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Public health interventions guided by clustering of HIV‑1 molecular sequences may be impacted by 
choices of analytical approaches. We identified commonly‑used clustering analytical approaches, 
applied them to 1886 HIV‑1 Rhode Island sequences from 2004–2018, and compared concordance 
in identifying molecular HIV‑1 clusters within and between approaches. We used strict (topological 
support ≥ 0.95; distance 0.015 substitutions/site) and relaxed (topological support 0.80–0.95; distance 
0.030–0.045 substitutions/site) thresholds to reflect different epidemiological scenarios. We found 
that clustering differed by method and threshold and depended more on distance than topological 
support thresholds. Clustering concordance analyses demonstrated some differences across 
analytical approaches, with RAxML having the highest (91%) mean summary percent concordance 
when strict thresholds were applied, and three (RAxML‑, FastTree regular bootstrap‑ and IQ‑Tree 
regular bootstrap‑based) analytical approaches having the highest (86%) mean summary percent 
concordance when relaxed thresholds were applied. We conclude that different analytical approaches 
can yield diverse HIV‑1 clustering outcomes and may need to be differentially used in diverse public 
health scenarios. Recognizing the variability and limitations of commonly‑used methods in cluster 
identification is important for guiding clustering‑triggered interventions to disrupt new transmissions 
and end the HIV epidemic.

Prevention of new HIV transmissions remains a major challenge in the global HIV epidemic, and innovative 
methods are needed to disrupt  them1. Inferences about HIV transmission networks could guide public health 
interventions and assist in design of prevention  strategies2–4. Despite recent advances in HIV research, including 
more robust and affordable viral sequencing and sophisticated bioinformatic pipelines, information about the 
structure and dynamics of HIV transmission networks, and how they should inform public health interventions, 
remains poorly understood.

HIV-1 pol sequences obtained through routine clinical drug resistance testing have been used successfully to 
identify molecular clusters, characterize epidemics, and disrupt  outbreaks2,3,5. Accurate identification and moni-
toring of molecular HIV clusters may improve understanding of HIV transmission networks and the underlying 
mechanisms of virus spread, and are integrated into the four pillars towards ending the US HIV  epidemic2,6.

The definition and determination of a “molecular HIV cluster” depends on statistical methods, the software 
tools used to implement those methods, analysis parameters, and thresholds used to interpret results (see litera-
ture review in Supplementary Materials). Heterogeneity of analytical approaches, dependence on parameters such 
as “threshold” and the interpretation of clustering results make it difficult to compare results between and across 
studies, or to discern whether and how the choice of method impacts clustering results. Limited comparisons of 
methods for HIV clustering have illustrated  variability7–17, although justification for any specific method or a sys-
tematic comparison between methods are limited. It remains unclear whether specific methods should be applied 
uniformly across different public health and epidemic scenarios, or whether they should be tailored to specific 
settings or goals. In the context of ending the HIV  epidemic6, addressing these research gaps may improve HIV 
cluster analysis and its real-time incorporation into public health interventions to disrupt HIV transmissions.
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Knowing how distinct analytical approaches identify molecular HIV clusters under different parameteriza-
tions can be used to select one or more of those methods for public health surveillance and outreach. In this study, 
we performed a literature review, selected commonly-used approaches to identify molecular HIV-1 clusters, 
and assessed the sensitivity of cluster structure to method and threshold selection. Determining within- and 
between- method concordance across different parameterizations and thresholds leads to better understanding 
of their strengths and limitations, and ultimately may be used to improve public health efforts to prevent new 
HIV transmissions.

Results
Sensitivity to topological support and distance thresholds within analytical approaches. Fig-
ure  1 shows, for each method and for a range of 49 topological support and TN93-distance thresholds, the 
proportion of sequences that are in clusters. Within specific methods, there is little difference across topological 
supports at the lower end of the scales. At topological support of 0.90 and more prominently 0.95, clustering 
proportion was lower for most methods, except for (a) IQ-Tree ultrafast bootstrap (Fig. 1J) at distance thresh-
old ≤ 0.025 substitutions/site, and (b) its related BOOSTER version (Fig. 1K). The effect of distance threshold 
was more pronounced over the range of distance thresholds 0.010‒0.045 substitutions/site, with lower cluster-
ing proportion at lower distance thresholds. Without using any distance threshold, some methods placed all 
sequences in a single or very few clusters [e.g., low topological support in FastTree aLRT (Fig. 1C), PhyML aLRT 
(1F) ultra-fast IQ-Tree BOOSTER (1K), and ultra-fast IQ-Tree (1J)]. This is because strong topological support 
for deep nodes in the phylogeny can create artificial large clusters that include most tips, if distance thresholds 
do not exclude these deeper nodes from cluster identification. As compared to HIV-TRACE, the model-based 
methods had lower proportions of clustered sequences at compatible levels of distance thresholds (solid and 
dashed lines of the same color in Fig. 1). Similar patterns were observed for the number of identified clusters 
(Supplementary Figure S3).

To test the robustness of these phylogenetic reconstructions and examine whether results vary across runs 
we used RAxML as an example. We conducted 100 repeated runs (1000 bootstrap replications each) using 
different seed for each run, and from each run inferred proportions of viral sequences in clusters for the 49 

Figure 1.  Comparison of proportion of HIV-1 sequences in clusters within commonly-used analytical 
approaches. Graphs A-M each represent the 12 model-based methods/variations examined. Solid lines in each 
graph represent the range of proportions of clustered sequences (Y axis) according to topological support (X 
axis) and distance thresholds (colored squares (legend at the top of the Figure), matching the line colors). Color-
matching dashed lines in each graph represent the range of proportions of clustered sequences identified by 
HIV-TRACE according to five distance thresholds (see text for details).
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combinations of topological support and pairwise distances. We found extremely low variance (median 0.022%; 
IQR 0.011–0.057%; range 0.006–0.398%) across repeated runs, supporting robustness of findings.

The effect of cluster definition criteria on the size of individual clusters was minimal across the 49 combi-
nations of topological support and pairwise distances using RAxML (Supplementary Figure S4). Cluster size 
distributions demonstrated similar shape patterns with many small clusters and few large clusters throughout 
all cluster definition criteria.

Comparison of clustering patterns between analytical approaches. Examination of sequence 
clustering patterns between the 12 model-based methods by the 49 topological support and distance thresh-
old combinations revealed two distinct patterns (Fig. 2). For the most stringent topological support (rightmost 
column) and the most relaxed distance thresholds (two top rows), there is considerable variation in clustering 
across the selected methods. In contrast, relaxed topological support combined with intermediate or stringent 
distance thresholds demonstrated noticeable similarity in clustering across the selected methods. Similar pat-
terns were found for the number of identified clusters (Supplementary Figure S5).

Differences between method pairs in proportions of clustered sequences. Proportions of clus-
tered sequences in each of the seven model-based methods plus HIV-TRACE, according to both strict and 
relaxed thresholds, are summarized in Table 1. The proportion of sequences that clustered ranged from 22% 
(MEGA; 156 clusters) to 30% (IQ-Tree ultrafast; 187 clusters) with strict thresholds, and 38% (MEGA; 223 clus-
ters) to 54% (PhyML aLRT; 234 clusters) with relaxed thresholds. Using HIV-TRACE with a threshold of 0·015 
substitutions/site, 36% of viral sequences were found in 172 clusters.

Differences in proportions of clustered sequences (and 95% confidence interval (CI)) between method-
pairs using strict and relaxed thresholds are presented in Fig. 3 (in descending order of differences) and Sup-
plementary Table S2; these CIs are not adjusted for multiple comparisons. The differences ranged from − 14 to 
7% for the strict thresholds (largest being 14% between MEGA and HIV-TRACE) and from − 13 to 18% for the 
relaxed thresholds (largest being 18% between PhyML and HIV-TRACE). Differences in proportions of clustered 
sequences between model-based methods and HIV-TRACE (seven leftmost comparisons in Fig. 3) had nega-
tive values for strict thresholds and positive values for relaxed thresholds. For strict thresholds, HIV-TRACE 

Figure 2.  Comparison of proportion of HIV-1 sequences in clusters between commonly-used analytical 
approaches. Each of the 49 panels demonstrates proportions of HIV sequences in clusters (Y axis) identified 
by the 12 selected methods (X axis; also represented by colors and outlined in the legend above the panels), 
representing a distinct combination of topological support (outlined in the gray line above the panels) and 
distance thresholds (outlined in the gray line to the right of the panels); see text for more details.
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clustered between 9 and 14% (mean 10%) more sequences than model-based methods. In contrast, for relaxed 
thresholds, the proportion of sequences placed in a cluster by HIV-TRACE was between 1 and 18% (mean 9%) 
lower than for model-based methods.

Concordance of clustering: identifying similar sequence pairs in the same clusters. We exam-
ined concordance of the seven model-based methods and HIV-TRACE in identifying the same sequence pairs in 
the same clusters (Fig. 4; asymmetrical heatmaps for strict and relaxed thresholds; Supplementary Tables S3‒S4). 
At the strict set of thresholds (Fig. 4A; Supplementary Table S3) the median percent concordance (proportion of 
pairs of sequences that are clustered by both method-pairs) was 93% (IQR 78‒98%; range 17‒100%). Two 
noticeable exceptions were (a) MEGA (fifth horizontal line) that shared only 38‒45% of clustered sequence 

Table 1.  HIV-1 clusters identified by seven commonly-used analytical approaches according to strict and 
relaxed sets of topological support and distance thresholds. HIV-TRACE at 0.015 TN93 distance threshold 
identified 172 clusters (671 sequences in clusters; 36%). aLRT approximate likelihood ratio test, MCL 
maximum composite likelihood, ufast ultrafast bootstrap, # number.

Methods

Strict thresholds Relaxed thresholds

Topological support

Mean TN93 
pairwise 
distances

# Of clusters (# 
of sequences in 
clusters; %) Topological support

Mean TN93 
pairwise 
distances

# Of clusters (# of 
sequences in clusters; 
%)

RAxML 0.95; rapid bootstrap; 
1000 replicates 0.015 167 (500; 27%) 0.80; rapid bootstrap; 

1000 replicates 0.045 220 (847; 45%)

FastTree aLRT 0.95; aLRT 0.015 163 (500; 27%) 0.90; aLRT 0.030 212 (856; 45%)

FastTree bootstrap 0.95; regular bootstrap; 
1000 replicates 0.015 146 (451; 24%) 0.80; rapid bootstrap; 

1000 replicates 0.045 201 (772; 41%)

PhyML aLRT 0.95; aLRT 0.015 162 (496; 26%) 0.90; aLRT 0.045 234 (1019; 54%)

MEGA MCL; 0.95; regular boot-
strap; 1000 replicates 0.015 156 (411; 22%) MCL; 0.80; regular boot-

strap; 1000 replicates 0.045 223 (712; 38%)

IQ-Tree ufast 1.0; ultrafast bootstrap; 
1000 replicates 0.015 187 (573; 30%) 0.95; ultrafast bootstrap; 

1000 replicates 0.030 231 (913; 48%)

IQ-Tree regular 0.95; regular bootstrap; 
100 replicates 0.015 146 (439; 23%) 0.80; regular bootstrap; 

100 replicates 0.045 198 (758; 40%)

Figure 3.  Differences of proportions of clustered HIV-1 sequences between method-pairs. The graph represents 
differences in proportions of clustered HIV-1 sequences (Y axis; shown with 95% CI) that were identified by 
pairs of the seven methods (X axis). Differences are ranked from left to right in descending order of absolute 
values, according to relaxed (red squares) and strict (green squares) thresholds. The red dashed line outlines a 
proportion difference of zero. Positive or negative differences in proportions depend on the directionality of the 
comparison between each methods-pair; see text for more details.
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pairs identified by other model-based methods, and only 17% of pairs identified by HIV-TRACE; and (b) HIV-
TRACE (most left vertical line)—which shared between 17 and 41% of sequence pairs that were detected by 
other methods. At the strict thresholds, RAxML demonstrated the highest mean summary percent concordance 
(88%), and HIV-TRACE the lowest (65%).

At the relaxed set of thresholds (Fig. 4B; Supplementary Table S4), the median percent concordance was 
82% (IQR 69‒99%; range 38‒100%). MEGA demonstrated better concordance than in the strict set, 38‒61%. 
PhyML aLRT detected ≥ 94% of sequence pairs clustered in other model-based methods (80% of sequence pairs 
identified in clusters by HIV-TRACE). However, only 38‒78% of sequence pairs that clustered in PhyML aLRT 
were found in clusters by other methods. FastTree regular bootstrap demonstrated the highest mean summary 
percent concordance (87%), while MEGA (73%) was the lowest among model-based methods. Overall, the range 
of mean summary percent concordance between analyzed methods was 65–88% for the strict thresholds and 
69‒87% for the relaxed thresholds.

Concordance of clustering: Identifying identical clusters. At the strict thresholds the median per-
cent concordance in identifying identical clusters in all pairwise comparisons of methods was 84% (IQR 78‒92%; 
range 67‒97%) (Fig. 5A; Supplementary Table S5). MEGA was on the lower end of identifying identical clusters 
(70‒85%). RAxML demonstrated the highest mean summary percent concordance (88%), and MEGA (82%) the 
lowest among model-based methods. At the relaxed set of thresholds (Fig. 5B; Supplementary Table S6), median 
percent concordance was 72% (IQR 63‒80%; range 38‒95%). RAxML had the highest mean summary percent 
concordance (79%), while PhyML aLRT (64%) had the lowest among model-based methods. Overall, the range 
of mean summary percent concordance between analyzed methods in this analysis was 75‒88% for the strict 
thresholds, and 57‒79% for the relaxed thresholds.

Concordance of clustering: identifying non‑clustered sequences. For the strict set of thresholds 
the median percent concordance in non-clustered sequences was overall high (98%; IQR 94‒99%; range 81‒100%; 
Fig. 6A; Supplementary Table S7); RAxML had the highest mean summary percent concordance (97%), followed 
by four other model-based methods at 96%, IQ-Tree ultra-fast bootstrap at 95% and MEGA MCL at 94%; while 
HIV-TRACE was the lowest (92%). For the relaxed set of thresholds, median percent concordance was 95% (IQR 
87‒98%; range 70‒100%; Fig. 6B; Supplementary Table S8), with a tied highest range for RAxML, FastTree 
regular bootstrap and IQ-Tree regular bootstrap (94% each); and the lowest for PhyML aLRT (88%). Overall, 
the range of mean summary percent concordance between analyzed methods in this analysis was 92‒97% for the 
strict set of thresholds, and 88‒94% for the relaxed thresholds.

Figure 4.  Concordance of HIV-1 clustering: proportion of sequence pairs clustered by method-pairs. In these 
asymmetric heatmaps, each of the 64 small squares in each panel represents the proportion of sequence pairs 
that were clustered together in one of the eight methods examined (listed at the bottom of the heatmap), and 
also in the second paired method (listed on the left of the heatmap). For example, the 3rd square from the left 
in the top row shows proportion of sequence pairs that clustered together by IQ-Tree ultra-fast bootstrap that 
also clustered together by RAxML; with the denominator being the proportion of clustered sequence pairs in 
IQ-Tree ultra-fast bootstrap analysis). The squares on the diagonal line from bottom left to upper right of each 
panel show concordance between the same methods, which is always 100%. Panel A demonstrates analyses 
according to strict thresholds and panel B according to relaxed thresholds (for more methods and thresholds 
details see text and Table 1). The scale of proportions for both panels is also shown.
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Figure 5.  Concordance of HIV-1 clustering: proportion of identical clusters in method-pairs. In these 
asymmetric heatmaps, each of the 64 small squares in each panel represents the proportion of identical clusters 
that were identified in one of the eight methods examined (listed at the bottom of the heatmap), and also in 
the second paired method (listed on the left of the heatmap). The squares on the diagonal line from bottom 
left to upper right of each panel show concordance between the same methods, which is always 100%. Panel 
A demonstrates analyses according to strict thresholds and panel B according to relaxed thresholds (for more 
methods and thresholds details see text and Table 1). The scale of proportions for both panels is also shown.

Figure 6.  Concordance of HIV-1 clustering: proportion of sequences not clustered by method-pairs. In these 
asymmetric heatmaps each of the 64 small squares in each panel represents the proportion of non-clustered 
sequences that were identified in one of the eight methods examined (listed at the bottom of the heatmap), 
and also in the second paired method (listed on the left of the heatmap). The squares on the diagonal line from 
bottom left to upper right of each panel show concordance between the same methods, which is always 100%. 
Panel A demonstrates analyses according to strict thresholds and panel B according to relaxed thresholds (for 
more methods and thresholds details see text and Table 1). The Scale of proportions for both panels is also 
shown.
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Taken together, based on the concordance analyses, RaxML-based analytical approaches demonstrated the 
highest average estimates (91%) within the strict set of thresholds. Three (RaxML-, FastTree regular bootstrap- 
and IQ-Tree regular bootstrap-based) analytical approaches had the highest mean summary percent concordance 
(86% each) in the relaxed set of thresholds.

Discussion
Real time identification of HIV clusters can and should trigger public health interventions to disrupt HIV 
transmissions and end the epidemic. In this study, we addressed whether analytical approaches differ in iden-
tification of HIV clusters, and examined concordance between most commonly used analytical approaches in 
identifying molecular HIV clusters. Since there is no gold standard for a ‘true’ HIV cluster we did not attempt 
to ‘validate’ clustering methods. Instead, we aimed to determine the extent of congruence and disagreement 
across approaches on the same empirical dataset. By comprehensively comparing cluster identification within 
and between commonly-used methods in a densely sampled dataset of 1886 HIV-1 subtype B pol sequences in 
Rhode Island, we demonstrate that the choice of methods and thresholds can lead to considerable variation in 
cluster characterization, which may impact the outcomes of integration of these data into public health activities.

Our key findings include, first, the demonstration that different analytical approaches can result in diverse 
identification of HIV-1 molecular clusters. These findings, supported by the within and between methods com-
parisons in identifying HIV molecular clusters, demonstrate that distance thresholds have more noticeable effects 
on clustering than topological support. The choice of distance threshold stringency may be more important for 
identifying molecular HIV clusters than the choice of software tool or analytic method. Second, the use of a 
range of criteria demonstrated heterogeneity in cluster identification among analytical approaches, which was 
more pronounced in stringent topological support and relaxed distance thresholds. Lastly, our introduction of 
the concordance analyses further demonstrated some differences across methods, supporting the same conclu-
sion. This innovative analysis examines not only overall cluster proportions but also specific sequences in each 
cluster and is likely to have significant impact on public health actions that are triggered by cluster identification.

The demonstrated variation in cluster identification can impact public health outcomes. We suggest that 
proper selection of analytical approaches may need to be guided by a public health and/or scientific goal. Thus, 
strict thresholds may be more appropriate for targeting rapidly-growing clusters, disrupting transmission out-
breaks or evaluating an HIV epidemic with low viral  diversity3,18–20. In contrast, relaxed thresholds may be more 
appropriate for routine public health tracking of molecular HIV clusters to inform standard partner notifica-
tions and identify new HIV infections or cases not linked to care; or to perform an evolutionary analysis of an 
HIV-1 epidemic over longer time periods, to account for specifics of sampling and intra-host diversification of 
viral quasi-species over time. These recommendations, which address some of the outlined research gaps, will 
be informed by public health practitioners as these molecular epidemiology approaches are increasingly used in 
public health, and need to be scientifically investigated. Importantly, augmentation of phylogeny by epidemiologic 
data, not performed here but recently  reported14,21, has the potential to further enhance understanding of HIV 
dynamics and public health guidance, and should be further explored.

Comparison of clustering outcomes between model-based methods and the distance-based HIV-TRACE is 
of particular interest because of the abundant recent use of the latter and its incorporation into Departments of 
Health activities for outbreak  investigations2, at least in the USA. We confirmed previous  reports22 that HIV-
TRACE clustering outcomes are quite sensitive to the selection of the distance threshold. We additionally found 
that at compatible levels of distance thresholds, model-based methods identified less sequences in clusters. This 
should not be surprising, as node support, available in model-based methods but not HIV-TRACE, adds more 
stringency to clustering, though the distance estimation compatibility between distance- and model-based meth-
ods should be further examined. It is important to recognize these differences, as method and threshold choices 
could have implications for public health activities. Within the phylogenetic methods, node support values are 
not equal. For example, aLRT is a measurement of non-zero branch length, while traditional bootstrap is meas-
urement of the proportion of sites that support a particular clade. It is likely that these differences contribute to 
the observed disagreement between the model-based methods analyzed. Notably, identified discordance among 
analytical approaches should not imply inferiority, and different tools, including development of new  ones23–29, 
should be used for different scientific and epidemiological scenarios.

We note several limitations of the study. First, despite the densely sampled epidemic in Rhode Island (available 
sequences from ~ 80% of the state’s individuals with HIV), some sequencing data are still missing, which may 
alter clustering, and therefore our results. Second, we utilized partial HIV-1 pol sequences. Longer viral sequences 
may be more informative for identification of molecular HIV  clusters30–33. Third, although we chose the most 
commonly-used analytical approaches for identification of clusters, there are other analytical approaches (e.g., 
Bayesian methods or alternative ways of measuring distance). Fourth, longitudinal evolution of clusters, which 
may be biologically relevant (i.e. clusters may change over time) and might impact discordance among analyti-
cal approaches, was not examined here. Lastly, we used a real-life dataset of only statewide HIV-1 sequences, 
which though beneficial and unique, mandates expansion with non-local sequences, as well as extension to other 
datasets, populations and geographic areas, to determine if and how sampling and epidemiological contexts 
influence the consistency of cluster identification by different analytical approaches.

In conclusion, this study brings new information on the diversity of HIV-1 cluster identification within and 
among commonly-used analytical approaches. Determination of thresholds stringency was found to be critical 
for HIV cluster identification. Among examined analytical approaches, all model-based methods except MEGA 
showed comparable performance and could be considered functionally equivalent using strict thresholds, with 
RaxML having the highest concordance with other methods. Using relaxed thresholds, RAxML, FastTree regu-
lar bootstrap and IQ-Tree regular bootstrap showed the highest concordance. Different methods, model- and 
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distance-based, may be beneficial for diverse public health or scientific scenarios, supporting implementation 
and evaluation of HIV clustering-triggered public health activities. Recognizing the variability and limitations 
in cluster identification of commonly-used analytical approaches is an important step towards addressing the 
existing research gaps in developing HIV-clustering-triggered interventions to disrupt new HIV transmissions 
and end the HIV epidemic.

Methods
HIV‑1 sequences. To compare clustering across methods, we used viral sequence data sampled from people 
living with HIV in Rhode Island,  USA34. All HIV-1 sequences were generated through provider-ordered drug 
resistance testing, performed by certified commercial laboratories using the Sanger method. The vast majority 
of genotypes, particularly in later years, were obtained upon HIV diagnosis, as part of routine clinical care. The 
study was approved by, and a consent waiver was obtained from, the Institutional Review Board at The Miriam 
Hospital in Providence, RI. Sequence quality assessment and quality control and HIV-1 subtyping were per-
formed with Stanford Database tools (https ://hivdb .stanf ord.edu/). Overall, 3594 partial HIV-1 pol sequences 
(HXB2 nucleotide positions 2253–3554) from 2049 individuals sampled in Rhode Island during 2004–2018 were 
available. A total of 1,886 HIV-1 subtype B earliest (single per person) sequences were included in this study.

Selection of methods and thresholds. To identify the most commonly used analytical approaches for 
HIV clustering, we conducted a PubMed (www.ncbi.nlm.nih.gov) search of English-written, recently published 
(2016–2019) papers, using search criteria keywords “HIV”, “transmission”, “cluster” and “clustering.” Of the 108 
studies retrieved and reviewed (Supplementary Table  S1), 31% used phylogenetic methods alone for cluster 
identification, 23% used distance-based methods alone, and 46% used a combination of methods. Supplemen-
tary Figure S1 summarizes the reviewed papers by publication year, targeted HIV-1 genes, sequencing meth-
ods, analyzed HIV-1 subtypes, excluding or including sites associated with HIV-1 drug-resistance, and usage of 
maximum likelihood (ML) models. The distributions of topological support thresholds and pairwise distances 
in the reviewed studies are presented in Supplementary Figures S2A and S2B, respectively.

Based on the review, we selected the following five software tools for model-based analyses, each of which 
infers phylogenies by ML:  FastTree35 (used in 30% of studies),  RAxML36 (29%),  PhyML37 (23%),  MEGA38 (18%), 
and IQ-Tree39. For FastTree we included both the Shimodaira-Hasegawa-like approximate likelihood ratio test 
(aLRT)40 and traditional bootstrap. For IQ-Tree we included both ultra-fast and traditional bootstrap. For 
 MEGA38, we inferred phylogenies by maximum composite  likelihood41 (MCL) and by the neighbor-joining 
(NJ) method with distances computed by the Tamura-Nei  method42. In addition, for FastTree (traditional boot-
strap), RAxML and IQ-Tree (both ultra-fast and traditional bootstrap), we included the alternative branch 
support calculated via transfer bootstrap expectation in  BOOSTER43. The GTR CAT  model was used to infer 
phylogenies in RAxML rapid bootstrap; the GTR model in FastTree, MEGA and PhyML; and the GTR + F + R10 
model in IQ-Tree.

Overall, these 12 selected method combinations and variations represented the most commonly used ana-
lytical approaches for identification of molecular HIV clusters: (1) RAxML rapid bootstrap; (2) BOOSTER with 
RAxML rapid bootstrap replicates; (3) FastTree aLRT; (4) FastTree regular bootstrap; (5) BOOSTER with FastTree 
regular bootstrap replicates; (6) PhyML aLRT; (7) MEGA-MCL; (8) MEGA-NJ; (9) IQ-Tree ultra-fast bootstrap; 
(10) BOOSTER with IQ-Tree ultra-fast bootstrap replicates; (11) IQ-Tree regular bootstrap; and (12) BOOSTER 
with IQ-Tree regular bootstrap replicates. We also considered HIV-TRACE22, the most common distance-based 
method (used in 32% of the reviewed studies).

To examine the impact of specific thresholds in identification of molecular HIV-1 clusters, we used seven 
topological support cut-offs, from 0.70 to 1.0 in 0.05 increments (bootstrap or aLRT). We used 1000 bootstrap 
replicates for RAxML, FastTree, MEGA and IQ-Tree ultrafast. We used 100 replicates for IQ-Tree traditional 
bootstrap, due to the long runtime associated with this method.

To examine the impact of within- and between-method pairwise distance thresholds on cluster identification, 
we used seven thresholds: no distance threshold, 0.045, 0.030, 0.025, 0.020, 0.015, and 0.010 substitutions/site. 
Mean Tamura-Nei 93 (TN93)-corrected pairwise  distances42 were estimated in R with pairwise deletion of  gaps44. 
Comparisons of analytical approaches were performed across the 49 combinations of seven bootstrap/aLRT and 
seven distance thresholds that reflect the literature review (Supplementary Table S1). For HIV-TRACE, we used 
distance thresholds from 0.010 to 0.030 substitutions/site in 0.005 increments.

To identify molecular HIV clusters by model-based methods, sub-trees were extracted from inferred phy-
logenies and mean pairwise distances of each sub-tree were evaluated. Sub-trees that satisfied the pre-specified 
topological support and distance threshold were considered as clusters.

All methods were performed in accordance with relevant guidelines and regulations.

Flow of cluster analysis, outcome parameters and statistical methods. The comparison of 
selected analytical approaches in identifying molecular HIV clusters was performed by (1) analysis of cluster-
ing outcomes within each method across a range of topological support and distance thresholds, (2) cluster-
ing comparison between methods, (3) analysis of differences between method-pairs in proportions of clustered 
sequences, and (4) concordance analysis of clustering including agreement between methods using several 
parameters (described below). The first two analyses (clustering within and between methods) included the 12 
selected methods/variations. The clustering outcomes for these analyses included proportions of individuals in 
clusters and number of identified clusters. The next two analyses (differences in proportions and concordance) 
were narrowed down to seven methods by eliminating the four BOOSTER versions and MEGA NJ, to reduce 

https://hivdb.stanford.edu/
http://www.ncbi.nlm.nih.gov
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number of comparisons. Differences of proportions were computed using two sets of thresholds, strict and 
relaxed (details provided below). Clustering results of model-based methods were compared with HIV-TRACE.

In the first three analyses (measures within and between methods and proportion differences) only aggregated 
outcomes are presented, such as proportion and number of clustered sequences. To examine whether each actual 
pair of sequences that cluster does so consistently across methods, we conducted a concordance analysis. Given 
the results from a pair of methods A and B, we assessed concordance using (1) proportion of pairs of sequences 
that cluster together by method A that also cluster together by method B (and vice versa; the proportion of 
pairs of sequences that cluster together by method B that also cluster together by method A); (2) proportion of 
clusters identified by method A that are identical for method B (consisting of exactly the same sequences) (and 
vice versa); and (3) proportion of sequences that are not in a cluster by method A that are also not in a cluster by 
method B (and vice versa). Each concordance analysis was performed for all pairs of methods using strict and 
relaxed sets of thresholds (see below) and produced an asymmetric matrix presented as a heatmap. A median 
percent concordance (interquartile range (IQR) and range) was calculated for each matrix, summarizing each 
method-pair analysis. A mean summary percent concordance was calculated for each method and concordance 
measure, as the average of the concordance between the method and all other methods using the same threshold 
type (strict or relaxed, see below), including HIV-TRACE.

For the differences in proportions and concordance analyses we used two sets of thresholds, strict and relaxed, 
that were based on distinct combinations of topological support and distances (Table 1). The strict set of thresh-
olds (topological support 0.95–1.0, distance 0.015) could be used when focusing on most recent transmission 
events, such as investigation of outbreaks or targeting rapidly-growing clusters and an explosive spread of HIV 
transmissions among high-risk populations. The relaxed set of thresholds (topological support 0.80–0.95, dis-
tance 0.030–0.045) could be used when focusing on more routine tracking of molecular HIV clusters to inform 
public health partner notifications, or when examining a historical evolution of local or global HIV epidemics 
with large numbers of transmissions over a long period of time. In such a scenario the extensive HIV intra-host 
viral evolution that accumulates over time and may result in lower topological support and larger distances than 
those used by strict thresholds, needs to be considered when identifying clusters. Thus, applying a strict rather 
than relaxed set of thresholds in this scenario would place fewer viral sequences into clusters and produce less 
informative outcomes.
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