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The mammalian stomach is structurally highly diverse and its organ functionality critically

depends on a normal embryonic development. Although there have been several studies on

the morphological changes during stomach development, a system-wide analysis of the

underlying molecular changes is lacking. Here, we present a comprehensive, temporal pro-

teome and transcriptome atlas of the mouse stomach at multiple developmental stages.

Quantitative analysis of 12,108 gene products allows identifying three distinct phases based

on changes in proteins and RNAs and the gain of stomach functions on a longitudinal time

scale. The transcriptome indicates functionally important isoforms relevant to development

and identifies several functionally unannotated novel splicing junction transcripts that we

validate at the peptide level. Importantly, many proteins differentially expressed in stomach

development are also significantly overexpressed in diffuse-type gastric cancer. Overall, our

study provides a resource to understand stomach development and its connection to gastric

cancer tumorigenesis.
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The mammalian stomach is a muscular sac1 that has an
evolutionarily diverse structure with versatile functions,
including food digestion, hormonal regulation of metabolic

homeostasis, and immune regulation1–3. The mouse stomach is
composed of three main parts: the forestomach for food storage,
the corpus for food digestion, and the antrum that secretes mucus
and certain hormones1,3–5. The stomach originates from the
embryonic foregut, and its ontogeny starts at approximately
embryonic day 9.5 (E9.5)6. The stomach is protruding and visible
at E10.5 and then rapidly grows6,7. Around E12.5, the stomach
migrates to the left side of body; one day later, the forestomach
starts to develop a stratified squamous epithelium, while the
glandular stomach begins to develop a simple columnar epithe-
lium7,8 and divides into the corpus and antrum. Cells that ori-
ginate from the corpus and antrum start to differentiate into
smooth muscle, the muscle layer thickens at E14.5, and different
types of cells ultimately become mature1,6,9.

Currently, most studies of stomach development have focused
on a single or a small set of proteins or on a specific pathway.
Based on these efforts, the key roles of several transcriptional
regulators (e.g., BARX10, HOXA511, SOX21, CDX212, HNF1β13,
PDX14, and GATA415) and signaling pathways (Wnt16,17, reti-
noic acid18, Notch19, FGF1,3,4, BMP20, SHH15, Hippo21, and
TGF-β22) in controlling organ development have been defined.
While our knowledge of stomach development is substantially
enhanced by these studies, their limited focus hampers our
understanding of the whole process in the context of systems
biology, within which proteins are highly dynamic and inter-
active. Large protein sets can govern organ development by highly
coordinated expression changes23 and play important roles in
organ functions.

Recently, significant advances have been made in mass
spectrometry (MS)-based proteomics from sample prepara-
tion to liquid chromatography (LC) and instrumentation,
making the identification of nearly all expressed proteins in
cells or tissues possible with good accuracy and reproduci-
bility24–26. In 2013, Geiger and his colleagues examined the
proteomic profiles of 28 mouse tissues, including the stomach,
using SILAC (stable isotope labeling by amino acids in cell
culture) and LC-MS/MS (liquid chromatography tandem mass
spectrometry) methods, which covered 7349 proteins27.
Unlike studies on brain28 and liver development29, however,
systematic mapping of the mouse stomach during develop-
ment is missing at the proteome scale. A time-resolved, large-
scale proteome atlas can answer unresolved and important
questions, e.g.,: When does the expression of functionally
important genes turn on? What expression trends do they
exhibit? Who are the partners they function with? How do
signaling pathways crosstalk? Are there distinct boundaries
during development?

As mice are evolutionarily close to humans, and many well-
known functionally important stomach proteins (e.g., PGC,
ATP4A, and MUC5AC) are conserved in both species, it is a
suitable model system for investigating organogenesis and human
diseases, including cancer. For example, studies have confirmed
that tumorigenesis shares many similar features with deregulated
embryonic development30,31.

In this work, we present a transcriptome-integrated pro-
teomic analysis of the mouse stomach during organogenesis
and development. We find similar characteristics in mouse
stomach development and human gastric cancer tumorigen-
esis. Furthermore, our temporal proteomic and transcriptomic
atlases identify three key phases during stomach development
with distinct features. Moreover, integrative analysis of omics
data sets reveals the dynamics of known and novel splicing
events.

Results
A proteomic atlas of the developing mouse stomach. To map
the proteomic atlas of the developing mouse stomach, we col-
lected three replicates of whole stomach organs at 15 timepoints
that covered embryonic days (E12.5, embryonic day 12.5; E13.5,
embryonic day 13.5; E14.5, embryonic day 14.5; E15.5, embryonic
day 15.5; E16.5, embryonic day 16.5; E17.5, embryonic day 17.5;
and E18.5, embryonic day 18.5), postnatal days (D1, day one; D3,
day three; and D5, day five), and postnatal weeks (W1, week one;
W2, week two; W3, week three; W6, week six; and W8, week
eight). The sampling time window covered from the earliest day
that stomach sampling is anatomically feasible to the latest weeks
when stomachs are close to mature (Fig. 1a). We applied a fast-
seq proteomic workflow32 (Fig. 1b), a label-free quantitative
proteomic approach in combination with a small-scale reversed-
phase prefractionation strategy33, and identified 12,108 gene
products (GPs) at a 1% peptide FDR (false discovery rate)
(Fig. 1c, Dataset1 in Supplementary Data 1). A total of 8,865 GPs
were identified as high-quality IDs by selecting those that have
been measured with at least one unique peptide (GPs-specific
sequence) and two strict peptides (mascot ion score ≥ 20)
(Dataset2 in Supplementary Data 1). Further filtering for proteins
identified in at least 2 of the 3 replicates at one timepoint resulted
in a final list of 7,678 GPs for bioinformatic analyses (Fig. 1c, d;
Dataset3 in Supplementary Data 1). After these filtering steps, all
experiments showed good consistency and a high degree of cor-
relation (R= 0.8–0.99) between the temporally adjacent experi-
ments (Supplementary Fig. 1a). The relative abundance (iFOT) of
the proteins spans approximately eight orders of magnitude after
logarithmic transform, which reflects the highly dynamic nature
of the stomach proteome (Fig. 1e). In general, housekeeping
proteins (e.g., TUBB4B and HSP90B1) show stable expression
across the whole developing stages, whereas proteins related to
liver development (e.g., AFP and ALB) are also highly dynamic
and time-dependent, which suggests their widespread roles in
organ development34 (Fig. 1f). A list of 2890 proteins (Supple-
mentary Fig. 1b) is compiled from all 15 timepoints that may
represent the core components of the stomach proteome. The
functions of these proteins are significantly enriched in multiple
pathways, including metabolism, spliceosome, protein processing,
and other pathways (Supplementary Fig. 1c).

Three distinct phases of the developing mouse stomach. The
development of the stomach is tightly regulated by a series of
signaling events and clusters of effectors on key pathways to
control endoderm patterning, gastric specification, stomach
regionalization, and morphogenesis35. The changes in protein
machinery determine the fate of organogenesis and the devel-
opment of the stomach. Although the whole developmental
process changes gradually, boundaries (or phases) that separate
critical events may exist that indicate profound changes during
development. To investigate these events at the protein expression
level, we carried out two independent statistical analyses, namely,
an unsupervised hierarchical clustering analysis (HC) and prin-
cipal component analysis (PCA), to identify discernable bound-
aries that demarcate the key stages with distinct features. Both
algorithms reached a consensus on partitioning the experiments
into three distinct phases: Ph1 (E12.5-E16.5), Ph2 (E17.5-W2),
and Ph3 (W3–W8) (Fig. 2a). To identify representative proteins
in each phase and understand their biological significance, we
performed protein coexpression analysis and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway analysis on 4,300
differentially expressed proteins in the three phases (ANOVA,
FDR < 0.01, Supplementary Data 2) (Fig. 2b, c). The KEGG
analysis suggested that Ph1 is associated with cell division. Ph1
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has the greatest number of differentially expressed proteins,
which are mainly enriched in pathways including spliceosome,
RNA transport, DNA replication, cell cycle, and pyrimidine
metabolism (Fig. 2c). Ph2 covers the perinatal and lactation
period and is the phase at which the stomach increases most in

shape and mass. Ph2 has the least number of highly expressed
proteins (proteins that are more highly expressed in one phase
than in the other phases) and is enriched in ECM-receptor
interaction, lysosome, and focal adhesion (Fig. 2c). Ph3 is the
mature phase as the stomach has gained metabolic functions
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(Fig. 2c). The boundary between Ph2 and Ph3 lies in W3 when
infant mice are weaned (20–22 days after birth) and begin to eat
food36.

Dynamics of key gastric proteins during stomach development.
As a major digestive organ, the stomach produces many digestive
enzymes to breakdown food into small molecules for easy
absorption. We subsequently surveyed three important protein
families and traced their dynamic changes during the develop-
ment. Pepsinogens, the precursors of pepsins, are digestive
enzymes synthesized and secreted by gastric chief cells37. Pepsi-
nogens A (PGA), B (PGB), F (PGF), progastricsin (PGC), and
prochymosin (CYM) are five types of zymogens of pepsins almost
exclusively expressed in the stomach of the tetrapod38–41. Our
proteomic data identified three of them (CYM, PGA5, and PGC)
with different trends of expression (Fig. 2d). CYM and PGA5
were highly expressed in Ph2, while PGC was only detected in
Ph3. As mice in Ph2 were feeding on milk, the high levels of CYM
and PGA5 indicate that they may play important roles in dairy
protein digestion. Moreover, PGC was not detectable until W3
and was maintained at high levels after W3. This finding agrees
with the expectation that PGC is predominantly expressed in the
adult stomach38.

Pepsinogens are activated in an acidic environment created by
the gastric proton pump, an H+/K+-ATPase present in the
parietal cells of the gastric oxyntic mucosa. The H+/K+-ATPase
has two subunits (ATP4A and ATP4B), and it is one of the
critical components of the ion transport system that mediates
acid secretion41–43. The expression levels of both ATP4A and
ATP4B were concurrently increased in Ph2 and peaked in Ph3
(Fig. 2d), marking the formation and maturation of the parietal
cells in Ph2 and Ph3 as the mouse stomach matures.

To survive in the acidic environment, the stomach secretes
mucin proteins to protect itself from damage. These proteins are
the main components of the gastric mucus layer and protect the
underlying epithelium from biochemical and mechanical aggres-
sions44,45. Of all 21 mucins, five mucins (MUC1, MUC4,
MUC5AC, MUC5B and MUC6) were identified in this study
(Fig. 2d, Dataset2 in Supplementary Data 1). MUC1 and MUC4
were expressed at very low levels compared with the other mucins
and were only detectable in a few samples; MUC5B was mainly
identified in Ph2, whereas the known gastric marker mucins46

MUC5AC and MUC6 that were secreted by surface mucous cells
and mucous neck cells were highly expressed in Ph3. These
results suggest that the mature stomach produces mucins to
protect against acidic and mechanical damages.

There are other proteins highly expressed in the stomach
(ANXA10, CLDN18, CTSE, GHRL, GIF, TFF1, and VSIG1) that
maintain normal stomach functions (Supplementary Fig. 2).
Among them, GIF is a glycoprotein produced by the chief cells of
the stomach. ANXA10 is a calcium- and phospholipid-binding
protein expressed in the gastric mucosa47. VSIG1 is a cell
adhesion protein required for the proper differentiation of
glandular gastric epithelia48. CLDN18 is a gastric epithelium-
associated claudin49. The gradual increase in these proteins in the
Ph3 of development suggests that they may be markers of a
mature stomach50.

Identification of differentially expressed splicing isoforms. In
parallel with MS-based proteomics, we also carried out high-
throughput RNA-Seq on mouse stomach tissues collected at the
same timepoints. Our data analysis pipeline enabled the identi-
fication of 16,839 genes with maximal FPKM (Fragments Per
Kilobase Million) values ≥ 1 (Supplementary Fig. 3a and Supple-
mentary Data 3). In general, RNA-Seq identified more genes than

did MS (Supplementary Fig. 3b), and a total of 10,994 genes were
measured in both data sets (Supplementary Fig. 3c).

Hierarchical clustering analysis of the transcriptomic data
separated the whole developmental process into two groups
(Fig. 3a, left panel). The first big branch of the dendrogram may
be further cut into two trees to separate the embryonic and
postnatal days, by which all 15 timepoints may be grouped into
three phases. The same classification was also supported by the
PCA analysis (Fig. 3a, right panel). This classification overlapped
almost completely with the 3 phases obtained from the proteomic
data with only one timepoint (E17.5) difference from the
transcriptomic based classification. These observations indicate
that the developmental process from E12.5 to W8 may be roughly
divided into three phases based on either protein or RNA
expression levels.

Semi-supervised hierarchical clustering analysis assigned genes
into four groups based on their temporal expression patterns
(Fig. 3b). The majority of the genes that were differentially
expressed in the first phase were enriched in several pathways,
such as spliceosome, RNA transport, and cell cycle (Fig. 3c). The
second phase contains two gene groups involved in focal
adhesion, ECM-receptor interaction, several signaling pathways,
and fatty acid or amino acid degradation. The third phase is
mainly associated with oxidative phosphorylation and metabolic
activities. Overall, the RNA-Seq-based clustering analysis revealed
three phases with similar biological features to those obtained
from the proteomic data.

Previous studies have revealed the roles of splicing isoforms in
various biological processes, including organ development51. The
RNA-Seq data also enabled the assessment of splicing isoforms
with deep coverage. When filtering by FPKM ≥ 1, 24,346 isoforms
from 7769 genes were called, with 2,989 isoforms (~12%)
differentially expressed across the three phases (RNA-Seq-based
clustering) (Supplementary Fig. 3d and Supplementary Data 4).
Among these well-known pathway regulators or transcription
factors, not all variants significantly changed, and some of them
had no (or very low) expression at the mRNA level (Fig. 3d).
These observations suggest that only a fraction of splicing
isoforms are expressed at the protein levels and are functionally
involved in stomach development.

Protein–RNA correlation and novel splice-junction events.
Recently, genomic and proteomic studies have suggested that the
levels of protein and mRNA are not well-correlated despite the
fact that proteins are translated from mRNA52. For this reason,
protein levels cannot be reliably predicted by gene expression.
Consistent with previous findings, the correlation of mRNA and
protein in this study was also moderate (Median Pearson corre-
lation coefficients= 0.55) (Fig. 4a). Genes with positive correla-
tions were mainly enriched in pathways including spliceosome,
valine, leucine and isoleucine degradation, DNA replication, and
proteasome (Fig. 4a), while genes with poor or even negative
correlations were enriched in amino sugar and nucleotide sugar
metabolism (Fig. 4a). As previously discussed, a substantial
number of genes or proteins were only identified in one of the
data sets (Supplementary Fig. 3c). The discrepancies between
mRNA and protein may be attributed to complicated post-
transcriptional regulatory mechanisms, different RNA or protein
degradation kinetics, and the detection limits or biases of
instruments in measuring mRNA and protein, among other
reasons.

The good coverages of the transcriptome and proteome
provide an opportunity to observe and compare the dynamic
changes of important protein machinery at the RNA or protein
levels. For example, the RNA-Seq results revealed that the
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expression patterns of the three protein families (pepsinogens,
ATPases, and mucins) are similar to those measured by MS
(Supplementary Fig. 4a). The proteasome is a multisubunit
protein degradation machinery that plays diverse roles in the
control of many basic cellular activities, including development53.

Of the 41 major components (including 20s, 19s, 11s, and
PA200), most of these components were highly expressed at early
stages (Ph1), with the exception of a well-separated cluster that
was differentially expressed in Ph2 and Ph3 in both the proteome
and transcriptome (Supplementary Fig. 4b). This cluster contains
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three alternative β-subunits (PSMB8, PSMB9, and PSMB10) and
two 11s subunits (PSME1 and PSME2). The incorporation of the
alternative β-subunits PSMB8, 9, and 10 (also referred to as b5i,
1i, and 2i, respectively) in the 20s core and its regulatory particle
11s constitute a modified proteasome termed the immunoprotea-
some, which plays an essential function of processing class I
major histocompatibility complex (MHC) peptides. The elevated
expression of the immunoproteasome at Ph2 and Ph3 suggests its
requirement in the maturation of the immune system. Interest-
ingly, the γ-subunit of 11s (PMSE3, also referred to as REGγ) is

separated from this cluster and exhibits its highest expression at
E12.5 in both the proteome and transcriptome. The 11s particle is
a heptamer composed of seven molecules of the proteasomal
subunit PSME3 or heterodimers of the subunits PSME1 and
PMSE2. The distinct expression pattern of PSME3/REGγ
implicates its critical role in early stomach development. More-
over, overexpression of REGγ has been reported in various
cancers54,55.

The Mediator complex is a transcriptional coactivator that
plays a regulatory role in cell lineage development by modulating
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transcription56. A total of 31 components from four submodules
(head, middle, tail, and kinase) (Supplementary Fig. 4c) were
observed with the highest expression recorded in Ph1, consistent
with their role in RNA-associated transcription and cell division
in the early developmental phase (Supplementary Fig. 4c). Two
subunits of the middle module, MED14 and MED21, were also
shown to express at high levels in late Ph1 or early Ph2,
respectively. A previously published in vitro reconstitution
experiment identified MED14 as both an architectural and a
functional backbone of the Mediator complex57, and its
incorporation into the complex substantially enhanced the
association of the mediator complex with RNA polymerase.
MED21 is located at the boundary between the middle and head
modules, suggesting that it may have a structural role in bridging
the two modules in the Mediator complex. The increased
expression of these two subunits indicates a possible functional
requirement for the transcription of genes critical for the
transition from Ph1 to Ph2.

We subsequently performed a proteogenomic analysis by
integrating the transcriptome and proteome data to mine novel
splice-junction events that may have contributed to stomach
development. Using the strategy illustrated in (Fig. 4b), we
generated an in-house fasta database that contained 16,602
hypothetical peptides with in silico trypsinization. Briefly, these
tryptic peptides should have no missed trypsin cleavage sites,
are not present in the mouse Ref-Seq proteome database and
are 3-frame translated from two exons: one exon is a known
exon in the mouse reference genome database, and the other
exon is an unannotated exon with a novel junction site. By
searching the mass spectra against the in-house fasta file, we
identified 60 splice-junction peptides with ion scores greater
than 30 at 1% peptide FDR (Fig. 4c and Supplementary Data 5)
and manually verified their MS/MS spectra (Supplementary
Data 6). Forty-nine peptides were derived from alternative
splicing within the coding frame of a known gene. A cluster of
novel gene products (CDKN1C, IGSF3, HDAC4, MAP4K4,
CDC27, and MYH11) were significantly expressed in the early
stages of stomach development (Fig. 4c), whereas other gene
products (VSIG1, SORBS1, TLN1, ITGA7, KRT16, DTNA,
TNXB, and TLN1) were expressed at relatively late stages
(Fig. 4c). For example, VSIG1, three known isoforms
(NM_030181, XM_006528630, and XM_006528631; Supple-
mentary Data 4) were identified from RNA-Seq; moreover, two
novel isoforms were identified from RNA-Seq and were
validated by LC-MS/MS (Fig. 4c and Supplementary Data 5).
The two main isoforms (NM_030181 and XM_006528630)
were relatively abundant in the mouse stomach and were highly
expressed at the later stages of development (Supplementary
Fig. 4d), which is consistent with a previous study48. If
validated, these previously undetected peptides and their
associated protein isoforms will identify new players in stomach
development and developmental biology.

Correlation of stomach development and gastric cancer.
Tumorigenesis has been suggested to resemble a mis-regulated
embryonic development process in a variety of ways31, and this
view is supported by experimental evidence from a limited
number of genes/proteins30. The protein and mRNA atlas of the
mouse stomach development dataset obtained in this study and a
recently collected proteome dataset of diffuse-type gastric cancer
obtained from 84 patients50 enabled us to investigate the corre-
lation of development and cancer at the proteome level.

Transcriptional regulators and signaling pathways are the most
intensively studied subjects in organ development. Dysregulations
of transcription factors and pathway regulators are the hallmarks

of cancer58,59. Our proteomic and transcriptomic approaches
enabled the identification of 241 and 725 transcriptional
regulators, respectively (Supplementary Fig. 5a, b and Supple-
mentary Data 7). While the majority of the transcription factors
were highly expressed in Ph1 (the early embryonic days) at the
protein or RNA levels (Supplementary Fig. 5a, b), a few
transcription factors were highly expressed in Ph2 and Ph3,
suggesting that these transcription factors may contribute to
organ maturation. Among the well-characterized transcriptional
regulators related to organ development and cancer, most of them
are more highly expressed at the early embryonic stages (Ph1)
when cells are under rapid division and proliferation. For
example, Barx1 is a mesenchymal gene and is restricted to the
stomach mesenchyme during gut organogenesis;5 CDX2 is a
prognostic marker of gastric cancer60, and its RNA was elevated
in the early stages of stomach development; Pdx1 is an antrum
epithelial specific gene that may be associated with intestinal
metaplasia in the stomach61,62. In general, the expression of these
transcription factors is well-correlated at the protein and RNA
levels (Supplementary Fig. 5c, d). Nevertheless, one transcription
factor (GATA4) exhibited opposite trends in the two data sets,
thus providing an example that protein and RNA may not always
be positively correlated.

When examining proteins or genes that are listed in the eight
key signaling pathways known to be involved in stomach
development, we identified a large number of proteins or genes
significantly altered (ANOVA, FDR < 0.05) across the three
phases at the protein or RNA levels (Fig. 5). Noticeably, a
considerable number of these genes are also upregulated proteins
(symbols in cyan) (Student’s t-test, FDR < 0.05) or top mutated
genes (italic symbols with underlines, mutation rate ≥ 5%) in
diffuse gastric cancer (DGC). For example, WNT5A in the Wnt
signaling pathway was significantly upregulated, while Apc and
Ctnnb1 were mutated in DGC. The observation on the alterations
of these regulators in stomach development and DGC is a clear
indication of the dysregulation of transcriptional regulators and
signaling pathways in gastric cancer.

To further correlate stomach development with gastric
cancer on the levels of signaling pathways, we listed all gene
products that were detected in two studies and counted the
number of significantly altered gene products in one of the eight
signaling pathways known to be involved in development and
cancer (Fig. 6a, Supplementary Data 8). Two-tailed hypergeo-
metric statistical tests were carried out to determine whether
there was a significant overlap of altered gene products on a
specific pathway between stomach development and DGC.
Importantly, all pathways with the exception of the hedgehog
signaling pathway exhibited high correlations (-log10P-value >
3). The poor correlation for the hedgehog pathway was likely
due to the small number of gene products detected in this
pathway in the three data sets. These analyses provided
evidence that stomach development and gastric tumorigenesis
may be two related processes.

To obtain a global view of when the elevated proteins
identified in DGC are expressed in stomach development, we
selected 939 proteins that were differentially expressed between
tumor and nearby tissues and then mapped the expression of
their mouse homologs to the 15 timepoints during stomach
development (Fig. 6b and Supplementary Data 8). A consider-
ably higher percentage of proteins were identified in the early
embryonic days (Ph1) than in the later timepoints (Fig. 6b).
Altogether with the previously described findings, our results
show that gastric cancer shared many characteristics with
embryonic stomach development and suggest that the disease
may result from the dysregulation of transcription factors and
cell signaling.
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Discussion
The current study presents the first protein and mRNA panora-
mic overview of the developing mouse stomach with high pro-
teome coverage and time resolution. This protein and mRNA
atlas spanning the developmental period from embryo to adult
provides a systems view for this process and permits data mining
and knowledge generation as a public resource for other
scientists.

Our preliminary bioinformatic analysis suggests that the mouse
stomach development process from the embryo to adult may be
classified into three phases based on protein and mRNA patterns.
Both proteomic and transcriptomic data confirmed that the first
phase, Ph1, is a period for RNA-associated transcription and cell
division, and the last phase, Ph3, is a phase highlighted by

increased metabolism and stomach maturation, while the second
phase, Ph2, is somewhat associated with ECM-receptor interac-
tion and focal adhesion. Correlating the proteomes or driver
proteins/pathways of these three phases with the morphological,
physiological, and functional states of the mouse stomach to
understand development in greater molecular detail will be
interesting. Coexpression analyses of proteins/mRNAs in differ-
ent phases of the development revealed many understudied
proteins/mRNAs with similar temporal expression patterns with
well-studied proteins, which may shed light on the functions of
these currently understudied or unknown proteins.

As the RNA-Seq technique is more mature than proteomics,
mRNA data are generally considered to have deeper coverage
than protein data. Furthermore, the correlation between protein
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timepoints (Lower right). Right panel, horizontal color bars: red, Ph1; blue, Ph2; and orange, Ph3. Vertical color bars: deep pink, group 1; gold, group 2;
purple, group 3; and cyan, group 4
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and RNA is known to be moderate. As proteins are the effector
molecules, mRNA cannot be used as a replacement for protein.
Current proteomic techniques and the experimental costs have
started to permit the large-scale measurement of proteins. In this
study, we found that a subset of genes or proteins was only
identified in one of the data sets, which acknowledges the
advantages and benefits of measuring both mRNA and protein in
handling complex biological challenges.

We found that combining proteomic and transcriptomic data
together enabled the detection and verification of alternatively
spliced transcripts that may have fundamental impacts on sto-
mach development. Our study not only generated a list of dif-
ferentially expressed splicing isoforms but also detected peptides
covering novel splicing junctions, providing stronger evidence for
their existence at the protein level. Keep in mind that the number
of these novel splicing events may be underestimated because
some peptides are not readily detectable by LC-MS/MS.

One of the motivations of this study was to investigate whether
there is experimental evidence for a connection between devel-
opment and tumorigenesis. By comparing the proteomic profiling
of stomach development with that of diffuse-type gastric cancer,
we found that a noticeable number of pathway regulators, par-
ticularly transcription factors that are upregulated or frequently
mutated in DGC, are also differentially expressed during stomach
development. Moreover, we identified statistically significant sets
of overlapping genes in seven signaling pathways between sto-
mach development and gastric cancer, which suggests that DGC
regains some features of stomach embryonic development but
loses some basic functions of the adult stomach and that gastric
cancer is likely a consequence of the dysregulation of master
regulators and cell signaling pathways. It would be interesting to
examine whether these features are also shared by the intestinal-
type and mixed-type gastric cancers. However, this comparison
should be treated with caution given that DGC develops largely
from epithelial cells, while the whole stomach examined in this
study is a mixture of multiple cell types. While a region-resolved
stomach proteome could partially address this issue, this tech-
nique is hampered by technical challenges that the regions are
discernable only around W2. Further investigations with a cell-
type-resolved proteome could substantially improve the resolu-
tion and reduce the cellular heterogeneity, making the compar-
ison of development and tumorigenesis more thorough.

In conclusion, the high-throughput multiomics data sets pro-
vide valuable assets that enable further data interrogation to
obtain clues for a better understanding of stomach development
and gastric cancer.

Methods
Animals and stomach collection. C57BL/6 mice (8–10-weeks-old) were ordered
from Beijing HFK Bioscience Co., LTD (Beijing China) and housed under a
standard SPF (specific pathogen-free) laboratory environment. Whole stomachs
were separated from mouse embryos during gestation or from the newborn mice
after birth. Stomachs were collected at 15 timepoints covering the embryonic and
postnatal stages: E12.5, E13.5, E14.5, E15.5, E16.5, E17.5, E18.5, D1, D3, D5, W1,
W2, W3, W6, and W8. Each timepoint has three biological replicates.

The whole stomach tissues were washed twice with ice-cold phosphate-buffered
saline (PBS) to remove blood and other contaminates, quick-frozen in liquid N2

and stored at –80 °C for RNA or protein extractions. All animal experiments were
approved by the animal care regulations of the Institutional Animal Care and Use
Committee of the State Key Laboratory of Proteomics, Beijing Proteome Research
Center, Beijing Institute of Radiation Medicine.

Extraction and digestion of stomach proteome. At least 1 mg samples of sto-
mach tissues were cut off and lysed in a buffer that consisted of 8M Urea, 100 mM
Tris Hydrochloride, pH 8.0, protease and phosphatase inhibitors (Thermo Fisher
Scientific, Rockford, IL, USA) for 10 min. The preliminary lysates were sonicated
under a suitable condition. The lysates were centrifuged at 16,000 × g for 10 min at
4 °C, and the supernatants were reserved as whole tissue extract (WTE). The
protein concentration was determined by a Bradford protein assay. Approximately

100 μg of WTE were reduced with 10 mM dithiothreitol (DTT) at 56 °C and
alkylated with 20 mM iodoacetamide (IAA) at room temperature in the dark. WTE
was digested with sequencing grade trypsin that cleaves at the C-terminus of the
Arg or Lys residues at 37 °C.

Mass spectrometry analysis. The tryptic peptides were vacuum-dried, redis-
solved in 10 mM of ammonium bicarbonate buffer (pH 10), and subjected to small-
scale reversed-phase (sRP) chromatography with a homemade C18 column. The
peptides were separated into nine fractions by stepwise increasing acetonitrile
(ACN) from 6 to 35% under a basic condition (pH 10)32,33. These fractions were
combined into six samples, vacuum-dried, and stored at –80 °C until subsequent
use for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis.

MS samples were analyzed on a Q Exactive HF mass spectrometer (MS)
(Thermo Fisher Scientific) interfaced with an Easy-nLC 1000 nanoflow LC system
(Thermo Fisher Scientific). Briefly, the samples were redissolved in 30 µl of Solvent
A (0.1% formic acid in water), and one fifth of the reconstituted samples were
loaded onto a homemade reversed-phase C18 column (2 cm × 100μm; particle size,
3μm; pore size, 300 Å) and then separated by a 150μm× 12 cm silica microcolumn
(homemade; particle size, 1.9μm; pore size, 120 Å) with a linear gradient of 5–35%
Mobile Phase B (0.1% formic acid in acetonitrile) at a flow rate of 600 nl/min for
75 min. A data-dependent strategy was used by measuring MS1 in the Orbitrap at a
resolution of 120,000 followed by tandem MS scans of the top 20 precursors using
higher-energy collision dissociation with 27% of normalized collision energy and
18 s of dynamic exclusion time. Trypsin digests of 293T cells as quality control
samples were routinely assayed to ensure good sensitivity and reproducibility.

Protein identification and quantification. MS Raw files were searched against the
National Center for Biotechnology Information (NCBI) Ref-seq mouse proteome
database (updated on 04/07/2013, 27,414 entries) in Proteome Discoverer work-
station (version 2.0, Thermo Fisher Scientific, Rockford, IL, USA) implemented
with Mascot search engine with percolator (Matrix Science, version 2.3.01). The
following search parameters were used: (1) the mass tolerances were 20ppm for
precursor ions and 50mmu for product ions; (2) up to two missed cleavages were
allowed; (3) the minimal peptide length was seven amino acids; (4) cysteine car-
bamidomethylation was set as a fixed modification, and N-acetylation and oxi-
dation of methionine were considered variable modifications; and (5) the charges
of precursor ions were limited to+ 2,+ 3,+ 4,+ 5 and+ 6. The data were also
searched against a decoy database to estimate the peptide FDR using percolator
validation based on the q-value. Although not evaluated directly, the protein FDR
was minimized by choosing only proteins identified with one unique and two strict
peptides. A label-free, intensity-based absolute quantification (iBAQ) approach63

was used to calculate protein quantification based on the area under the curve
(AUC) of precursor ions. The fraction of total (FOT) was used to represent the
normalized abundance of a protein across experiments. The FOT was defined as a
protein’s iBAQ divided by the total iBAQ of all identified proteins in one experi-
ment. The FOT was further multiplied by 105 to obtain iFOT for the ease of
representation. Missing values were substituted with zeros.

RNA sequencing and data processing. Total RNA was extracted from the liver
tissues and treated with deoxyribonuclease I (DNase I). mRNA was isolated by
Oligo Magnetic Beads and cut into small fragments that served as templates for
cDNA synthesis. Once short cDNA fragments were purified, they were extended
with single nucleotide adenines, ligated with suitable adapters, and amplified by
PCR before they were sequenced. High-throughput RNA sequencing (RNA-Seq)
experiments were carried out using the Illumina comprehensive next-generation
sequencing (NGS) technique. Raw data were filtered and processed by the FastQC
software (Version 0.11.5, Available online at website: http://www.bioinformatics.
babraham.ac.uk/projects/fastqc). Low quality RNA-Seq reads were removed if they
had a Phred quality score less than 20 or had less than 50 nucleotides. The filtered
reads were mapped onto the mouse reference genome (GRCm38.p2.genome,
released on 12/10/2013) using HISAT2 software (Version 2.1.0)64. Assembly and
quantification of the transcripts were accomplished with StringTie software (Ver-
sion 1.3.1) using the mouse genome annotation file as the reference (gencode.vM2.
annotation, available at the GENCODE website)65. Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) was used for the measurements of the
relative abundances of the transcripts. An effective expressed gene required an
FPKM score greater than one, which resulted in 16,839 transcripts. The protein-
mRNA correlation was calculated by Pearson’s correlation coefficients using nor-
malized scores (z-scores) across all timepoints.

To identify novel splicing junctions in this study, a customized python script
was developed with the following strategies: (1) an unannotated exome is
connected with a known exome; (2) these two exomes are in silico spliced and
translated into peptides based on the 3-frame translation criterion; and (3)
generated sequences are cut into tryptic peptides without missed trypsin cleavage
sites and stop codons. The script generated 16,602 unique sequences from RNA-
Seq, and a fasta file was subsequently created for mass spectrometry database
searching.
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Bioinformatics and statistical analysis. Principal component analysis (PCA) and
unsupervised hierarchical clustering analysis were performed on 7,678 GPs in
Dataset3 and grouped 15 timepoints into three phases. Gene Ontology (GO) term
enrichment analysis was based on DAVID (the Database for Annotation, Visua-
lization and Integrated Discovery) Bioinformatics Resources66. Differentially
expressed genes in the three phases were identified by One-way ANOVA test with
Benjamini-Hochberg adjustment. Gene coexpression analysis was conducted by
Ward’s hierarchical clustering analysis. Interexperiment correlations were calcu-
lated by Spearman’s correlation coefficients. Two-tailed hypergeometric statistical
tests were carried out to determine whether there is a significant overlap of altered
genes on a specific pathway between stomach development and gastric cancer.

Code availability. The custom python script for mining splicing-junction peptides
is available from the corresponding authors upon request.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
MS raw files and searching output data are deposited into proteomeXchange with
the accession number PXD010702; RNA-Seq data are deposited into the NCBI
Gene Expression Omnibus (GEO) database with the accession number GSE118083.
A reporting summary for this Article is available as a Supplementary Information
file. All other data supporting the findings of this study are available from the
corresponding authors on reasonable request.
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