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Ovarian cancer (OC) is an aggressive disease that affects approximately 1 in 70 women and has a poor prognosis (<50%, 5-year
survival rate), in part because it is often diagnosed at a late stage. There are three main types of OC: neoplasms of surface epithelial,
germ cell, or stromal origin, with surface epithelial tumors comprising about 80% of all OCs. In addition to improving diagnostics,
it is necessary to develop more effective treatments for epithelial-origin OC. Here, we describe the paradoxical roles of toll-like
receptor (TLR) signaling in the progression of cancer and discuss how its modulation may result in decreased tumor growth and
metastasis via the attenuation of proangiogenic cytokines and potentiation of proapoptotic factors. In particular, it has been found
that TLR activity can behave like a “double-edged sword”, as its signaling pathways have been implicated as having both tumor-
suppressive and tumor-promoting effects. With particular emphasis on OC, we discuss the need to consider the signaling details of
TLRs and associated proteins in the multiple cell types present in the tumor milieu to achieve safe and effective design of TLR-based

cancer therapies.

1. Ovarian Cancer Disease Characteristics

Ovarian cancer (OC) is characterized by malignant transfor-
mation of ovarian epithelial, stromal, or germ line cells. It
affects approximately 1 in 70 women and has a poor progno-
sis (<50%, 5-year survival rate) [1]. Early-stage OC presents
no obvious symptoms in the majority of patients, and no
effective screening method is available at the current time. As
aresult, OC is most commonly diagnosed at stage III or stage
IV. In later stages, metastasis often occurs, which can involve
the peritoneal surface and adjacent organs, lymph nodes,
lungs, and liver, among other sites. For these patients, the
outcome is poor, with an on average 20% long-term survival
rate [1].

OC can develop as a result of genetic risk factors, such as
mutations in BRCAI and BRCA2 genes. However, less than
10% of OCs arise as a result of genetic predisposition. Other
nongenetic causes, such as chronic inflammation can result

in OC development as well [1]. It has been shown that a high-
er number of pregnancies and oral contraceptive use corre-
lates to decreased OC risk, suggesting that limited ovulation
creates an environment that is less conducive to neoplasm
development. The most common tools used today in diag-
nostics include measurement of CA-125 levels in the serum,
pelvic ultrasonography, and biopstic and histochemical anal-
ysis. The downfall of the screening methodology is that not
all OCs exhibit elevated CA-125 levels, and this method has
proven to be rather unreliable in OC detection. By the time
clear symptoms are present, and a sonogram, biopsy, and
immunohistochemistry are performed, the OC is often in its
later stages.

Primary treatments of stage III and IV OC include sur-
gery, followed by several rounds of chemotherapy with radi-
ation rarely used [1]. Typically, a full hysterectomy and bilat-
eral salpingooophorectomy are performed. Chemotherapy
for OC usually includes platinum- and taxane-based agents,
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with either three or six rounds of intravenous treatment
administered postoperatively. Platinum-containing drugs,
such as cisplatin act by binding to and cross linking DNA
and taxane-containing drugs, such as paclitaxel affect micro-
tubular formation. Thereby, both agents thus act on the
tumor by preventing cell division.

Major problems encountered with current treatments
include chemotherapy side effects and drug resistance. Side
effects often include pain, nausea, vomiting, alopecia, and
neuropathy, among others. These side effects typically arise
as a result of healthy cells being affected by the treatment,
resulting in various organismal imbalances. In addition, re-
sistance to the drugs can develop, most often as a result of the
cells rapidly eliminating the agent [2]. In order to improve
OC survival rates, it is necessary to investigate new targets
and therapies, which can be administered independently or
as adjuvants to the traditional methods of surgery and chem-
otherapy.

2. Inflammation and Cancer

Innate immunity is the first response to an immunological
challenge, and the onset of an innate immune response
against pathogens and “danger signals” is very rapid. Macro-
phages, granulocytes, dendritic cells (DCs), and natural
killer (NK) cells are key immune cells that participate in
innate immune responses. After contacting pathogens, these
cells are able to eliminate them through several mechanisms,
such as phagocytosis or generation of reactive oxygen or
nitrogen species. DCs and macrophages are usually called
phagocytes due to their capability to engulf foreign material.
Pathogens are detected by phagocytes through the expres-
sion of conserved pathogen-associated molecular patterns
(PAMPs) present on the cell surface of the pathogen. These
molecules are detected by pattern recognition receptors
(PRRs) expressed on immune cells [3]. Through PRR recog-
nition, the phagocytes of the innate immune response are
able to distinguish between self and foreign non-self cells.
Some of the main PRRs involved in the innate immune res-
ponse are toll-like receptors (TLRs) and NOD-like receptors
(NLRs) [3-5].

An example of the innate immune response is the initia-
tion of inflammation. A microorganism displaying PAMPs
which has become resident within body tissues can be
recognized by macrophage PRRs [3]. When this occurs, the
phagocyte will internalize the microorganism by phagocy-
tosis, become activated, and eliminate the microorganism.
However, in addition to eliminating the microorganism,
the activated macrophage will also begin to secrete pro-
teins known as cytokines and chemokines. Cytokine and
chemokine release can lead to increased vascular permeabil-
ity and expression of cellular adhesion molecules, which can
in turn increase neutrophil and monocyte recruitment and
infiltration to the site of infection, thereby leading to an
overall amplification of the inflammatory response [6, 7].
These cytokines are known as proinflammatory cytokines
[8]. Some examples of proinflammatory cytokines include
interleukin (IL)-1, IL-6, and and tumor necrosis factor-alpha
(TNF-a) [8, 9]. Through cytokine and chemokine release,
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additional immune cells can be recruited to the area of in-
fection and cause the classical symptoms of inflammation:
swelling, redness, heat, and pain.

Infection, chronic irritation and inflammation are
among the main causes for the initiation of different types of
cancer [10]. Indeed, inflammatory cells can contribute to the
proliferation, survival, and migration of tumor cells and also
play an important role in shaping the tumor microenviron-
ment [10]. It has been demonstrated that chronic inflamma-
tion and cancer are often interrelated [11]. Smoking for
instance is associated with chronic inflammation of the lungs
and with lung cancer, and alcohol abuse has been linked to
inflammation and cancer of the liver and the pancreas [12].
The relationship between inflammation and cancer is com-
plex, and inflammation can have either tumor-promoting or
tumor-suppressive effects, depending on the type of inflam-
mation. Thus, the field of tumor immunology is an im-
portant part of the ongoing efforts of improving cancer
treatments.

3. Inflammation and the
Tumor Microenvironment

Tumors are more than cancer cells, being also composed
of non-tumor cells (leukocytes, endothelial cells, fibroblasts,
and smooth muscle cells) and the extracellular matrix.
Together with the tumor cells, they constitute the tumor mi-
croenvironment. The cytokine profile of the tumor microen-
vironment is largely a result of factors produced by the tumor
cells themselves, nearby cells, and infiltrating white blood
cells and can have profound effects on tumor progression
[13]. Some cytokines can influence the tumor microenviron-
ment in such a way that will suppress tumor development,
while others can contribute to its growth and metastasis.
Upregulation of IL-12, for example, will activate NK cells and
cytotoxic T lymphocytes, resulting in cancer cell death [12].
In addition, induction of IL-23 leads to the production of
interferons (IFNs) and other tumor-suppressive factors. Such
molecules are activated as part of the antitumor immunity
response and promote apoptosis of tumor cells.

In the case of chronic inflammation, the cytokine profile
at the tumor microenvironment is dramatically different and
is characterized by an increase in immunosuppressive cyto-
kines, such as TNF-a and IL-6 [12]. These cytokines can
activate pathways that result in production of other inflam-
matory molecules, capable of recruiting leukocytes, such as
macrophages and DCs to the tumor site. These infiltrating
leukocytes in turn can produce factors which aid in the
promotion of angiogenesis and vascularization, subsequently
contributing to tumor growth and metastasis [11].

Angiogenesis is critical to cancer growth, as it allows for
growing vasculature that will provide sufficient nutrients to
the tumor to promote its growth [11]. Chronic inflammation
can create an environment in the tumor milieu that is con-
ducive to the formation of new blood vessels and thereby
facilitates tumor progression. In addition to proangiogenic
factors that arise from leukocyte infiltration, the tumor cells
themselves produce soluble factors that potentiate angio-
genesis and secrete proinflammatory cytokines, which can
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indirectly stimulate tumor growth [12]. As angiogenesis is a
relevant process in cancer progression, pathways that trigger
it are being investigated for potential drug targets for devel-
opment of antiangiogenic therapeutics.

A major proinflammatory switch that can subsequently
result in proangiogenic stimuli is nuclear factor-kappa B
(NF-«B). NF-«B comprises a family of transcription factors
that regulates the production of various cytokines, chemo-
kines, and antiapoptotic and stress-response factors [14].
Different NF-xB proteins can bind to specific sites on the
DNA to influence transcription of a multitude of inflamma-
tory response genes. The transcription factors reside in the
cytoplasm, in complex with inhibitors of NF-«xB (IxBs) and
are released, upon phosphorylation of the IxBs by inhibitor
of NF-«B kinase (IKK). At this point, the IxBs become
degraded and the transcription factors are able to translocate
into the nucleus to regulate inflammatory responses. The
NEF-«B proteins regulate inflammation by binding to specific
DNA sites and upregulating or downregulating the amounts
of histone remodeling proteins at the site. Some inflam-
matory genes which are upregulated by NF-xB include a
multitude of proinflammatory cytokines and chemokines,
matrix metalloproteases, adhesion factors, cyclooxygenase 2,
and inducible nitric oxide synthase. Upregulation of these
molecules results in the recruitment of immune cells and the
increased production of proinflammatory molecules.

It has been shown that constitutive activation of NF-xB
is associated with cancer progression [15]. Specifically, it can
lead to promotion of angiogenesis and increased metastasis
by producing chemokines, such as IL-8 that promote leu-
kocyte infiltration and inflammation and increased levels of
MMPs that promote tumor invasion of nearby tissue. Also,
NF-«B can upregulate factors like TNF-a, which can result in
inhibition of apoptosis and also stimulates cell proliferation
by increasing transcription of molecules such as IL-2 and
granulocyte-macrophage colony-stimulating factor (GM-
CSF). In addition, certain members of the NF-xB family can
also activate proapoptotic factors [16].

NF-«B has thus been considered a major target for anti-
cancer therapies. Often treatment results were poor, as
NF-«B proteins participate in many critical cell cycle func-
tions, the broad-scale disruption of which can lead to a
multitude of undesirable side effects [14]. It is thus necessary
to investigate potential regulators of NF-xB, which might
be drug-target candidates for the development of tumor-
targeted, antiangiogenic, and proapoptotic treatments.

4. Toll-Like Receptors and Cancer

TLRs are a family of integral membrane proteins which act
as sensors of invading pathogens and primarily reside in
immune cells, such as DCs and macrophages [17]. Present
either at the cell surface membrane or at the endosomal
membrane, TLRs recognize specific PAMPs and initiate a sig-
naling cascade to elicit an immune response. As depicted in
Figure 1, all TLRs have two domains: a leucine-rich domain
that senses the pathogen and a Toll-interleukin 1 receptor
(TIR) domain which interacts with an adapter molecule to
initiate a signaling cascade to promote an immune response.

Leu-rich pathogen-

Cellular or . .
recognition domain

endosomal
membrane
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FIGURE 1: Schematic TLR Structure. TLRs are typically transmem-
brane receptors present in cellular or endosomal membranes, char-
acterized by a leucine-rich pathogen-recognition domain and a toll-
interleukin 1 receptor (TIR) signal transduction domain.

Over ten types of TLRs have been identified in vertebrates,
categorization primarily based on their PAMP recognition
patterns. Different TLRs recognize different PAMPs, such
as protein, nucleic acid, or lipid components of bacteria or
viruses. TLR4 for example, recognizes primarily bacterial
components, such as lipopolysaccharide, while others, such
as TLR3 recognizes dsRNA [18]. Upon recognition of the
foreign pathogens, TLRs signal through adapter molecules in
a signaling cascade, which ultimately results in a change in
the cytokine expression patterns of those cells (Figure 2).
Several adapter molecules have been characterized in the
TLR family, and different TLRs signal through one of four
adapters: MYD-88, MYD-88 adaptor-like (Mal), TIR-related
adaptor protein inducing interferon (TRIF), or TRIF-related
adapter protein molecule (TRAM) [18]. These adaptors
initiate distinct signaling cascades which usually lead to
activation of NF-«B.

Recently, TLRs have been implicated in tumor progres-
sion. It is becoming evident that tumor cells are capable of
exploiting TLR signaling pathways to their advantage [19].
It has been shown that TLR ligands can promote tumor
development by stimulating inflammation, particularly
through NF-«B activation [18, 19]. Between tumor cells and
infiltrating immune cells that express TLRs, these PRRs may
be partially responsible for the constitutive activation of NF-
xB, which is often seen in cancers. If ligands are present to
activate TLRs in the tumor milieu, this can lead to an array of
cytokines capable of promoting angiogenesis. Interestingly,
TLR ligands have also been shown to possess tumor-sup-
pressive effects via activation of pathways that result in pro-
motion of innate and adaptive antitumor responses [19].
Therefore, TLRs are significant to tumor progression and
their effects on tumor development are being evaluated. They
have thus become major players in the search for novel anti-
tumor drug targets.

5. TLRs as Therapeutic Targets for
Tumor Therapies

While TLRs are predominantly expressed in immune cells, in
the last years it has been shown that they are also expressed
in a variety of tumor cells where they are functional and
can help shape the inflammatory profile of the tumor milieu
[19]. Thus, the therapeutic use of TLR agonists has been
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FIGURE 2: Schematic representation of some TLR signaling adaptors some downstream effects. Upon interaction with their ligands, TLR can
induce a signaling cascade that can lead to generation of inflammatory molecules upon NF-«B or IRF3 activation.

investigated in several cancer models in order to either target
tumor cells or immune cells present in the tumor microen-
vironment. The rationale being to either induce apoptosis of
tumor cells or to activate resident immune cells that can help
mount a robust antitumor response. No conclusive results
have been obtained supporting the therapeutic use of TLR
agonists. Positive results have been obtained by using TLR
agonists as adjuvants for DC vaccination in murine models
of sarcoma (TLR3/9 agonists) [20], lung cancer (TLR9) [21],
and melanoma and brain cancer (TLR7/8 agonist) [22, 23].
It has also been shown that TLR agonists can enhance the
efficacy of T-cell adoptive therapy by promoting a better
interaction between T cells and resident activated DCs [24].
In addition, direct targeting of TLR9 in cancer cells triggered
tumor cell death and an increase in survival in a xenograft
model of neuroblastoma [25].

On the contrary, TLR signaling in cancer cells can
promote tumor progression. In particular, different TLR
agonists were able to induce migration of human tumor colo-
rectal, breast, lung, and glioblastoma cells, an indication of
metastatic potential [26]. Further, TLR signaling has been
associated with increased human myeloma and lung cells
proliferation and viability [27, 28].

6. Ovarian Cancer Microenvironment

These contradictory observations might be a result of the
complex nature of the tumor microenvironment. As we have

previously reviewed in detail, the ovarian cancer microen-
vironment is highly immunosuppressive [29]. For example,
high levels of IL-4, IL-10, transforming growth factor beta
(TGF-f), and vascular endothelial growth factor (VEGF)
can be found in ovarian cancer ascites [30, 31]. IL-4, IL-10,
and TGF-f can affect phagocyte function, suppressing ma-
crophage and DC activity [32]. Indeed, DCs showing low
levels of costimulatory molecules have been detected in
tumors expressing high levels of VEGF [33]. These DCs are
able to render T cells anergic or tolerised, thus abrogating
antitumor immune responses. Interestingly, besides an im-
mune “paralysis’, we and others have shown that tumor-
associated DCs, or leukocytes expressing DC markers, are
able to produce angiogenic factors and can promote neovas-
cularization in the tumor microenvironment [34-36]. Our
previous work unveiled a mechanism whereby immature
DCs contribute to ovarian cancer progression by acquiring
a proangiogenic phenotype in response to VEGF [36, 37].
Further, we have shown that specific depletion of tumor-
associated DCs reduces ovarian cancer angiogenesis and
growth [38]. Interestingly, high amounts of CD4*CD25*
regulatory T cells have been described in ovarian carcinoma
and ascites, with the capability of suppressing antitumor im-
mune responses [39, 40]. In addition, as we have previously
shown, tumor endothelium can contribute to the immune
suppressive status of ovarian cancer microenvironment,
impairing cytotoxic T-cell infiltration [41]. On the other
hand, it has been shown that ovarian cancer is capable of
inducing antitumor immune responses, and that cytotoxic
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FIGURE 3: Schematic representation of TLR3 Signaling. TLR3 present in the endosomal particles recognizes dsRNA and interacts through

cytoplasmic TRIF activating different signaling pathways.

T-cell infiltration in ovarian cancer correlates with a better
prognosis [42].

The presence of several cellular leukocyte populations in
the microenvironment of ovarian cancer argues for specific
targeting of tumor microenvironment components when
applying TLR agonist therapies for cancer. For example, TLR
agonists can be prepared for their delivery to particular cells
within the tumor microenvironment [43]. This type of strat-
egy was successfully used to activate tumor-associated DCs
in ovarian cancer, promoting antitumor immune response
in vivo (44, 45].

7. TLRs and Ovarian Cancer

Specifically for ovarian cancer, Zhou and colleagues [46]
have shown show that TLR2, TLR3, TLR4, and TLR5 are
highly expressed on the normal ovarian epithelium, as well
as on neoplastic ovarian epithelial cells. Further, it has been
recently shown that TLR4 is also expressed in granulosa
tumor cells in the ovary [47]. In addition, it has also been
demonstrated that TLR9 expression is associated with poor
differentiation in ovarian cancer specimens, and that its over-
expression and stimulation enhances the migratory capacity
of ovarian cancer cells [48].

Importantly, TLR4 expression in ovarian cancer cells has
been shown to exert protumor activities and to hamper the
efficacy of paclitaxel therapy [49, 50]. This is caused by the
ability of paclitaxel to interact with this TLR, activating the
MyD88 signaling pathway and inducing the generation of
tumor cell survival and proliferation [49-51]. This pathway
points to a mechanism by which infections can promote
tumor progression by stimulating cancer cells to generate in-
flammatory cytokines. TLR4 interacts with products of bac-
terial infection, but signaling through other TLRs in cancer
cells can generate similar responses. To investigate this, we
decided to use the MyD88 negative A2780 human ovarian
cancer cell line [50, 51] to stimulate it via TLR3. This TLR
is a largely endosomal PRR that recognizes dsRNA, such as
viral RNA, and may also be able to recognize intrinsic
dsRNA, such as that which can arise from normal events like
cell lysis, for example [17, 52]. While TLR3 has no known
endogenous ligands, it is suspected that various dsRNA
duplexes can activate it, and synthetic dsRNA analogs which
successfully bind to and stimulate TLR3 signaling have been
developed [52]. One of these synthetic ligands is polyino-
sinic: polycytidylic acid (poly [I:C]) which has been used
for many years to stimulate TLR3. As poly(I:C) has been
the “gold standard” ligand for TLR3 stimulation, in vitro
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FIGURE 4: Stimulation of A2780 ovarian cancer cells via TLR3. A270 human ovarian cancer cells were treated for 24 h with 10 yg/mL of
poly(I:C) (Invivogen, San Diego, CA) admixed with lipofectamine (Invitrogen, Carlsbad, MA) following the manufacturer’s instructions.
Then supernatants were recovered for analysis. Supernatants from two independent experiments were pooled, and the presence of different
chemokines and cytokines in poly(I:C) treated (a) or controls (b) was analyzed by using the RayBio Human Cytokine Antibody Array 3
(Raybiotech Inc, Norcross, GA) following the manufacturer’s instructions. Finally, density values were analyzed by using the Image]J program.

studies have been carried out using this ligand to investigate
the TLR3 signaling pathways in immune cells. It has been
demonstrated that poly (I:C) can directly cause apoptosis in
tumor cells in a caspase-dependent manner [16]. Interest-
ingly, it was found that certain NF-«B proteins must be active
for this TLR3-mediated apoptosis. Poly (I:C) has indeed been
tried as an adjuvant to chemotherapy, but it was found that
it was too toxic to be used for therapy [16, 52].

As shown in Figure 3, TLR3 signaling can activate NF-«B
in a MyD88-independent way. Upon stimulation with
poly(I:C), TLR3 signals through adapter TRIF (TICAM-1)
to initiate a signaling cascade that can activate transcription
factors NF-«B and interferon regulatory factor 3 (IRF3), as
well as the JNK and p38 pathways. TRIF is the largest adaptor
known of the TLR adapters and can initiate several distinct
signaling cascades [52]. TRIF has an N-terminal region called
the effector-driving site, which is able to recruit the TNF
receptor-associated factor (TRAF) family proteins to result in
the eventual activation of IRF3 and NF-«B. IRF3 activation
can result in the upregulation of a- and S-type interferons

(IFNs) and activation of cytotoxic lymphocytes and NK cells,
while NF-xB can either upregulate certain cytokines and
potentiate chronic inflammation and angiogenesis, or act
to promote apoptosis, depending on the particular NF-xB
members that are activated. TRIF also has a C-terminal bind-
ing site, which can recruit factors such as receptor interacting
protein (RIP-1) and Fas-associated death domain (FADD),
the signaling pathways of which result in apoptosis and auto-
phagy through the activation of the JNK and p38 pathways.
Thus TLR3 signaling can contribute to tumor eradication
via upregulation of IFN-a and IFN-f, CTL, and NK cell
activation, and by signaling through the RIP-1/FADD path-
way, whereas it can also indirectly contribute to tumor
progression via activation of NF-xB, which can result
in proangiogenic factors and subsequent tumor progression.
As shown in Figure 4, 24 h treatment of human ovarian can-
cer A2780 cells with 10 yug/mL of poly(I:C) admixed with
liposomes is able to induce upregulation of several cytokines
and chemokines, IL-6 among others, which has been shown
to promote tumor cell growth and survival [53].
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Altogether these data indicate that the non-targeted use
of TLR agonists for ovarian cancer therapy can generate
adverse effects. Thus, targeted therapies to activate only par-
ticular components of the tumor microenvironment will be
more suitable. In this context, pioneering research from Dr.
Conejo-Garcia’s lab has shown in a murine model of ovarian
carcinoma that specifically targeting TLRs in tumor-asso-
ciated antigen-presenting cells can induce a robust antitumor
immune response and tumor regression [44, 45, 54, 55].

8. Final Remarks

In closing, it is necessary to further elucidate all the distinct
signaling pathways of TLR in both tumor and immune cells
in order to develop effective and safe immunotherapies using
this target. On the one hand, TLR stimulation can result in
apoptosis, but on the other, it can lead in proangiogenic fac-
tors, which can stimulate tumor growth. Effectively being
able to select for and specifically turn on and off these path-
ways is the ultimate goal. As details concerning TLR signaling
in tumor cells and immune cells are clarified, it may be
possible to design therapeutic agents, which target specific
pathways in specific cells and create a proapoptotic, antian-
giogenic tumor microenvironment, which is conducive to
tumor eradication.
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