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THE BIGGER PICTURE Data-driven approaches to molecular design promise to accelerate the discovery of
novel pharmaceuticals, electronic materials, and other small molecules. As performance of computer-aided
molecular optimization for single-objective tasks has improved significantly in recent years, emerging efforts
are increasingly emphasizing multi-objective design.
This review details the use of Pareto optimization algorithms for multi-objective optimization of molecular
properties. Pareto optimization introduces additional algorithmic complexities, but reveals more information
about the trade-offs between objectives and is more robust than scalarization approaches for this reason.
There is an opportunity to adopt model-guided optimization techniques into the design of new molecules
with far-reaching applications including and beyond drug discovery.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

Molecular discovery is a multi-objective optimization problem that requires identifying a molecule or set of
molecules that balance multiple, often competing, properties. Multi-objective molecular design is commonly
addressed by combining properties of interest into a single objective function using scalarization, which im-
poses assumptions about relative importance and uncovers little about the trade-offs between objectives. In
contrast to scalarization, Pareto optimization does not require knowledge of relative importance and reveals
the trade-offs between objectives. However, it introduces additional considerations in algorithm design. In
this review,we describe pool-based and de novo generative approaches tomulti-objectivemolecular discov-
ery with a focus on Pareto optimization algorithms. We show how pool-based molecular discovery is a rela-
tively direct extension of multi-objective Bayesian optimization and how the plethora of different generative
models extend from single-objective to multi-objective optimization in similar ways using non-dominated
sorting in the reward function (reinforcement learning) or to select molecules for retraining (distribution
learning) or propagation (genetic algorithms). Finally, we discuss some remaining challenges and opportu-
nities in the field, emphasizing the opportunity to adopt Bayesian optimization techniques into multi-objec-
tive de novo design.

17,18
INTRODUCTION

Molecular discovery is inherently a constrained multi-objective

optimization problem. Almost everymolecular design application

requires multiple properties to be optimized or constrained. For

example, for a new drug to be successful, it must simultaneously

be potent, bioavailable, safe, and synthesizable. Multi-objective

optimization, also referred to as multi-parameter optimization,

pertains to other applications aswell, including solvent design,1–4

personal care products,5,6 electronic materials,7–11 functional

polymers,12,13 and other materials.14–16 Redox-active species

in redox flowbatteriesmustmaximize redox potential and solubi-
This is an open access article und
lity to ensure a high cell voltage. Sustainability of new mate-

rials (e.g., emissions caused during production and disposal19) is

also an increasingly important design objective,20,21 which is

particularly important for working fluids.19,22,23 Multi-objective

optimization can addressmultiple design criteria simultaneously,

allowing for the discovery of molecules that are most fit for a

specific application.

When many objectives must be optimized simultaneously, a

common approach is to aggregate the objectives into a single

objective function, which requires quantifying the relative impor-

tance of each objective. This method, also known as scalariza-

tion, reduces a multi-objective molecular optimization (MMO)
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Pareto Front Terminology Non-dominated Sorting Hypervolume ImprovementA B C Figure 1. Terminology and acquisition
functions in Pareto optimization
(A) Visual depiction of common Pareto terminol-
ogy including the Pareto front, dominated and
non-dominated points, and dominated region. The
area of the dominated region is the hypervolume.
(B) Non-dominated sorting, also referred to as
Pareto ranking.
(C) Hypervolume improvement for one candidate
point over the current hypervolume defined by the
set of previously acquired points; the drawing
omits uncertainty for clarity.
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problem into one that is solvable with single-objective algo-

rithms, but the ability to explore trade-offs between objectives

is limited. Furthermore, the optimization procedure must be

repeated each time the scalarization function is adjusted. In

contrast, Pareto optimization, which discovers a set of solutions

that reveal the trade-offs between objectives, relies on no prior

measure of the importance of competing objectives. This

approach allows an expert to modify the relative importance of

objectives without sacrificing optimization performance or

repeating the optimization procedure. The solution set of a

Pareto optimization contains the solution to every scalarization

problemwith any choice of weighting factors. For these reasons,

we believe that Pareto optimization is the most robust approach

to multi-objective molecular discovery.

The discovery of optimal molecules can be framed as either a

search for molecules from an enumerated library or generation of

novel molecules (i.e., de novo design).24,25 The extension of both

discovery approaches from single-objective to multi-objective

optimization has been reviewed for molecular discovery26,27

and more specifically drug discovery.28,29 However, recent de-

velopments, specifically in de novo design using deep learning,

warrant further discussion and organization of new methods.

In this review, we organize established and emerging

MMO techniques. After defining MMO and introducing relevant

mathematical concepts, we describe key design choices

during the formulation of an optimization scheme. Then, we pro-

vide a thorough discussion of relevant methods and case

studies, first in library-based optimization and then in de novo

design. Finally, we share some open challenges in MMO and

propose future work that we believe would most advance

the field.
DEFINING MMO

The molecular discovery literature is riddled with approaches to

solve the inverse problem of property / structure, many of

which are labeled ‘‘multi-objective.’’ However, the line between

MMO and single objective or constrained optimization is quite

blurred. To organize the field’s communication of MMOmethod-

ologies, we classify MMO as follows:

1. Multiple objectives, which are not aggregated into a single

scalar objective, are considered. Some trade-off exists

between objectives (i.e., they are not perfectly correlated).

2. The domain over which to optimize (‘‘design space’’) is a

chemical space. Molecules in this space may be defined

either implicitly (e.g., as latent variables that can be
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decoded using generative models) or explicitly (i.e., as a

molecular library).

3. The goal of the optimization task is to identify molecules

that maximize or minimize some molecular properties.

We consider tasks that aim to identify molecules with

properties within some specified range to be constrained

generation, not multi-objective optimization.

Any definitive scope ofMMO is bound to be somewhat subjec-

tive. Yet, we believe the preceding definition captures all relevant

implementations of MMO and excludes methods that are better

categorized elsewhere (e.g., as a single objective optimization or

constrained optimization).

In contrast to de novo molecular design where molecules are

proposed with few constraints other than structural validity,

pool-based or library-based optimization constrains the design

space to a predefined set of molecules. One approach to pool-

based optimization is to predict the properties of everymolecule

in the set using quantitative structure-property relationships

(QSPRs) and identify those that optimize the desired properties.

This process is typically denoted virtual screening and can be

viewed as an inefficient or brute-force approach to MMO. Virtual

screening using structure-based drug design techniques for

property estimation has been used to identify multi-target

inhibitors30–32 as well as selective inhibitors.33 In the interest of

summarizing efficient optimization algorithms, we do not discuss

enumeration and exhaustive screening approaches in this

review.
PRELIMINARY MATHEMATICAL CONCEPTS IN MMO

The Pareto front
In MMO problems, two or more desirable molecular properties

compete with one another. For Pareto optimal solutions, an

improvement in one objective is detrimental to at least one other

objective. For instance, when a selective drug is designed,

strong affinity to the target and weak affinity to off-targets are

both desired. However, when the binding affinities to on- and

off-targets are highly correlated (i.e., they bind strongly to similar

molecules), an increase in potency to the target often necessi-

tates a decrease in selectivity. The Pareto front quantifies (and,

in the 2- or 3-objective case, visualizes) these types of trade-

offs. Figure 1A illustrates a Pareto front for two objectives that

are to be maximized, with points in red representing the non-

dominated points, which form the Pareto front and define

the set of optimal solutions for the multi-objective optimization

problem. For these points, an improvement in one objective



Figure 2. Progress in membranes for gas separation as revealed by
the movement of a Pareto front
Reprinted with permission from Swaidan et al., ACS Macro Lett. 2015, 4, 9,
946–951.34 Copyright 2015 American Chemical Society.
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necessitates a detriment to at least one other objective. In

Figure 1A, one can imagine that each objective is a desired prop-

erty and that each point on the plot represents one molecule. If

the two maximized objectives were measures of selectivity and

binding affinity, non-dominated points represent molecules

for which an improvement in binding affinity necessitates a

decrease in selectivity, or vice versa. For simplicity and ease of

visualization, we always consider that objectives are maximized

for the remainder of the review. Pareto fronts for minimized

objectives would instead appear in the lower left corner, as

opposed to the upper right.

The hypervolume of a set is the volume spanned by the Pareto

front with respect to a reference point. In the two-dimensional

case, the hypervolume is the area that is dominated by the

Pareto front (the red shaded region in Figures 1A and 1C). This

metric can evaluate how ‘‘good’’ a Pareto front is: a larger hyper-

volume indicates a larger dominated region (i.e., a ‘‘better’’

Pareto front).

Progress in new materials development is often reported and

visualized by the advancement of a Pareto front. As an example,

in gas separation applications, membrane selectivity and perme-

ability are two competing objectives which are both to be

maximized. The trade-offs for this optimization can be visualized

as a Pareto front. Figure 2 shows the improving upper bound for

the two maximized objectives, which can be understood as an

expansion of the Pareto front from 1991 to 2015.34
Single-objective Bayesian optimization
Bayesian optimization (BO) is a strategy for black box optimiza-

tion where the scalar function to be optimized, sometimes

referred to as the oracle, may be non-differentiable or difficult

to measure (costly).35 The workflow of BO applied to single-

objective molecular discovery is summarized in Figure 3A.

BO is an iterative optimization procedure that begins by

defining some prior model to map the design space to the
objective. This model is called a surrogate model and, in the

molecular setting, is equivalent to a QSPR model. The surrogate

model is used to predict the objective values of hypothetical can-

didates in the design space, which an acquisition function uses

(along with the surrogate model uncertainty) to prioritize which

candidates to sample next. The newly sampled, or acquired,

molecules are then evaluated, or scored, against the oracle,

and these new data are used to refine the surrogate model. The

process is repeated until some stopping criterion is met: the

objective value of the acquired molecules converges, resources

are expended, or some objective value threshold is attained.

The acquisition function is central to BO. This function quan-

tifies the ‘‘utility’’ of performing a given experiment and can be

broadly understood to balance both the exploitation and explo-

ration of the design space.36

In molecular BO, exploration prevents stagnation in local

optima and can encourage acquisition of more diverse mole-

cules. However, the acquisition function must also exploit by se-

lecting candidates predicted to optimize the objective, enabling

the algorithm to converge upon an optimum and identify the

best-performing molecule(s). A few acquisition functions for

the case where a single objective ðfÞ is maximized are worth

mentioning:

1. Expected improvement (EI):

EIðxÞ = E½maxf0; fðxÞ � f�g�; (Equation 1)

in which fðxÞ represents the objective value for somemolecule x,

E is the expectation operator, and f� is the best objective value

attained so far from the acquired molecules.35,36

2. Probability of improvement (PI):

PIðxÞ = E½ðfðxÞ � f�Þ > 0�: (Equation 2)

The PI metric estimates how likely a new molecule x is to

outperform the current best molecule.36

3. Greedy acquisition (G):

GðxÞ = bf ðxÞ: (Equation 3)

Here, the acquisition function is simply the predicted value for

the maximized objective function, regardless of uncertainty and

what has been observed so far.37

4. Upper confidence bound (UCB):

UCBðxÞ = bf ðxÞ+ bsðxÞ; (Equation 4)

in which s is the surrogatemodel prediction uncertainty and b is a

hyperparameter.36
Patterns 4, February 10, 2023 3
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Figure 3. Overview of the Bayesian optimization workflow
There are several commonalities between the (A) single-objective and (B) multi-objective settings.
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While the BO literature thoroughly discusses and tests many

acquisition functions, we have only described a few that are

most relevant to our discussion of MMO. We refer to readers

interested in single-objective acquisition functions to Frazier’s

tutorial35 or Shahriari et al.’s review.36

Relating to BO, active learning can be understood as an imple-

mentation of iterative experimental design in which the objective

is to train a surrogate machine learning model with greatest ac-

curacy and fewest sampled points.38 The motivation for active

learning lies in the belief that a machine learning model will attain

greater accuracy with less training data if it ‘‘chooses’’ its training

data. While the iterative loop is similar to that of BO, active

learning acquisition functions prioritize exploration and select

points with greatest model uncertainty.

Multi-objective BO
Pareto optimization problems, in which multiple objectives are

considered simultaneously without quantification of relative

objective importance, must be handled with a slightly modified

set of tools, although the core BO ideology remains the same

(Figure 3B). First, all oracle functions must be approximated

either with multiple surrogate models, a multi-task surrogate

model,36 or some combination thereof. Second, the acquisition

function must account for all objectives without explicitly assign-

ing a relative importanceweight to each of them. Here, the goal is

to expand the Pareto front, or increase the dominated hypervo-

lume, as much as possible. We focus on three multi-objective

acquisition functions:

1. Expected hypervolume improvement (EHI):

EHIðxÞ = E½maxð0;HVðX acq W fxgÞ � HVðX acqÞÞ�;
(Equation 5)
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in which HV is the hypervolume and Xacq is the set of previously

acquired candidates. EHI is best understood as an analog to

the single-objective expected improvement, which measures

improvement in hypervolume instead of objective value.

2. Probability of hypervolume improvement (PHI):

PHIðxÞ = E½ðHVðXacq W fxgÞ � HVðX acqÞÞ > 0�: (Equation 6)

PHI, comparable with probability of improvement, is the prob-

ability that an acquired point will improve the hypervolume by

any amount.

3. Non-dominated sorting (NDS): NDS assigns an integer

rank to each molecule by sorting the set of molecules

into separate fronts. One can imagine identifying a Pareto

front from a finite set of molecules (denoted first rank),

removing that Pareto front, and subsequently identifying

the next Pareto front (denoted second rank), as shown in

Figure 1B. NDS does not consider uncertainty, and a can-

didate’s assigned Pareto rank is taken to be its acquisition

score. The first rank candidates are equivalent to the set of

points that would be acquired from using greedy acquisi-

tion with every set of possible scalarization weights, so

NDS can be thought of as a multi-objective analog of

greedy acquisition.
Batching and batch diversity
While the canonical BO procedure evaluates candidates

sequentially by acquiring the single candidate with the highest

acquisition score at each iteration, many molecular oracles can

be evaluated in batches. Experiments performed in well plates

are naturally run in parallel, and expensive computations are
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often distributed in batches to make the best use of computa-

tional resources. In the BO workflow, this means that an acquisi-

tion function should be used to select a set of molecules, instead

of just one. A naive approach, top-k batching, scores molecules

normally and acquires the k candidates with the highest acquisi-

tion scores. The utility of the entire set is thus implicitly taken to

be the sum of individual acquisition scores. However, the infor-

mation gained from acquiring one molecule that is highly similar

to another molecule in the batch is likely to be small.

In batchedmulti-objective optimization, the acquisition function

shouldmaximize the utility of scoring the entire batch. For the case

of acquisition with EHI, this refers to the improvement in hypervo-

lume after allmolecules in a batch are acquired. One can imagine

that acquiring a set of candidates very near each other on the Par-

eto front would not maximize this utility. An ideal batching algo-

rithm would consider all possible batches, predict the utility of

each, and select the batch with greatest utility. However, solving

this combinatorial optimization exactly is intractable. Instead, ap-

proximations are used to construct batches iteratively: identify

themostpromisingmolecule, assume it hasbeenobserved, select

the nextmost promisingmolecule, and repeat this until the desired

batch size is achieved.39

Batched optimization is more often approached with heuris-

tics that promote some measure of diversity within a batch while

selecting molecules with high acquisition scores. For example,

the objective space can be split into regions (Figure 4A) with a

limit on the number of candidates acquired in each region40,41;

likewise, candidates in less crowded regions along the Pareto

front can be more strongly favored.42 Such approaches to pro-

mote Pareto diversity have been incorporated into multi-objec-

tive molecular design.43–45

Diversity of the design space can also be considered during

acquisition, which is distinct from Pareto diversity and can also

be applied to single-objective optimization.46 In MMO, design

space diversity is equivalent to the structural, ormolecular, diver-

sity of a batch. Acquisition with structural diversity constraints

might promote selection of a molecular batch with a wide array

of scaffolds or functional groups (Figure 4B). Molecular diversity

can be measured with metrics like Tanimoto similarity using

fingerprint representations, which characterize a specific kind

of structural similarity. As with Pareto diversity, structural diver-

sity constraints can be imposed during batch acquisition in mo-
lecular optimization47,48 or in active learning.49–52 While one

might predict that Pareto front diversity also indicates molecular

diversity, this is not necessarily true. It is possible for two struc-

turally similar molecules to have different properties and there-

fore lie in different regions of the objective space; conversely,

molecules with similar properties are not necessarily structurally

similar.

FORMULATING MOLECULAR OPTIMIZATION
PROBLEMS

A molecular optimization task always begins with some state-

ment of desired properties. Some of the subsequent formulation

decisions are listed in Figure 5. First, the individual properties

must be converted to mathematical objectives. Then, the means

of proposing candidate molecules, either de novo or library

based, must be selected. If more than one objective exists,

they must either be aggregated into a single objective or

treated with an appropriate multi-objective formulation. Finally,

an acquisition function, or selection criterion in the case of

de novo design, must be selected. In this section, we explore

some of these design choices in detail.

Converting a desired property to a mathematical
objective function
In the formulation of any MMO task, after properties of interest

are identified by a subjectmatter expert, the individual objectives

must be quantitatively defined (Figure 5, panel 2). While this

seems like an easy task, framing the objectives can be subjective

in nature. If one property of interest for a molecular optimization

task is estimated by a score SðxÞ, there are still multiple ways to

represent the corresponding value to be maximized ðJðxÞÞ,
including but not limited to:

1. A continuous, strictly monotonic treatment, where a

greater value is strictly better:

JðxÞ = SðxÞ: (Equation 7)

2. A thresholded, monotonic treatment, where some mini-

mum T is required:

JðxÞ =

�
SðxÞ SðxÞRT
�N SðxÞ%T

(Equation 8)

3. A Boolean treatment, where some minimum is required

and no preference is given to even higher values:

JðxÞ =

�
1 SðxÞRT
0 SðxÞ%T

: (Equation 9)

The most appropriate representation depends on the property

of interest and the application, demonstrated here for common

properties of interest for novel drug molecules. If S predicts a
Patterns 4, February 10, 2023 5



Figure 5. Decisions when formulating MMO problems
Iterative generative models tend to employ selection criteria for retraining or propagation, which are analogous to acquisition functions in Bayesian optimization.
As discussed in later sections, conditional generation aims to proposemolecules with a specified property profile in a non-iterativemanner and therefore does not
utilize selection criteria or an acquisition function. Single-objective acquisition functions can only consider molecular diversity, while Pareto acquisition functions
can consider both molecular and Pareto diversity.
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ligand’s binding affinity to a target protein, a higher affinity is

often better, so the first representationmay bemost appropriate.

If S predicts solubility, there may be no additional benefit of

greater solubility once a certain solubility is met that allows for

sufficient delivery and bioavailability. In this case, the third repre-

sentation, which is most consistent with a property constraint

instead of an optimized objective, would be most fitting. In a

similar manner, remaining components of Lipinski’s Rule of 553

define some threshold, and no extra benefit is attained once

the threshold is met. These heuristics may bemost appropriately

defined as constraints and not optimized objectives.

The perspectives of domain experts during objective formula-

tion are extremely valuable to ensure that molecules identified as

optimal are suitable for the application. However, in cases where

expertise is not available or a specific threshold is unknown, we

argue that solving the problem with a simple continuous repre-

sentation (representation 1) is most robust because it requires

no predefined hyperparameters or assumptions. This way, con-

straints can later be imposed on the solution set without needing

to repeat the optimization from scratch.

Choosing between library-based selection and de novo

design
Once the objectives are defined, an approach to chemical space

exploration must be chosen. The scope of exploration can be

limited to an explicitly defined molecular library, which can be

constructed to bias exploration toward chemical spaces relevant

to a specific task. Alternatively, a de novo design tool can be
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used to ideate novel molecules not previously seen or enumer-

ated. The type of generative model influences the area of chem-

ical space that is explored.54 For example, the chemical space

explored by genetic algorithms (GAs) may be constrained by

the molecules used as the initial population and the set of evolu-

tionary operators that are applied to the population. In a more

general sense, the molecules that can be generated by any de

novomodel will be determined by the training set andmany other

design choices. Broadly, constraining the design space to a

carefully enumerated chemical library can bias exploration to-

ward molecules that are synthesizable and/or more fit for a given

application, potentially sacrificing the creativity and theoretically

wider chemical space accessible with de novo design.54

Defining the relationship between different objectives
Once individual objective functions are defined and the chemical

space approach is chosen, the next challenge is to decide how

to consider all objectives simultaneously. The most naive choice

is to simply combine the objective functions into one aggregated

objective function, referred to as scalarization. The scalarized

objective function is most commonly a weighted sum of objec-

tives,55–61 with weighting factors indicating the relative impor-

tance of different objectives. A weighted sum of multiple binding

affinities has been used to identify multi-target62 aswell as selec-

tive inhibitors.63 Nonlinear scalarization approaches are also uti-

lized in MMO problems.64–66 For example, Cardoso Gajo et al.

divide predicted drug activity by toxicity to yield a scalarized

objective function.67 The objective function can also be framed
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accommodate various stopping criteria. We also emphasize that while an autoencoder architecture is depicted in both distribution learning and conditional
generation, these generators can also be recurrent neural networks or other generative architectures.
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as a product of Booleans,68 each of which denotes whether a

given threshold is met. This scalarization approach has been uti-

lized to identify multi-target kinase inhibitors.69

Booleans can also be summed to define an objective function,

commonly referred to as multi-property optimization.70 Desir-

ability functions, another common scalarization method, trans-

form one or more objectives into a scale-free value between

0 and 1.71–73 As with the definition of individual objectives, the

scalarization function must be justified by the use case. There

are alternatives to scalarization that also reduce amulti-objective

optimization into one that can be solved with single-objective

algorithms, such as defining a hierarchy of objective impor-

tance74 or using alternating rewards to maximize each objective

in turn.75,76

However, the solution to a scalarized multi-objective problem

is equivalent to just a single point out of themany non-dominated

solutions that exist on the Pareto front. Scalarization is overly

simplistic and requires a user to quantify the relative importance

of different objectives. It therefore fails to inform a user about the

trade-offs between objectives. Even when the relative impor-

tance of objectives is known or can be approximated a priori,

scalarization is strictly less informative than Pareto optimization,

which identifies the full set of molecules that form a Pareto front.

We focus exclusively on Pareto optimization approaches to

molecular discovery throughout the remainder of this review.
EXAMPLES OF MMO FROM VIRTUAL LIBRARIES

Library-based MMO aims to identify the Pareto front (or a set

close to the Pareto front) of a large molecular library while

scoring few molecules with the objectives. The well-established

BO workflow (Figure 3B) is exemplified by the retrospective

studies of del Rosario et al.77 and Gopakumar et al.78 In general,

the iterative optimization scheme entails training a surrogate

model to predict properties of interest, selecting molecules for

acquisition using surrogate model predictions and uncertainties,

scoring the acquiredmolecules with the ground-truth objectives,

and retraining the surrogate model.

Janet et al.47 apply this methodology to discover transition

metal complexes for redox flow battery applications with maxi-

mized solubility and redox potential. Ideal complexes must be

soluble in polar organic solvents commonly used for flow batte-

ries and have high redox potentials to yield sufficient cell voltage.

The design space the authors explore is a combinatorial library of

almost 3 million complexes. A neural network surrogate model

predicts solubilities and redox potentials from feature vector rep-

resentations of complexes.79 DFT calculations served as the

oracle for both solubility and redox potential, and the expected

hypervolume improvement acquisition function was used. To

encourage exploration of structurally diverse complexes, the

top 10,000 performers according to EHI were clustered in feature
Patterns 4, February 10, 2023 7
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space to identify and evaluate 100 medoids. Improvements of

over three standard deviations from the initial random set of

complexes were observed for both objectives in just five itera-

tions, which the authors estimate to represent a 500X reduction

in simulations compared with a random search.

In a similar vein, Agarwal et al.44 use library-based Pareto opti-

mization to search for redox-active materials with minimized

reduction potential and solvation free energy. A third objective

penalized deviation from a target peak absorption wavelength

of 375 nm. Candidates were scored with expected hypervolume

improvement, while crowding distance constraints ensured

acquisition of a diverse set along the Pareto front. When retro-

spectively applied to a dataset of 1,400 molecules, a random

search required 15X more evaluations than did BO to acquire

molecules dominating 99% of the total possible hypervolume.

Then, a prospective search was performed on a set of 1 million

molecules, with the prior dataset serving as the first set of ac-

quired molecules. Of the 100 molecules acquired during pro-

spective BO iterations, 16 new Pareto-optimal molecules were

identified.

Most pool-based MMO problems follow this exact workflow

with minor variability in the choice of acquisition function and

consideration of diversity. This approach works effectively and

is almost guaranteed to outperform random search baselines.

While there is certainly room for algorithmic improvement

(e.g., increasing sample efficiency of surrogate models,

exploring the effects of batch size and diversity), we expect

that future work will largely focus on additional applications

incorporating more meaningful objective functions and experi-

mental validation.

EXAMPLES OF MMO USING GENERATIVE MODELS

The primary drawback of pool-based MMO is the explicit

constraint on the chemical space that can be accessed. De

novo design relaxes this constraint and can, in principle, explore

a wider region of chemical space. At the same time, de novo

design can introduce additional challenges related to chemical

validity80 and synthesizability.81 In many generative models,

molecules are proposed as SMILES/SELFIES strings, graphs,

or synthetic pathways. Some generate novel molecules by de-

coding continuous embeddings into discrete molecular struc-

tures while others modify those already identified with discrete

actions. We focus not on the details of each model, but instead

on how certain categories of models aid in the molecular optimi-

zation task. A reader interested in a detailed discussion of gener-

ative models, which is outside the scope of this review, is

directed to other publications.80,82–84

The myriad of multi-objective de novo design approaches

noticeably lack standardization. Unlike library-based discovery

where multi-objective optimization is a modest extension of

BO, the adaptation of generative models to MMO is not nearly

as straightforward. We therefore introduce another categoriza-

tion scheme for case studies in this section, as summarized in

Figure 6.

Iterative retraining for distribution learning
Generative models that are designed for distribution learning are

intended to ideate molecules exhibiting a distribution of struc-
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tures similar to those of the training set.85 A very basic approach

to optimization with an unsupervised generativemodel is to sam-

ple a set of molecules, evaluate their properties, and identify

those that optimize the objective function; to extend this to

multi-objective optimization, the Pareto front of the sampled

set can be identified by evaluating all oracles.86 This approach

essentially uses a generative model to define a virtual library suit-

able for exhaustive screening. Optimization schemes can use

distribution learning iteratively to progressively shift the distribu-

tion of generated molecules and push the Pareto front. To

achieve this, generative models are iteratively retrained on the

increasingly promising (e.g., closest to the Pareto front) subsets

of the molecules they propose. This process is akin to a simu-

lated design-make-test loop, in which design is analogous to

sampling,make to decoding to amolecule, and test to evaluating

the oracles.

The iterative distribution learning workflow for single-objective

optimization is exemplified by the library generation strategy

defined by Segler et al.87 to identify inhibitors predicted to be

active against the 5-HT2A receptor. Here, a subset of molecules

from the ChEMBL database, with corresponding experimental

pIC50 values against 5-HT2A, was used to train both a SMILES-

based recurrent neural network (RNN) and a QSAR classifier to

predict whether a molecule inhibits 5-HT2A. Then, sequences

of characters were randomly sampled from the RNN to generate

SMILES representations of novel molecules. Molecules pre-

dicted by the QSAR classifier to be active were used to retrain

the model, progressively biasing the generator to propose active

molecules. After four iterations of retraining, 50% of sampled

molecules were predicted to be active, a significant increase

from only 2% in the initial random library. The same procedure

has also been employed using a variational autoencoder to

generate molecules with high docking scores to the DRD3

receptor.88

The extension of themethod tomultiple objectives is best illus-

trated by Yasonik89 for the generation of drug-like molecules. As

before, a recurrent neural network was pretrained to generate

valid molecular SMILES strings. Five oracles associated with

drug-likeness were then minimized: ClogP (estimated lipophilic-

ity), molecular weight, number of hydrogen bond acceptors,

number of hydrogen bond donors, and number of rotatable

bonds. A set of about 10k novel, unique, and valid molecules

were sampled and scored according to the five properties.

NDS was used to select half of these molecules for retraining.

The use of NDS distinguishes this Pareto optimization from Se-

gler et al.’s single-objective optimization. Although continuous

objective values were used during selection of molecules for re-

training, constraints associated with the oracles, derived from

the ‘‘Rule of Three’’90 (an extension of Lipinski’s Rule of 553),

were used to evaluate the generator’s performance. After five re-

training iterations, the fraction of molecules that fulfilled all five

constraints increased from 2% to 33%. While there is no evi-

dence that the Pareto front was shifted outwards (i.e., that the

dominated hypervolume increased) after retraining iterations,

this study demonstrates that a generative model’s property dis-

tributions for multiple objectives can be shifted simultaneously.

In addition to recurrent neural networks, as in the prior

two examples, variational autoencoders and other generative

models can be iteratively retrained to simultaneously fulfill



Figure 7. Advancement of the Pareto front from Abeer et al. using iterative retraining for distribution learning
Both (A) and (B) are from the same optimization task, with each set only showing two objectives for ease of visualization. The first and second columns are the
distribution of the training molecules and the first batch of sampled molecules, respectively. The following 3 columns depict molecules sampled from the model
after 1, 5, and 10 iterations. Reproduced from Abeer et al.92 with permission from the authors.
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multiple property constraints.91 Abeer et al.92 describe one such

approach to generate drugs with high predicted binding affinity

to the DRD2 receptor, high ClogP, and low synthesizability score

using a VAE as the unsupervised generator. After initial training,

sampling, and scoring, the best molecules were selected ac-

cording to their Pareto rank, but some random molecules were

also included in the retraining set. Importantly, the authors

show a progression of the two-dimensional Pareto fronts beyond

those of the original training set: they identified molecules that

are strictly superior to (i.e., that ‘‘dominate’’ in a Pareto optimality

sense) the best molecules in the training set. Two such plots are

shown in Figure 7. Here, it is clear that this method is capable of

increasing the dominated hypervolume and identifying novel

molecules that have property values outside of the objective

space spanned by the training set.

Genetic algorithms
In contrast to many deep learning architectures, genetic algo-

rithms (GAs) do not rely on a mapping between continuous

and discrete spaces. Instead, molecules are iteratively trans-

formed into new ones using evolutionary operators like muta-

tions and crossovers. Molecularmutationsmay include the addi-

tion or removal of atoms, bonds, or molecular fragments, while

molecular crossover involves molecular fragment exchange be-

tween two parent molecules. GAs begin with a starting popula-

tion of molecules that are scored by the oracle function(s). Selec-

tion criteria are imposed to determine which molecules in the

population are chosen as parents to be propagated. This selec-

tion step is what guides a GA to optimized molecules and, like

an acquisition function in BO, determines whether an optimiza-

tion is a Pareto optimization or not. Evolutionary operators are

randomly chosen and applied to the parents, and the population

is updated with the resulting molecules.

GAs were the first popularized polymer93 and small-

molecule94 generators. In 1995, Sheridan and Kearsley94 pro-
posed generating small molecules by iteratively evolving integer

sequence representations of molecules. That same year,

Weber et al.95 used a GA to find optimal molecules from a syn-

thetically enumerated library. Since then, GAs have adopted

evolutionary operators which function directly on molecular

graphs96–98 or SMILES strings.99 Some GAs even mutate mole-

cules using chemical reaction templates to encourage synthesiz-

ability.95,100,101 Multiple objectives can be scalarized during

selection to frame a multi-objective GA as a single objective

one.96,98,102,103

As with any generative model, if the selection criteria consider

multiple objectives simultaneously without imposing assump-

tions about relative importance, a GA can advance the popula-

tion’s Pareto front. One such GA was proposed by Brown

et al.97 to generate ‘‘median molecules,’’ which maximize Tani-

moto similarity104 to two different molecules simultaneously.

In each iteration, molecules in a population are manipulated

with either mutations (add/delete atoms, add/delete bonds) or

crossovers (molecular fragment exchange between two parent

molecules). NDS, using the two Tanimoto similarities as objec-

tives, determine which molecules are selected for propagation.

The critical adaptation for the multi-objective case is the use of

Pareto ranking—specifically, NDS—as a selection criterion,

instead of using a single property estimate or a scalarization of

multiple properties.

A comparable multi-objective GA, presented by Nicolaou

et al.,48 generates ligands with maximized docking scores for a

target receptor (estrogen receptor b) and minimized scores for

a negative but closely related target (estrogen receptor a). As

an extension from the prior example, the NDS selection criterion

was modified to include niching and elitism. Niching encourages

structurally diverse populations by grouping candidates into

niches based on their structural similarity during selection,

and only a set number of molecules may be acquired in each

niche. Promoting diversity can be especially beneficial to GA
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performance, asGAs are constrained by their starting set and set

of modification operators.105,106 When elitism is imposed, all

Pareto-dominant molecules found during prior iterations are

appended to the population before selection to prevent good

molecules from being ‘‘forgotten.’’ The authors report that

both elitism and niching improve optimization performance.

The depicted progression of the Pareto front is replicated here

(Figure 8). The notion of optimizing against a negative target

can be generalized into a ‘‘selectivity score’’ that aggregates

affinity to multiple off-target controls.107 Properties related to

bioavailability, such as blood-brain barrier penetration and

aqueous solubility, can serve as additional objectives for the dis-

covery of novel drug molecules, as reviewed by Ekins et al.28

The effect of diversity-aware acquisition is further explored

by Verhellen,43 wherein the effectiveness of two different multi-

objective GAs that promote Pareto diversity are compared.

Both GAs use NDS to select the populationmembers to be prop-

agated as parents of the next generation. The first, NSGA-II,42

promotes selection of molecules with a larger distance from

other molecules in the objective space and has precedent in

application to a synthesizability-constrained molecular GA.101

The second, NSGA-III,41 enforces diversity by requiring at least

one molecule to be acquired in each of a set of reference regions

in the objective space (Figure 4A). Both GAs are applied to seven

molecular case studies, each with a different set of objectives

including affinity to a target, selectivity, and/or molecular weight.

Using the dominated hypervolume as an evaluation metric, both

multi-objective optimization approaches outperform aweighted-

sum scalarization baseline, but there is no clear winner among

the two NSGA algorithms. A measure of internal similarity indi-

cates that the structural diversity decreased with each evolu-

tionary iteration. Nonetheless, the selection criteria promoted

Pareto diversity, demonstrating that Pareto diversity can be

achieved without necessarily requiring molecular, or structural,

diversity.
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Reinforcement learning
Reinforcement learning (RL)-based generative models are

trained to create molecules by learning to maximize a reward

function quantifying the desirability of generated molecules. In

molecular RL, a policy determines which molecules are gener-

ated and can be iteratively updated to maximize the reward as

new molecules are generated and scored. The set of actions or

choices available to the policy is denoted the action space.

The framing of the reward function, analogous to the BO acqui-

sition function and GA selection criteria, determines whether an

RL method utilizes Pareto optimization.

When the learned policy generates molecules by modifying a

previous population of molecules, the action space may be

comprised of atom- and bond-level graph modifications108–110

or a set of fragment-level graph modifications.111 In a similar

manner, graph modifications resulting from chemical reactions

can constitute the action space to promote synthesizability.112

When the policy is a deep learning generator that designs

molecules from scratch, any de novo generator that decodes

latent variables to a molecule, such as SMILES recurrent neural

networks, can be considered as the policy.113–117 Typically,

these policies are trained using policy gradient algorithms (e.g.,

REINFORCE).118

Most RL approaches tomolecular discovery, and specifically to

drug design,119,120 optimize a reward that considers a single

property113–115 or a scalarized objective.30,59,92,108–112,116,121–126

We are aware of only one molecular RL approach whose reward

function directly encourages molecules to be generated along a

Pareto front. In DrugEx v2, presented by Liu et al.,127 RL is used

togeneratemulti-target drugmolecules. Topromote thediscovery

of molecules along the Pareto front, NDS is used to calculate the

reward. The authors test their algorithm with both this Pareto

reward function and a weighted sum reward function. In the

weighted-sum benchmark, the weighting factors were set as dy-

namic parameters thatwere altered during inference to encourage

themodel tofindsolutionsatdifferent locationson thePareto front,

analogous to the alternating reward approach to scalarization. For

the multi-target discovery case, the fraction of generated mole-

cules with all properties above some threshold values was 81%

with the Pareto scheme and 97%with the weighted sum scheme.

The two approaches were only compared in this constraint-style

evaluation, not in terms of a Pareto optimization criterion such

as hypervolume improvement, so it is not clear if the lackluster

performance of the Pareto optimizer ismerely due to thismisalign-

ment of evaluation criteria.

Conditional generation
Conditional generators produce molecules that are meant to

achieve some set of user-defined properties instead of directly

maximizing or minimizing them in an iterative manner. These

models generate one or more molecules predicted to fulfill

the specified properties in one pass and without any iterative

feedback as in previously discussed approaches. Although

our focus in this review is on multi-objective optimization, we

feel that discussing the role of conditional generators in MMO

is necessary due to their prevalence in the field and the ease

of extending from single-objective (single-constraint) condi-

tional generators to multi-objective (multi-constraint) condi-

tional generators.
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Many conditional generators are autoencoders that map

molecules to latent embeddings and vice versa. To generate

molecules with specific properties, the latent variables of these

generators can be manipulated during training such that they

represent the properties of interest. One such manipulation

applied to variational autoencoders is to recenter the prior

distribution around the associated molecule’s property value c

instead of the origin, encouraging the latent distribution to

match Nðc; s2Þ instead of Nð0; s2Þ.128–130 This approach can

be expanded to multiple objectives by centering each latent

dimension along a different property of interest.128 Then, during

inference, sampled latent variables are chosen according to the

desired property values with at least partial success.

Autoencoders can also be manipulated for conditional

generation by directly feeding the property value(s) of training

molecules to the decoder during training.131,132 As one example,

Lim et al.133 use this approach to fulfill certain ‘‘drug-like’’ prop-

erty criteria. During CVAE (conditional VAE) training, a condition

vector including molecular weight, ClogP, number of hydrogen

bond donors, number of hydrogen acceptors, and topological

polar surface area is appended to the latent space during decod-

ing. Then, during generation, a manually specified conditional

vector influences the decoder to generate molecules with the

stated properties. In all case studies, less than 1% of generated

molecules have properties within 10% of the values set in the

condition vector. Another study using a similar architecture134

demonstrates that it is possible for the properties of up to 33%

of generatedmolecules, ‘‘when rounded up,’’ to reflect the spec-

ified properties. In this case, it appears that this fraction strongly

correlates with how many training molecules also fulfilled those

constraints.

Some conditional generators modify existing molecular

graphs or scaffolds provided as input instead of generating

molecules from scratch. These models are typically trained

with matched molecular pairs: pairs of molecules with only one

well-defined structural transformation that causes a change in

molecular properties.135,136 One such single-objective genera-

tive model is intended to ‘‘translate’’ molecules that are inactive

as DRD2 inhibitors to active inhibitor molecules,137 wherein ac-

tivity is predicted by a trained classifier. The generative model

is presumed to learn graphical translations that most contribute

to inhibitory strength. This methodology can be extended to the

multi-constraint case if improvements in multiple properties are

desired.138–140 For example, MolGPT, a conditional generator

proposed by Bagal et al.,141 accepts a scaffold and desired

property values. It then outputs amolecule that it believes to fulfill

the input constraints. Molecules are completed from scaffolds as

SMILES strings, and the model is trained on sets of {scaffold,

molecule, properties}. The success of MolGPT in meeting target

properties relies on having molecules with that property be well-

represented in the training set. While MolGPT is able to generate

molecules conditioned on multiple properties, the authors do

not report whether their model is capable of generating mole-

cules with combinations of property values not present in the

training set.

The effectiveness of conditional molecule generators depends

not only on their ability to generate valid and unique molecules,

but also on the accuracy of the implicit molecule-property

model. If this model is inaccurate, the generator will suggest mol-
ecules that do not actually exhibit the desired properties. We

further emphasize that, in order to identify Pareto-optimal mole-

cules, themodel must be able to extrapolate past the training set

because, by definition, Pareto-optimal molecules have proper-

ties (or combinations of properties) that are not dominated by

members of the training set.

Therefore, we find it unlikely that these non-iterative condi-

tional generators will succeed in advancing the Pareto front.

This is in contrast to iterative optimization methods, wherein

the predictive capability of the generators is improved for newly

explored regions of chemical space with each iteration.

Furthermore, the nature of conditional generators requires that

a user know what property value ranges are feasible. Based on

the discussed and other case studies,142,143 conditional genera-

tors perform well primarily when attempting to generate novel

molecules with property combinations spanned by the training

set. A pIC50-conditioned model would propose some set of mol-

ecules if asked to achieve a pIC50 value of 100, even though such

a value is unrealistic. Their behavior in these settings is not well

understood, so a user may need to know which property

constraints are valid or possible. Due to these concerns, we

caution the reader that conditional generators may not be most

appropriate for Pareto optimization tasks.

Hybrid approaches
The case studies that we have shared so far fall neatly into our

defined categories. However, certain other approaches that

combine methods from multiple categories or otherwise deviate

from this classification are worth mentioning.

Grantham et al.45 introduce one such hybrid approach, in

which latent representations of molecules are mutated with a

GA and decoded to generate new molecules. A variational au-

toencoder is first trained to encodemolecules into latent vectors.

After encoding the starting population, mutations are applied to

their corresponding latent vectors, which are then decoded.

From this new set of evolved molecules, NDS with a crowding

distance constraint (specifically, NSGA-II42) is used to select

new molecules to use for retraining the autoencoder. The

proposed method outperforms two BO baselines in terms of

the hypervolume of the final Pareto front when applied to an

optimization of ClogP, QED, and synthesizability score. A similar

methodology was used to optimize both drug-likeness proper-

ties and binding affinity (estimated via docking scores) to

carbonic anhydrase IX.144

Iterative retraining has also been used to improve the perfor-

mance of a conditional generator. In one example, a conditional

graph generator is fine-tuned with molecules that are active

against both JNK3 and GSK3b.145 This workflow essentially fol-

lows the iterative retraining of distribution learning algorithms,

but uses conditional generation to provide an extra bias toward

samplingmoleculeswith favorable properties. In a similarmanner,

RL methods can be considered conditional generation if the

reward function favors molecules with a target property pro-

file.146–148 Two such methods69,149 use RL to generate molecules

that are predicted to be dual inhibitors of GSK3b and JNK3

receptors according to pretrained surrogate models. In the final

populations in both studies, 100%ofmolecules are active against

both inhibitors. However, the dataset used in both studies for

training already includes a small fraction of dual inhibitors.
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Therefore, discovering ‘‘active inhibitors’’ in this case is equivalent

to discovering the chemical space that is classified as active ac-

cording to the surrogate models, and this task is easier than

extrapolating with a continuous oracle. In general, the reported

success of generators conditioned on Boolean values (instead of

continuousones) canbeoveroptimistic, as thedegreeof optimiza-

tion success is harder to quantify with metrics such as the hyper-

volume.

DISCUSSION

In the description of library-basedMMO,we explained that these

methods are a natural extension of BO. In contrast, de novo

methods stray farther from classic BO, although some aspects

of BO acquisition functions are present in generative workflows.

In particular, NDS is often used as the selection criterion for re-

training (distribution learning) or propagation (GAs). Other con-

ventional BO acquisition functions, such as EHI and PHI, are

rarely incorporated into optimization with generative models.

These acquisition functions use the uncertainty in surrogate

model predictions, which aids in the balance between explora-

tion and exploitation. But most generative optimization architec-

tures score molecules with the ground truth objectives during

selection, thus bypassing uncertainty quantification and making

EHI and PHI unusable as acquisition functions. An opportunity

exists to incorporate Bayesian principles into de novo design

by including a separate surrogate model that predicts objective

function values and can be retrained as new data are acquired to

guide selection. These and other adjustments to de novo optimi-

zation approaches may help bridge the gap between generation

and model-guided optimization.

We have also observed that the performance of Pareto opti-

mization approaches is often evaluated using individual prop-

erty values or constraints. These metrics, however, reveal little

about the combination of properties of discovered molecules,

which is of foremost interest in MMO. Hypervolume improve-

ment can indicate the shift in the Pareto front, but other quali-

ties of the discovered molecules related to the Pareto

front150,151 can be of equal importance, including the density

of the Pareto front or the average Pareto rank of the molecules.

In molecular discovery, imperfect property models are often

used as oracles. In these cases, it is beneficial to discover a

dense Pareto front and many close-to-optimal molecules

according to QSPR predictions, even if not all increase the

hypervolume. Naturally, some molecules that are predicted to

perform well will not validate experimentally, and having a

denser population to sample from will increase the probability

of finding true hits. For the same reason, promoting structural

diversity and not just Pareto diversity is a way to hedge one’s

bets and avoid the situation where none of the Pareto-optimal

molecules validates.

In batched multi-objective optimization, Pareto diversity

can be considered during acquisition to promote exploration.

In molecular optimization, structural diversity similarly encour-

ages exploration of a wider region of chemical space. Thus, in

MMO, both potential measurements of diversity are relevant,

and either or both can be used during optimization. At this point,

neither diversity metric has been shown to outperform the other

in MMO tasks, and the question of how best to incorporate both
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into acquisition (or whether this actually benefits optimization) re-

mains. At present, diversity-aware acquisition is more commonly

incorporated into multi-objective GAs rather than other optimi-

zation architectures like RL or iterative distribution learning,

although diversity-promoting acquisition functions may improve

the performance of these generative models as well.

We have argued that Pareto optimization is a more practical

approach to many molecular discovery tasks than scalarization

or constrained optimization, but the ability of Pareto optimization

to scale to several dimensions must also be addressed. NDS

increasingly fails to differentiate the optimality of solutions with

more objectives, as more and more points are non-dominated

in a higher-dimensional space.152 The numerical estimation of

hypervolume has a computational cost that scales exponentially

with the number of objectives, making EHI and PHI acquisition

functions also increasingly difficult to use in high dimensions.152

The increased computational costs associated with fine-tuning

many surrogate models and scoring candidates for every objec-

tive contribute to scalability issues as well. Considering the chal-

lenges faced with Pareto optimization of many (more than three)

objectives, scalarizing certain objectives or converting some to

constraints to make the problem solvable may be the most prac-

tical approach, especially when some objectives are known to

be more important than others. The question of whether Pareto

optimization can robustly scale to many objectives is a worth-

while one only if a problem cannot be feasibly reduced. The

visualization of the Pareto front is an additional consideration;

objective trade-offs are more easily conveyed with a Pareto front

of two or three objectives. Ultimately, the optimal formulation of

anMMO problemwill depend on the use case, and collaboration

with subject matter experts can ensure that the problem formu-

lation is feasible but does not impose unrealistic assumptions.

Beyond these unique challenges posed bymulti-objective opti-

mization, many challenges from single-objective optimization

remain relevant.25,80,153 The first is the need for realistic oracle

functions that can be evaluated computationally but meaningfully

describe experimental performance; this is closely related to the

need formore challengingbenchmarks tomimic practical applica-

tions.OptimizingQED,ClogP,or aBooleanoutput fromaclassifier

are easy tasks and are not good indicators of robustness or gener-

ality. Generativemodels specificallymust also prove effectivewith

fewer oracle calls, which is often the bottleneck when molecules

must be scored with experiments or high-fidelity simulations.154

Active learning and optimal experimental design techniques155

will continue to inspire methods that improve molecular optimiza-

tion sample efficiency.49,52 For experimental applications, the syn-

thesizability of generated molecules is an additional factor that

must be considered81 and can be cast as a continuous objective

or a rigid constraint. Experimental prospective validation is essen-

tial to demonstrate the viability of molecular discovery algorithms,

although algorithmic advances can be made more rapidly with

purely computational studies.

Conclusion
Although many approaches to computer-aided molecular

design have been developed with just single-objective optimiza-

tion in mind, molecular discovery is a multi-objective optimiza-

tion problem. In certain situations, such as optimization from a

library (BO-accelerated virtual screening), the extension from
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single-objective to multi-objective requires only minor modifica-

tions, e.g., to the acquisition function and to the number of

surrogate models. In contrast, de novo design workflows vary

more in methodology and are less directly analogous to BO.

The use of Pareto rank as a reward (for RL) or the use of NDS

to select sampled molecules to include in subsequent popula-

tions (for GAs) or training sets (for iterative distribution learning)

replaces greedy acquisition functions. Yet, there is an opportu-

nity to define new generative workflows that more directly incor-

porate model-guided optimization methods with consideration

of model uncertainty. Batching in MMO can encourage chemical

space exploration by rewarding structural diversity, Pareto diver-

sity, or both, but best practices around diversity-aware batching

are not well established. Emerging workflows will benefit from

the adoption of challenging benchmarks and evaluation metrics

that measure the dominated hypervolume or Pareto front den-

sity. As newly proposed molecular discovery tools increasingly

emphasize multi-objective optimization, emerging methods

must address the algorithmic complexities introduced by Pareto

optimization.
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