1) A novel data augmen-
tation framework for balancing training sets of sensor time-series data has been developed.
(2) The framework has been extensively tested in experiments with different datasets,
and its limitations have been identified. In addition, the proposed approach has been
successfully used to monitor the road surface conditions based on smartphone sensor data.

2. Background
2.1. Imbalanced Data Classification

A dataset is called imbalanced when the samples it is comprised of are dominated by
majority-type event samples, while minority-type events are underrepresented. Machine
learning models developed on imbalanced data are typically biased toward majority events
and may fail to recognize important events that are rare, sporadic, or irregular, and for that
reason, these are underrepresented in the training set [11]. The problem of imbalanced
training data is currently well recognized, and it attracted significant attention across
multiple research domains [9,12,13].

All existing approaches to addressing training data imbalance that were reported
in the literature can be categorized as data level, algorithmic, or hybrid. In an attempt
to correct the sample balance, a number of data transformation methods, which could
also include some sort of bootstrapping, were developed to modify the training set by
adding and removing data (i.e., oversampling or undersampling specific type of events or
both) [14–16]. It was also found that undersampling can negatively affect the classification
performance [17], while oversampling—i.e., data augmentation—is, in many cases, a
preferable solution that provides for better results. Compared to the data-level methods,
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modifying the learning algorithm so as to ensure even participation of all types of events
(i.e., classes) in the training process (e.g., see [18]) is a more complex approach that typically
requires prior knowledge of data and class distributions. Combining resampling and
algorithm adjustments in a hybrid method (e.g., as in [19]) often allows for achieving a
good classification performance but also for certain flexibility as the same method would
then work reasonably well with different data collections.

2.2. Data Augmentation

A variety of data augmentation methods has been proposed to balance training sets
of time-series data, such as, for instance, up-sampling or time-stretching, down-sampling,
noise addition, rotational distortion, and mirroring [20–24]. To achieve better results,
these signal transformation-focused methods are usually used in combination with a
machine learning system built around an artificial neural network [25,26]. Among network
types and architectures tested, Generative Adversarial Networks (GAN) and their various
modifications have often produced the best results [27,28].

Having been originally developed for image processing [29], GAN typically consist of
two network models (Figure 1): a generator, G, which transforms a random input vector z
into a new synthetic image xg, and a discriminator, D, which is used to train the generator.
The discriminator receives a real (i.e., non-synthetic) x and synthetic xg image, and it
generates an output in the form of a binary decision. The goal set for the discriminator is to
prove that xg is a synthetic image, while the generator tries to produce an xg value that
would “fool” the discriminator.
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Figure 1. GAN basic architecture.

A serious limitation (known as “mode collapse” [30]) of GAN is that the generated
synthetic data may have low variance and, for that reason, may not be suitable for the
inclusion in the training set [31,32]. To reduce the chances of running into the mode collapse
and secure the required diversity in the synthetic samples, a modified network structure
called Unrolled GAN was proposed [33]. The main idea of Unrolled GAN is to let the
generator predict k-steps ahead of the discriminator and update the generator parameters
based on the predictions. The latter is achieved by training the discriminator k steps at
each learning iteration to update the generator parameters. The discriminator updates its
parameters only once, during the first of the k steps.

2.3. Augmentation of Sensor Sequential Datastreams with GAN

The application of GAN to augment training sets was, until recently, limited to image
data. While there were reports on GAN used to augment non-image data [34] and, more
specifically, acoustic data [35,36], such research remains relatively scarce. The authors are
also unaware of work that would aim to address the possible mode collapse in a context
of time-series data augmentation with GAN. However, given the success of Unrolled
GAN in generating high-quality synthetic data, it appears reasonable to expect that this
type of adversarial network would be used to improve the classification performance of a
machine learning system. The next section presents a general framework developed for the
deployment of Unrolled GAN to augment training sets of sensor sequential data streams.
Early results of this study have been reported in [37], where synthetic data generated with
Unrolled GAN were used without any additional processing steps to augment the training
sets described in Section 4.1 of this paper.
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3. Proposed Approach

Figure 2 gives an overview of the proposed framework for data augmentation that
goes through the following steps: training data acquisition, segmentation and sequence
labeling, noise addition, sliding window processing, chunk labeling, chunk rearrangement,
Unrolled GAN training, synthetic chunk generation, and synthetic data cleaning.
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3.1. Data Acquisition, Segmentation, and Labeling

Sensor data are sequentially collected and stored in a time-series format. The sensor
sampling frequency (or sampling rate) determines the number of numerical values recorded
per time unit, and it is set, based on the approximate time of events of interest that are
monitored with the data. To detect complex events, one may need to utilize several
sensors with their sampling processes being synchronized. As raw data are captured in
sequences, data segmentation is required to delineate events of interest when creating
training sets. Event labels are (typically manually) assigned to data segments with the
corresponding patterns.

3.2. Noise Addition

An alternative training set is created from the collected data by adding random noise
to the original numerical values in the sequences as follows:

s′ = s + αs, (1)

where s stands for the data obtained from the sensor, α = random
D

[−t, t], t ∈ (0, 1 ] defines

the noise ratio, D is the distribution of α (uniform by default), and s′ denotes the noised
data. The addition of noise allows for improving the stability of the training process and is
intended to contribute to solving the mode collapse problem [38]. This alternative set is
also segmented and labeled (and, later, combined with the noise-free labeled data, thus
producing a training dataset for the Unrolled GAN).

3.3. Sliding Window Processing and Chunks Labeling

The labeled data are arranged into chunks, using a sliding window with a length of
l samples and strides of m samples. A chunk includes labeled class sequences, and its own
label is determined as:

chunk label =

 argmax
i∈C, i 6=0

(q(classi)), if q(classi) ≥ B;

0 , otherwise.
(2)
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Here, q(classi) gives the number of times sequence label classi appears in the chunk,
C = {0, 1, 2, . . .} defines the set of labels with label class0 reserved for the “background”
events (such as, for example, silence in voice data, recurrent movements in accelerometer
data, etc.) that have the largest representation in the training data. B is a constant, setting
the occurrence threshold for a sequence label to become the chunk label.

3.4. Chunk Rearrangement

Rearranging chunks is required before feeding them to a classifier system (e.g., see [39]).
For the purposes of this study, the labeled sequences are rearranged into two-dimensional
data structures which are processed, using two-dimensional convolutional neural networks.
However, the definition of a chunk as a sequence is preserved at the conceptual level
throughout this paper. For instance, a labeled chunk of 300 sequential values would be
converted to a 12× 25 two-dimensional data structure that would then be used to train
the classifier.

3.5. Unrolled GAN Training and Synthetic Chunk Generation

Figure 3 illustrates the concept of n-step Unrolled GAN. The presented GAN structure
assumes that in each unrolling step, new discriminator parameters θkD are calculated for
the ensuing unrolling process. However, only the first calculated parameters θ1D are used
to update the discriminator. To obtain optimal θkD, the Adam optimizer [40] is deployed
to compute the gradient. The gradient of the last unrolling step is used for updating the
generator parameters.
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case of n = 3, with z denoting a random vector and x standing for the empirical data vector (input), xg representing the
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A specific design of the network architecture is obtained by tuning through increasing
or reducing the capacity (number of layers and kernels) of the discriminator and generator
networks as well as adjusting their learning rates. The tuning objective is to get as close as
possible to the Nash equilibrium state, where the generator would produce new synthetic
data such that it could successfully “fool” the discriminator. Figure 4 explicates the tuning
process that begins with simple networks, which are then gradually expanded. The
generator’s capacity is increased or its learning rate is risen if its loss surges considerably
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at the beginning of learning iterations. Tuning up the discriminator is performed in a
complementary manner, as detailed in Figure 4.
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In the training process, the generator input z is a vector of random values, whereas
the discriminator for its input receives either the output of the generator (i.e., a synthetic
sample) or an empirical sample from the training dataset. Before it is fed to the discrimina-
tor, each two-dimensional chunk of the empirical sample is scaled to [−1, 1]. The training
is performed all over the training data for several iterations. After the training process is
completed, the generator network is used solely to produce synthetic chunks, from which
a synthetic data pool is constructed.

3.6. Synthetic Data Cleaning

Chunks in the synthetic pool need to be cleaned before they would be used to balance
training sets. This is to eliminate low-quality and “ambiguous” (e.g., when the intended
class models overlap) synthetic data. For the cleaning, Phase 1 of the evaluation process
proposed in [41] is implemented. A base classifier is trained with a labeled empirical set
and run to classify all chunks in the synthetic pool. Then, misclassified chunks are removed
from the pool, while the remaining chunks are used for balancing the training sets of
sensor data.

4. Case Study

There is a growing trend of relying on collections of crowdsourced data in designing
and implementing various concepts of smart transportation and smart city [42]. Data
recorded with sensors of wearable devices, such as smartphones, can be used to catego-
rize driving behavior [43,44], detect transportation hazards [45], and assess road surface
characteristics [46,47]. Smartphone accelerometer, gyroscope, and GPS sensors allow for
collecting huge yet typically imbalanced datasets that would be used to train machine
learning classifiers for the smart technologies. Below, an attempt is described to deploy the
data augmentation framework formulated in Section 3 in the context of the road surface
monitoring task.

4.1. Task Formulation and Data

Figure 5 depicts the concept of road surface monitoring, using smartphones. Ac-
celerometer and gyroscope sensor data obtained with smartphones carried on vehicles
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that travel through a road network were analyzed to assess road surface characteristics. It
was found that a classifier pretrained on such sensor data allows for localizing potholes,
major cracks, joints, and manholes but also speed bumps [48,49]. On the other hand, it
was reported that the smartphone sensor-based approach would hardly be used to reliably
detect relatively minor surface defects such as longitudinal cracks [50].
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Figure 5. Road surface monitoring with smartphones.

To explore the practical applicability of the monitoring method outlined above, a case
study was conducted in cooperation with the road maintenance department of the munici-
pal government of Malang, Indonesia (https://dpuprpkp.malangkota.go.id/, accessed on
26 August 2021). Sensor data were gathered with Samsung Galaxy A30 smartphones that
were attached to motorcycles in the landscape position, using handlebars. The motorcycles
were driven repeatedly at a speed in the range of 25 to 50 km/h through specific roads
in the city for a total distance of approximately 10 km, as detailed in Figure 6. The routes
were selected based on the presence of road defects and speed bumps. For segmentation,
sequence labeling, and validation purposes, images of the road surface were recorded
with cameras also attached to the motorcycles. Camera and smartphone timestamps were
synchronized every time before making a trip.

To collect the smartphone sensor data, an Android application was developed and
installed on the smartphones (see Figure 7). The application recorded the accelerometer
and gyroscope data at 50 Hz in each of the three dimensions (sensor data indexed with x,
y, and z), and stored it in the CSV format.

The collected data sequences were segmented and labeled manually by the authors,
based on recorded images of the corresponding routes. After consultations with road
maintenance specialists and taking into account results of the previous studies [48–50],
it was decided to limit the inspection to four road surface conditions with class labels
assigned as follows: “flat road” (Class 0), “pothole” (Class 1), “speed bump” (Class 2), and
“bumpy road” (Class 3).
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A noised (alternative) dataset was created, using the raw data, as specified by Equation (1)
with t = 0.1. The data of this set were segmented and labeled in the same manner as the
noise-free data.

4.2. Sliding Window, Chunk Labeling, and Rearrangement

A sliding window with l = 50 and m = 10 was used. The selected window length
corresponds to the number of samples recorded per one second, as most road surface
events in focus would be sensed within a second when driving at a speed in the specified
time interval. The sliding distance was selected so as to accommodate for cases when a
segment with an event of interest spans over two chunks. All chunks were labeled, as
prescribed by Equation (2) with threshold B set to 20.

The chunks were rearranged into two-dimensional vectors that could be fed to the two-
dimensional input layer of the network system (described in detail in the next subsection).
The x, y, and z values of the accelerometer and gyroscope data were first stored in a
one-dimensional sequence that was then folded into a two-dimensional vector of the
12× 25 size, as illustrated in Figure 8.

With a total of 3179 chunks thus obtained, an empirical data pool was created that
contained 2695 chunks labeled Class 0, 189 chunks labeled Class 1, 96 chunks labeled
Class 2, and 199 chunks labeled Class 3. The pool was split into training (80%) and testing
(20%) sets for the classifier models. As expected, Class 0 events were (naturally) dominant,
and the training data required balancing for Class 1, Class 2, and Class 3 events.

4.3. Unrolled GAN Network Design and Synthetic Chunk Generation

Figures 9 and 10 present final designs of the generator and discriminator networks,
respectively, which resulted from Unrolled GAN tuning performed by the authors. The
learning rates were set at 5× 10−4 for the generator and 1× 10−4 for the discriminator.
These values were determined in the course of the tuning process as well.
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The input of the generator G (see also Figure 3) is a one-dimensional vector of
100 values randomly drawn from the standard normal distribution. The first hidden
layer of the network is fully connected, while the second is a 512× 3× 7 three-dimensional
deconvolution layer. All the subsequent hidden layers are deconvolution layers, and the
output of this network is a two-dimensional 12× 25 vector representing a new synthetic
data chunk. The output layer uses the hyperbolic tangent, tanh(·) as the activation function
(it is expected to have output values in the range of [−1, 1]), while all other layers, except
for the input and output, use the Leaky Rectified Linear Unit function (Leaky ReLU [51])
for activation. All deconvolution layers have a kernel size of 3× 3 and the first two layers
use a stride of 2× 2 before connecting to the next layer.

The discriminator D receives data from the empirical pool but also from the output of
G arranged in a two-dimensional 12× 25 vector. All the hidden layers of the discriminator
network are convolution layers, and the last layer is flattened into a fully connected layer.
The output of D is a binary unit with State 0 to indicate synthetic data, and State 1 indicates
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empirical data inputs. Binary cross-entropy is utilized as the loss function. Each layer,
except for the input and output, uses Leaky ReLU for activation, while the output layer
uses the sigmoid function. All convolution layers have the 3× 3 kernel size, and the first
two layers use a 2× 2 stride before connecting to the next layer.

For each of the Class 1, Class 2, and Class 3 events, the Unrolled GAN were trained
separately, performing 10,000 training iterations with results recorded every 1000 itera-
tions. In all cases, the training process was completed in 10 unrolled steps, as suggested
in [33]. Then, a synthetic data pool was generated with approximately 3000 synthetic
chunks per class after cleaning. For data augmentation, synthetic chunks with the corre-
sponding class label were selected randomly and added to the training data to balance the
underrepresented events (i.e., the events of Class 1, Class 2 and Class 3).

4.4. Base Classifier

A base classifier system was developed for analyzing road surface conditions based
on the sensor data collected with smartphones. This system was also used to examine the
quality of data generated by the Unrolled GAN, to clean the synthetic data, and to assess
the effect of data augmentation on the classifier system performance.

Figure 11 depicts the structure of a deep convolutional neural network (DCNN)
utilized as the base model in the study. The network has four hidden convolution layers
and one fully connected layer. For the activation function, all hidden layers use a rectified
linear unit (ReLU) [52], and the output layer uses the softmax function. Adam is used for
the optimizer, the categorical cross-entropy is used for the loss function, and the initial
learning rate is set at 0.01. The input is a two-dimensional 12× 25 vector, while the output
is the per class-label probability.
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4.5. Evaluation of Data Augmentation with the Unrolled GAN

Figure 12 displays results of evaluating (with the base classifier model) synthetic data
produced by the Unrolled GAN in 1000 training iteration increments. As one can see from
the figure, precision and recall tend to slightly fluctuate over the iterations, and it is not
obvious when the training process should be stopped. On the other hand, recall for Class 2
stays rather low throughout. However, the latter would be expected, given the relatively
small size (77 chunks) of the corresponding training set (manual inspection revealed that
synthetic chunks with this label were frequently misclassified as Class 3 events).

It turned out that monitoring the loss functions of the generator and discriminator
networks provides for better criteria in managing the training process (Figure 13). In
particular, by observing changes in the average and the variance of the generator loss, one
could identify the range of training iterations when the Nash equilibrium was maintained
(also see [53,54]). For instance, the average loss does not increase or increases slowly, and
the loss variance is relatively low within each of three intervals bounded with the red
dashed lines in the graphs. Then, it could be expected that the Unrolled GAN produced
synthetic data of an acceptable quality when operated in this range. Therefore, in the
presented study, synthetic chunks generated after 6000, 4000 and 4000 iterations were used
for training data augmentation of Class 1, Class 2, and Class 3 events, respectively.
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Class 3 events.

Figure 14 presents results of road surface assessment with the base classifier trained
on the data collected with the smartphone sensors. The results obtained for Class 0
(background/flat road) events suggest that the developed classifier would be an adequate
system for the given task. The effect of training data augmentation on the classifier
performance is especially noticeable for Class 1 and Class 2 events. There is also an
improvement for Class 3 events; however, this would still be difficult to detect reliably with
the given system.
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4.6. Exploring Possibilities for Data Crowdsourcing

In reality, there is a huge number of different contexts determined by, among other
factors, sensor and smartphone models used, transportation means, and smartphone
orientation and placement, in which accelerometer and gyroscope sensor data would
be recorded. Taking into account this fact, as well as the relatively poor classification
performance obtained for the Class 3 events, it was decided to extend the case study with
an additional data collection scenario and also to modify the classification task as follows.

A new dataset was collected using Asus Zenfone Max Pro smartphones. Motorcycles
were driven repeatedly through the routes shown in Figure 6. Before each trip, a smart-
phone with the data collection application (Figure 7) installed was put in the driver’s shirt
pocket in the portrait position, with the phone’s screen facing the driver’s body. Cameras,
whose timestamps were synchronized with timestamps of the smartphone sensors, were
also installed on the motorcycles to record visual information. The raw data collected
were preprocessed in the same way as described in Section 4.2, creating an empirical data
pool of 5970 chunks. Then, the data were manually classified into “flat road” (Class A,
3835 chunks), “road anomaly” (Class B, 2041 chunks), and “human body movement”
(Class C, 94 chunks) events. The training and data augmentation processes were conducted
in the same manner as described in Sections 4.4 and 4.5, with the output layer of the base
classifier being suitably adjusted to accommodate for the new classification structure. The
results of this experiment are presented in Figure 15.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 15. Confusion matrices for road anomaly monitoring with the base classifier trained on (a) 
the original (imbalanced) set and (b) the original data augmented with the Unrolled GAN. 

As one can see from the figure, data augmentation with the Unrolled GAN allowed 
for achieving a nearly 70% recognition rate for the “road anomaly” events that are typi-
cally events of interest for road maintenance departments of municipal governments. 
While the change of the data collection context (i.e., smartphone model and placement) 
had, apparently, no major influence on the anomaly detection, the generalization of the 
road condition definitions made the effect of the data augmentation practically more use-
ful than in the case of the Figure 14 experiment. 

5. Experiments with Other Sensor Data from Open Collections 
The general framework for training data augmentation described in Section 3 was 

also tested with various sensor time-series data from the UCR Time Series Classification 
Archive [55]. Table 1 outlines two experiments conducted with relatively small datasets 
from the archive, which were recorded with sensors of different types. Tables 2 and 3 
summarize the experimental results obtained (in the tables, the bold and italic fonts are 
used to highlight changes, increases and decreases, respectively, in the classification per-
formance after data augmentation). As one can see, the selected training sets are heavily 
imbalanced and very small in size compared to the testing sets, which mimics a sensor 
data monitoring context. However, in both cases, training data augmentation with the 
Unrolled GAN led to an increased classification accuracy, as indicated with the corre-
sponding values of F1 score observed. (Note that the data of Table 1 were used as bench-
mark sets, i.e., fixed and complete sets with no random context.). 

Table 1. Data from the UCR time-series classification archive used in the experiments. 

1 

Dataset name SonyAIBORobotSurface1 
Training data size 20 
Testing data size 601 
Time-series length 70 
Training data events Class 0: 6; Class 1: 14 

Description 
x-axis accelerometer data of an Aibo robot walked on two dif-
ferent surfaces (concrete and carpet)  

2 

Dataset Name CinCECGTorso 
Training data size 40 
Testing data size 1380 
Number of classes 4 
Time-series length 1639 
Training data events Class 0: 5; Class 1: 13; Class 2: 12; Class 3: 10 
Description ECG data 

Figure 15. Confusion matrices for road anomaly monitoring with the base classifier trained on
(a) the original (imbalanced) set and (b) the original data augmented with the Unrolled GAN.

As one can see from the figure, data augmentation with the Unrolled GAN allowed
for achieving a nearly 70% recognition rate for the “road anomaly” events that are typically
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events of interest for road maintenance departments of municipal governments. While
the change of the data collection context (i.e., smartphone model and placement) had,
apparently, no major influence on the anomaly detection, the generalization of the road
condition definitions made the effect of the data augmentation practically more useful than
in the case of the Figure 14 experiment.

5. Experiments with Other Sensor Data from Open Collections

The general framework for training data augmentation described in Section 3 was
also tested with various sensor time-series data from the UCR Time Series Classification
Archive [55]. Table 1 outlines two experiments conducted with relatively small datasets
from the archive, which were recorded with sensors of different types. Tables 2 and 3
summarize the experimental results obtained (in the tables, the bold and italic fonts are used
to highlight changes, increases and decreases, respectively, in the classification performance
after data augmentation). As one can see, the selected training sets are heavily imbalanced
and very small in size compared to the testing sets, which mimics a sensor data monitoring
context. However, in both cases, training data augmentation with the Unrolled GAN led
to an increased classification accuracy, as indicated with the corresponding values of F1
score observed. (Note that the data of Table 1 were used as benchmark sets, i.e., fixed and
complete sets with no random context.).

Table 1. Data from the UCR time-series classification archive used in the experiments.

1

Dataset Name SonyAIBORobotSurface1

Training data size 20

Testing data size 601

Time-series length 70

Training data events Class 0: 6; Class 1: 14

Description x-axis accelerometer data of an Aibo robot walked
on two different surfaces (concrete and carpet)

2

Dataset Name CinCECGTorso

Training data size 40

Testing data size 1380

Number of classes 4

Time-series length 1639

Training data events Class 0: 5; Class 1: 13; Class 2: 12; Class 3: 10

Description ECG data

Table 2. The effect of training set augmentation for the SonyAIBORobotSurface1 data.

Imbalanced (Original)
Training Set

Training Set Balanced with
Unrolled GAN

Precision [0.90, 0.57] [0.89, 0.59]

Recall [0.48, 0.93] [0.52, 0.91]

F1 score [0.62, 0.71] [0.66, 0.72]

F1 score (average) 0.66 0.69
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Table 3. The effect of training set augmentation for the CinCECGTorso data (the precision, recall, and
F1-score values are ordered by class).

Imbalanced (Original)
Training Set

Training Set Balanced with
Unrolled GAN

Precision [1.00, 0.98, 0.99, 0.78] [1.00, 1.00, 0.98, 0.82]

Recall [0.72, 0.99, 0.99, 1.00] [0.78, 0.98, 1.00, 1.00]

F1 score [0.83, 0.99, 0.99, 0.88] [0.87, 0.99, 0.99, 0.90]

F1 score (average) 0.92 0.94

To explore how augmenting a relatively large and slightly (as opposed to heavily)
imbalanced data would affect the classification performance, an experiment with the
“FordA” set from the UCR Time Series Classification Archive was conducted (see Table 4).
The data were randomly split into five folds, and the effect of data augmentation was
assessed for each fold. The F1 scores averaged over the classes and folds stay at 0.945 and
0.950 for the imbalanced and balanced data, respectively. The observed difference is not
statistically significant (p = 0.16). Therefore, it can be presumed that the application of the
proposed approach would be hard to justify in the case of large but slightly imbalanced
training sets.

Table 4. Configuration of the k-fold cross-validation experiment with the FordA data from the UCR
Time Series Classification Archive.

Dataset name FordA

Number of classes 2

Time-series length 500

Fold data size Training: Class 0: 2022; Class 1: 1915

Testing: Class 0: 505; Class 1: 479

Number of folds, k 5

Description Engine noise (acoustic data)

6. Discussion
6.1. Comparison with Existing Approaches

Results of the experiments described in Sections 4 and 5 have convincingly demon-
strated that the proposed data augmentation framework allows for improving the classifica-
tion performance of the base classifier system working with sensor sequential data-streams.
Changes in the performance are especially noticeable in the first experiment of the case
study, where the heavily imbalanced yet naturally noisy training data were used (Figure 14).
The perceived difficulty of this classification task makes it interesting to look into how
other related approaches would perform with the data. Figure 16 compares the effects
of balancing the training set (Section 4.2) with three popular time-series data augmenta-
tion methods (noise addition, time stretching, and undersampling; see [19–23]) and the
Unrolled GAN (as proposed in this study) on the classification performance. Since time
stretching and undersampling could not produce enough synthetic data when used alone,
each of these methods was complemented with noise addition in the experiment. In all
evaluation scenarios, the testing data were used identically.
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It is evident from Figure 16b that balancing the training data merely with noise re-
sulted in performance drops for Class 1, Class 2 and Class 3 events. Time stretching plus
noise addition led to an increased performance for Class 1 events but also to performance
drops for Class 2 and Class 3 (Figure 16c). Many chunks with Class 2 events were mis-
classified as Class 3 and those with Class 3 events were misclassified as Class 1 in this
case. Undersampling with noise addition (Figure 16d) could apparently not produce
synthetic data of an acceptable quality, as it only led to a decreased recall for Class 2. On
the other hand, the Unrolled GAN-powered data augmentation resulted in increasing the
classification performance for all but Class 0 (background) events (Figure 16e).
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6.2. The Roles of Synthetic Data Cleaning and Noise Addition

Among problems associated with data augmentation powered by GAN, the inability
of the networks to consistently generate synthetic data of an acceptable quality is frequently
cited [56]. Along with the mode collapse, there are two other major sources of this problem:
non-optimal early stopping of the learning process [57] that would result in the “premature”
generation of low-fidelity synthetic data and, more fundamentally, a low-diversity, unrep-
resentative training sample translated to an overfitting generator model [38]. To assess
the stability of the proposed approach when the distribution of events of interest over the
training and testing sets changes, chunks of the empirical data described in Section 4.2
were reshuffled, producing four additional pairs of training and testing sets. Synthetic data
were generated with the Unrolled GAN trained on the additional sets, and these were used
to augment the corresponding training data fed to the base classifier. The experiment was
repeated with and without data cleaning and noise addition. The trained classifier perfor-
mance was evaluated with the relevant test sets. Figure 17 presents results obtained with
two additional sets (selected for the illustrative purposes and denoted Fold 2 and Fold 3)
in comparison to the performance achieved with the data of the case study (Fold 1). In all
three cases, training data were augmented with the Unrolled GAN but was not subjected
to cleaning and noise addition. As one can see from the figure, the augmented training sets
are consistently associated with better recall for all underrepresented (i.e., Class 1, Class 2,
and Class 3) events but Class 3 of Fold 3. However, at the same time, there are significant
drops in precision that are especially evident in the case of the underrepresented events of
Fold 2.
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By manually inspecting the synthetic data of Fold 2, it was found that there were mul-
tiple instances of prematurely generated chunks. Figure 18 shows examples of successfully
(a) and prematurely (b) formed synthetic chunks of Class 2.
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Figure 19 illustrates the effect of synthetic data cleaning (Section 3.6; the base classifier
was trained on the same data that were used to train the Unrolled GAN) and noised data
addition (Section 3.2, t = 0.1) in the case of Fold 2. As one can infer from the figure,
these two steps allow for obtaining better results for a majority of the classes, if not all.
Furthermore, the observed tendency is quite stable: when evaluated with the data of all five
folds, gains in recall were registered in 13 of the 20 trials (5 folds × 4 classes), and gains in
precision were registered also in 13 trials. The F1 score averaged over the classes and folds
stands at 0.69 for the imbalanced training sets and at 0.72 for the augmented (Unrolled
GAN + cleaning + noised data) sets (p = 0.007). Therefore, it can be said that the proposed
data augmentation framework is robust in respect to variations in the training–testing
data configuration.
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6.3. Limitations and Future Work

While this is a fact that balancing training sets through data augmentation can boost
the classifier system performance, results can vary significantly, depending on the augmen-
tation method used but also on the training data available. No data augmentation method
could help when the training data are incomplete or are too noisy with respect to the events
of interest. For example, the six samples of Class 0 events of the SonyAIBORobotSurface1
dataset were apparently not representative enough to build a reasonably accurate classifier
model even with the balanced data (see Table 2). The same can be said about the Class 3
training set of the first experiment of the case study (Figure 14). Unrolled GAN-powered
data augmentation is quite computation-intensive, but it does not offer mechanisms and
metrics for assessing the training data quality. This, together with the necessity of GAN
manual tuning, is seen as the main limitation of the described approach.

The proposed framework would require modifications to deal with heavily skewed or
fat-tailed distributions of events in training sets. More specifically, distributions D other
than the uniform one would be used to noise the data, along with controlled (non-uniform)
sampling to add synthetic data to underrepresented classes in the training set. However,
the data used in this study’s experiments did not require such modifications.

Adjusting the GAN training procedure would help reduce the chances of premature
chunk generation and, therefore, increase the quality of synthetic data. Analyzing the
training dynamics would, on the other hand, help estimate the quality of training data. This,
together with work on improving the computational efficiency of the data augmentation
framework, determines the future directions of the presented study.

7. Concluding Remarks

The main contribution of the study presented in this paper is the developed data
augmentation framework for balancing training sets of sensor sequential data streams
(time-series data) intended for machine learning classifiers. The centerpiece of the frame-
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work is the Unrolled GAN system. The framework was extensively tested with data
collected from smartphone accelerometer and gyroscope sensors in different contexts of
the road surface monitoring task but also with three different datasets from the UCR
Time Series Classification Archive. Through the experiments conducted in the study, it
was demonstrated that the proposed approach allows for achieving a better classification
performance of a base classifier trained on augmented sets, is robust to changes in train-
ing/testing data configurations, and outperforms such popular augmentation methods as
noise addition, time stretching, and undersampling. It was also shown that GAN would
hardly be a “silver bullet” (if there would ever be one) that would single-handedly solve
the training data imbalance problem. Rather, Generative Adversarial Networks should be
deployed as part of a multi-step approach, such as, for example, the one presented in this
paper, to successfully deal with class-imbalanced datasets of sensor sequential data.
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