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Several gastrointestinal phenotypes and impairment of duodenal mucosal

barrier have been reported in clinical studies in patients with functional

dyspepsia (FD). Due to the preferential colonization of the mucosa, intestinal

microbes and their metabolites are commonly involved in host metabolism and

immune responses. However, there are no studies on the intertwined

correlation among multi-level data. For more comprehensive illustrating, a

multi-omics analysis focusing on the duodenum was performed in the FD rat

model. We found that differential microbiomes in the duodenum were

significantly correlated with the biosynthesis of lipopolysaccharide and

peptidoglycan. The innate immune response-related genes, which were

upregulated in the duodenum, were associated with the TLR2/TLR4-NFkB
signaling pathway. More importantly, arachidonyl ethanolamide (anandamide,

AEA) and endocannabinoid analogues showed linear relationships with the FD

phenotypes. Taken together, multi-level data frommicrobiome, transcriptome

and metabolome reveal that AEA may regulate duodenal low-grade

inflammation in FD. These results suggest an important cue of gut

microbiome–endocannabinoid system axis in the pathogenesis of FD.

KEYWORDS
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Introduction

Studies have shown that the prevalence of FD is approximately 16% in the general

population, although with potential regional and diagnosis-related variations (1). The

principles of treatment with a better biopsychosocial understanding of the gut–brain axis
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have been highlighted (2). A recent study reported that the vagal

gut-brain signaling regulates both the cerebral pain perception

and the structural plasticity of FD in a “bottom-up” manner (3);

however, this may not have a high clinical translational

potential. Clinical data have confirmed that duodenal barrier

disruption does exist in the patients with FD (4). The potential

damage-associated molecular patterns (DAMPs), but not the

pathogens themself, can enter though impaired intestinal

barrier, resulting in the host innate immune responses and a

low-grade inflammatory condition (5).

The endocannabinoid system, especially the arachidonyl

ethanolamide (AEA), was first proposed to be a regulator of

energy balance and gastrointestinal load with brainstem-

duodenum neural connections (6). Earlier studies have proved

that AEA has a crucial role in the physiological regulation of

gastric emptying (7). Also, the dysregulation of peripheral AEA is

involved in the modulation of small intestinal motility, with a high

level in the duodenum (8). However, no studies have investigated

whether AEA is involved in the pathophysiological processes of FD.

In this study, we introduce a combined approach including

multi-omics data of microbiome, untargeted metabolome and

transcriptome to explore the mechanisms underlying FD

pathogenesis. Microbial disturbances and predicted metabolic

enzymes associated with the biosynthesis of lipopolysaccharide

and peptidoglycan are detected in the duodenum. The duodenal

protein-coding genes related to host innate immune response are

associated with the Toll-like receptor (TLR) signaling and NK-kB-
mediated inflammatory signaling pathways. Interestingly, AEA

and several endocannabinoid analogues identified in the duodenal

with distinct metabolic patterns are significantly correlated with

the phenotypes found in FD. These results provide strong

evidence that the “gut microbiome–endocannabinoid system

axis” in the duodenum is a novel biomarker and therapeutic

target for the treatments of functional gastrointestinal disorders.

Results

Compromised gastrointestinal motor
function and impaired duodenal mucosal
barrier were accompanied with
reduction of immune organs index in the
rat model of FD

The experimental workflow is illustrated in Figure 1A. Using

the classical method, gavage of iodoacetamide for six consecutive

days at young age significantly altered body weight in adult rats

(Figure 1B). Compared to the control group, the gastrointestinal

transit rate was significantly lower in the model group (Figure 1C).

However, no significant signs of duodenal damage were observed

between the groups (Figure 1D) but only a small amount of

incomplete tight junctions (Figure 1E). With further increasing

pressure (air injection volume), the model group had higher

scores on gastrointestinal sensitivity measures compared with
Frontiers in Immunology 02
the control group (Figure 1F). An additional trans-endothelial

electrical resistance (TEER) experiment was conducted to

investigate the duodenal barrier phenotypes in detail. A

significant reduction of TEER was observed in the model group

(Figure 1G). As shown in Figure 1H, a higher lactulose/mannitol

(L/M) ratio in the model group was indicative of increased

permeability and impairment of absorption. Similarly, the

plasma content of D-lactate was significantly increased in the

model group (Figure 1I).

Immunofluorescence staining showed that the duodenal

expressions of E-cadherin and b-catenin were significantly

decreased in the model group (Figures 2A-D). As shown in

Figures 2E-H, the relative protein expressions of desmocollin 2

(DSC2), tight junction protein 1 (ZO-1) and occludin (OCLN)

were markedly reduced in the model group. Moreover,

significant decreases in the relative mRNA expressions of Dsc2,

Cln3, Tjp1 and Ocln were observed in the model group

(Figures 2I-L). Concomitantly, indexes of spleen and thymus

were decreased in the model group, indicating the compromise

of immune function (Figures 2M, N).
Duodenal microbiome regulated the
biosynthesis of lipopolysaccharide and
peptidoglycan in the rat model of FD

As for now, no available data on the characteristics of

duodenal microbiome of FD. For reference, we performed a

pooled analysis including two studies on the fecal microbiome

of FD following the same modelling approach. After removing

the batch effect, reanalysis of external datasets (BioProject ID:

PRJNA575916, PRJNA719295) was conducted using the QIIME

pipeline, which was the same for the subsequent analysis. The

groups did not differ significantly in both alpha- and beta-

diversity from each other. Nevertheless, function prediction

of faecal microbiome suggests that the lipopolysaccharide

biosynthesis was markedly elevated in the model group

(Supplemental Figure 1).

With focus on the duodenal microbial environment, we

analysed the microbial composition and further predicted the

metabolic enzymes of microbiome in our own experimental

data. Similar to the previous results, no significant differences

were found between the groups for both alpha- and beta-

diversity (Figure 3A; Supplemental Figure 2). Differentially

microbial species (the relative abundance of OTUs) were

determined using DESeq2. Among these, Pasteurellaceae,

Lachnospiraceae, Muribaculaceae identified to the family level

and Akkermansia identified to the genus level were enriched in

the control group, while Bacillaceae , Prevotellaceae ,

Erysipelotrichaceae identified to the family level, Bacillus,

Methylobacterium, Turicibacter, Dubosiella, Fusicatenibacter

identified to the genus level and Idiomarina_marina,

Bacillus_firmus identified to the species level were enriched in
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the model group (Figure 3B). The detailed information of

differential microbiome was summarized in Supplemental

Table 1. Based on the PICRUSt2 analysis, we selected potential

metabolic enzymes involved in the biosynthesis of

lipopolysaccharide and peptidoglycan of duodenal microbiome

(Supplemental Figure 3; Supplemental Table 2). Most of

enzymes were elevated in the model group, although only a

few of them reached statistical significance (Figure 3C).

Spearman correlation coefficients between every two variables

were calculated and were presented in Figure 3C; details were

summarized in Supplemental Table 3.
The upregulated innate immune
response-related transcript profiles of
the duodenum were associated with the
proinflammatory toll-like receptor
signaling pathway

Given the potential DAMPs, we further explored the innate

immune specific transcriptional signature of the duodenal

mucosa. A total of 64 differentially expressed genes were

upregulated in the control group while 835 further genes were

significantly upregulated in the model group (Figure 4A). Based
Frontiers in Immunology 03
on these results, differentially expressed genes were filtered for

innate immune responses using the InnateDB database. In total,

101 genes were significantly upregulated and only one was

downregulated in the model group (Figure 4B). Details were

presented in Supplemental Table 4. These protein-coding genes

were matched with the STRING database for further interaction

and enrichment analysis. PPI network was established and

illustrated in Figure 4C. Then, subnetwork was established

using MCL clustering (Figure 4D). Functional enrichment

analysis indicated that the duodenal innate immune responses

to lipopolysaccharide and peptidoglycan, which highlighted the

importance of Toll-like receptor signaling and NK-kB-mediated

proinflammatory effects.
TLR2/TLR4-NFkB signaling and
proinflammatory cytokines were
elevated in the duodenum

Immunohistochemical stain highlighted the increased CD3+

T lymphocyte, mast cell and eosinophil populations in the

duodenum of the model group (Figures 5A-D). Western Blot

analysis demonstrated significant elevations in the relative

protein expressions of Toll-like receptor 4 (TLR4) and
A B D

E

F G IH

C

FIGURE 1

Phenotypes found in the rat model of FD. (A) A schematic diagram of the multi-omics analysis. (B) Changes in body weights (*** p < 0.001 by
two-way ANOVA with correction of two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli, ns indicates not significant).
(C) Gastrointestinal transit rate. (D) H&E-stained duodenum. Scale bar, 20 mm. (E) TEM analysis of duodenum. Scale bar, 500 nm. Two red
triangles indicate incomplete tight junctions. (F) Behavioral testing of GD (10 to 60 mmHg) and pain score (0-4). (G) TEER of duodenal epithelial
barrier (**** p < 0.0001 by unpaired t test with Welch’s correction). (H) Urine L/M ratio (** p < 0.01 by Mann Whitney test). (I) Plasma content of
D-lactate (**** p < 0.0001 by unpaired t test with Welch’s correction). The circles on the bar plots represent individual values with mean ± SEM
(bars) (n = 3 or 5 rats/group).
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inhibitor of NFkB kinase subunits alpha and beta (IKKa+IKKb)
in the model group, but only NF-kB p65 subunit was

significantly increased (Figures 5E-H). In addition, the relative

mRNA expressions of Tlr2, Tlr4 and Rela were markedly

increased in the model group (Figures 5I-K). Subsequently, the

levels of proinflammatory cytokines IL-1b, IL-6 and TNF-a
were significant elevated in the model group (Figures 5L-N).
The rat model of FD demonstrated a
distinct metabolic pattern in
the duodenum

In order to explore the factors that might mediate duodenal

low-grade inflammation in the rat model of FD, we next

performed untargeted metabolomics analysis of these duodenal
Frontiers in Immunology 04
tissues. Data were acquired in both positive and negative ion

modes, respectively. In the positive ion mode, representative

chromatograms of the control and model group were shown

(Supplemental Figures 4A, B). After preprocessing the raw data,

all samples with QC were analyzed using PCA (Supplemental

Figure 4C). The OPLS-DA model was then established

(Supplemental Figure 4D). Hotelling’s T2, Residuals Normal

Probability and Permutation tests were used to evaluate the

model (Supplemental Figures 4E-G). The VIP scores and

correlation coefficients were acquired based on the OPLS-DA

model (Supplemental Figure 4H). The same analysis for the

negative ion mode was shown in Supplemental Figure 5. With

additional thresholds, a total of 36 differential metabolites were

enriched in the control group and 18 differential metabolites were

enriched in the model group (Figure 6). The detailed information

of metabolites was summarized in Supplemental Table 5.
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FIGURE 2

Impaired duodenal mucosal barrier was accompanied with decreased immune organs index. (A-D) Duodenal immunofluorescence staining
(A, C) and the relative expression (IOD) of E-cadherin (B) and b-catenin (D) (*** p < 0.001 by unpaired t test with Welch’s correction). (E-H) The
WB bands (E) and scaled normalized protein expressions of DSC2 (F), ZO-1 (G) and OCLN (H) (** p < 0.01 by Mann Whitney test). (I-L) The
relative mRNA expression of Dsc2 (I), Cln3 (J), Tjp1 (K) and Ocln (L) (** p < 0.01, **** p < 0.0001 by unpaired t test with Welch’s correction).
(M, N) Indexes of spleen (M) and thymus (N) (* p < 0.05, ** p < 0.01 by unpaired t test with Welch’s correction). The circles on the bar plots
represent individual values with mean ± SEM (bars) (n = 5 rats/group).
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Arachidonyl ethanolamide and
endocannabinoid analogues showed
linear relationships with phenotypes
found in FD

To integrate multi-level omics data, we conducted the

mantel test when differential duodenal metabolites were used

as environmental factors. As illustrated in Figure 7, AEA was the

best explanatory variable for all the three profiles (the innate

immune response-related genes: Mantel’s r = 0.503, p = 0.018;

the microbial 16S OTUs: Mantel’s r = 0.310, p = 0.046; the

DAMPs-related ECs: Mantel’s r = 0.468, p = 0.017). Details for

calculation were summarized in Supplemental Table 6.

Next, linear regression models were performed to present

linear relationships between the relative abundance of AEA and

phenotypes found in the rat model of FD. In gastrointestinal

motor function, AEA was negatively linear correlated with the
Frontiers in Immunology 05
gastrointestinal transit rate (Figure 8A). With regards to

permeability and absorption, AEA was positively linear

correlated with L/M ratio and the content of D-lactate, and

was negatively linear correlated with TEER (Figures 8B-D). In

terms of duodenal mucosal barrier, AEA was negatively linear

corelated with the relative protein expressions of E-cadherin and

b-catenin and the relative mRNA expressions of DSC2, OCLN

and CLN3 (Figures 8E-I). Additionally, AEA was positively

linear correlated with the relative amounts of mast cells, the

relative mRNA expressions of TLR2, TLR4 and NFkB, and the

levels of proinflammatory cytokines IL-1b, IL-6 and TNF-a
(Figures 8J-P). Aside from AEA, several endocannabinoid

analogues, such as myristoyl ethanolamide (MEA), oleoyl

ethanolamide (OEA), palmitoleoyl ethanolamide (PEA) and

stearoyl ethanolamide (SEA), were also used to established

linear regression models (Supplemental Figures 6-9). Instead,

OEA, PEA and SEA were opposite to AEA described above.
A B

C

FIGURE 3

Microbial features of duodenum. (A) Weighted UniFrac PCoA with an adonis test. (B) Differential microbiome with DESeq2 analysis. The left dots
(blue) indicate the microbiome enriched in control group; the right dots (red) are representative of the microbiome enriched in model group.
(C) Spearman correlations of differential microbiome and predicted functional enzymes (Spearman’s r > 0.6 with + FDR < 0.05, ++ FDR < 0.01
or +++ FDR < 0.001 represent significant). The right side indicates multiple comparison of relative abundance of enzymes with Fisher’s LSD
(mean ± SEM, * p < 0.05 represent significant) (n = 5 rats/group).
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Discussion

Short-term gavage of iodoacetamide was firstly reported

in 2008 by Liu and co-workers as the most classical

modeling approach (9). Afterward, pharmacological and

nonpharmacological therapies, including drug molecules,

natural products and electroacupuncture, were extensively

studied (10–12). The heterogeneity of FD has been

demonstrated with different pathophysiological mechanisms

under varied symptom conditions (13). Single-setting studies

lack representativeness and comprehensiveness to understand

the disease itself. Current review highlights the importance of

the application of multi-omics methods such as the metabolomics

data and the integration of these multiple layers in relation to

phenotypes found in complex diseases (14). Unfortunately, no

previous studies have compared and assessed the intertwined

characteristics using a multi-omics approach.
Frontiers in Immunology 06
A recent study with a large sample size reported FD and

other gastrointestinal disorders shares several commonalities in

a wide spectrum of pathophysiology, which increases the

difficulty of treatment against a specific disease (15).

Compared to a global exploration, it is more important to

profile the comprehensive features locally. One study has

demonstrated that TEER and the expression of ZO-1 are

significantly decreased in patients with abdominal symptoms

of FD. And the level of IL-1b elevated in the patients is

negatively correlated with both of above measures (16).

Another clinical study using confocal laser endomicroscopy

visually confirmed that the impairment of duodenal mucosal

barrier was an important pathogenesis factor in FD (4). Similar

to these results, we also found that TEER was significantly

decreased and the same trend as the relative mRNA

expressions of tight junction proteins in the rat model of FD.

Moreover, an elevated trend of the levels of proinflammatory
A

B

D

C

FIGURE 4

Transcriptome analysis of duodenum. (A) Differential expressed genes with DESeq2 analysis. Dotted line: BH FDR < 0.05 and |log2(FC)| > 1
represent significant (the control group: high expression in blue; the model group: high expression in red). (B) Selected differential genes based
on InnateDB database. (C) PPI network based on innate immune response-related protein-coding genes (interaction score > 0.7 and hiding
disconnected nodes). (D) The subnetwork clustering with MCL algorithm. Color-coded dots were clustered with GO and KEGG pathway
enrichment analysis (n = 5 rats/group).
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cytokines IL-1b, IL-6 and TNF-a in the clinical samples were in

line with our in vivo study data. The activation of T lymphocyte

and eosinophilia with increased peripheral proinflammatory

cytokines IL-1b, IL-6 and TNF-a are identified as the main

features of FD (17). The duodenal hyperplasia of mast cells and

eosinophils have been reported as the pathophysiological

phenomena overlapping irritable bowel syndrome and FD as

demonstrated in a cross-sectional study (18). As an

administration of corticotropin-release hormone, the mast cell-

eosinophil signalling increases small intestinal permeability (19).

In addition, mast cells and eosinophilia in activation statue have

been observed to cluster around intestinal submucosal plexus

neurons, which alter the neuronal responsiveness of intestine

and delayed gastric emptying (20, 21).

In terms of the initial triggers involved in the

pathophysiological process, one view emphasizes the eating-

related symptoms and the dietetic management of FD (22).
Frontiers in Immunology 07
The duodenal microbes support the digestive functions of small

intestine with the actions of fermentation and non-host

functional enzymes, which prevent inappropriate activation of

immune responses towards foods (23). Beneficial immune and

microbial regulation and the treatment of FD with specific

probiotics have also been demonstrated to be effective and safe

(24). The colonized microbes serve as a signalling hub that

incorporate environmental exposure and signals, regulating the

host’s metabolism and innate immune system (25). On the other

hand, host innate immunity regulates the microbial distribution

along the gastrointestinal tract. Importantly, the microbiome

located in duodenal mucosa indicate a greater sensitivity to the

innate immune responses compared to other intestinal sites (26).

The duodenal microenvironment has emerged as an important

player in the pathophysiological mechanisms of FD, in which

both locally microbial community disorder, host and microbial

metabolism and host innate immunity are involved (27). These
A B

D

E F G
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FIGURE 5

Validation of innate immune cells-mediated TLR2/TLR4-NFkB signaling pathway. (A-D) Duodenal immunohistochemical staining (A) and the
relative expression (IOD) of CD3-labeled T lymphocytes (B), tryptase-labeled mast cells (C) and MBP-labeled eosinophils (D) (*** p < 0.001, ****
p < 0.0001 by unpaired t test with Welch’s correction). (E-H) The WB bands (E) and scaled normalized protein expressions of TLR4 (F), IKKa +
IKKb (G) and NK-kB p65 (H) (** p < 0.01 by Mann Whitney test, ns indicates not significant). (I-K) The relative mRNA expressions of Tlr2 (I), Tlr4
(J) and Rela (K) (*** p < 0.001, **** p < 0.0001 by unpaired t test with Welch’s correction). (L-N) The plasma contents of proinflammatory
cytokines IL-1b (L), IL-6 (M) and TNF-a (N) (IL-1b and IL-6: *** p < 0.001, **** p < 0.0001 by unpaired t test with Welch’s correction; TNF-a: **
p < 0.01 by Mann Whitney test) (n = 5 rats/group).
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imbalances may in part be mediated by specific microbiome-

associated metabolites (28). A recent study showed that the

metabolic functional prediction of oral and gastric microbiome

based on 16S rRNA sequencing data. Among these, purine

metabolism, biosynthesis of lipopolysaccharide and amino acid

related enzymes were enriched in saliva microbiome, while

peptidases and associated processing at the gastric level.

However, metabolic function of duodenal microbiome has not

been reported (29).

Previous clinical data showed that increased fasting plasma

AEA has a significant negative correlation with the duodenal

expression of ZO-1. There was a similar, although non-

significant, trend in the relationship between AEA and the

relative mRNA expression of TLR4 and the content of TNF-a,
while an opposite trended association between AEA and ZO-1

(30). Another clinical study using positron emission tomography
Frontiers in Immunology 08
have demonstrated the higher availability of endocannabinoid 1

(CB1) receptor in the different cerebral regions of patients with

FD, indicating that the dysfunction of endocannabinoid system

is involved in the disease process (31). Additionally,

enteroendocrine cells in duodenum also contain the main

mRNA transcripts that encode endocannabinoids and

biosynthesis-associated fatty acids (32). In healthy populations,

pre-treatment with the CB1 receptor antagonist inhibited the

gastric accommodation reflex but not compliance, distension

and nutrient tolerance (33). The application of endocannabinoid

receptor antagonist in vitro significantly decreased TEER and the

relative mRNA expressions of ZO-1 and OCLN (34). Animal

study has also proved that addition of endocannabinoid receptor

antagonist elevates the intestinal permeability (35). Some

notions have been substantiated that AEA can be synthesized

from mast cells (36) and lymphocytes (37). Furthermore, CB1
FIGURE 6

Metabolome analysis of duodenum. Differential metabolites were identified with thresholds of p < 0.05, |log2(FC)| > 1, |p(corr)| > 0.5 and VIP > 1
with cvSE of VIP less than the VIP value (n = 5 rats/group). The compound names corresponding to the Metabo_ID from top to bottom are as
follows. 60311: Glycolithocholic acid; 72690: Taurolithocholate; 24353: Decanoyl-L-carnitine; 25117: Sphingosine; 64527: Glycodeoxycholic
acid; 36182: Arachidonyl Ethanolamide; 374: Tyramine; 20850: C17 Sphingosine; 29548: Taurocholic acid; 885: Benzyl sulfate; 12399: Myristoyl
Ethanolamide; 25708: Sphinganine; 8: 3-Hydroxybutyric acid; 76412: Taurodeoxycholate; 50488: Palmitoylcarnitine; 74720: Tricaprylin; 24088:
Phytosphingosine; 7272: N,N-Dimethyltetradecylamine; 26133: 7-Sulfocholic acid; 5350: FA 18:2+O; 5970: Eicosapentaenoic acid; 5467: 9-
HODE; 3964: gamma-Linolenic acid; 4125: Linoleic acid; 16342: Cholic acid; 7230: FA 18:2+2O; 24757: LPE(18:2/0:0); 47714: 7-Ketolithocholic
acid; 12818: Lithocholic acid; 22300: Andrastin C; 6227: Arachidonic acid; 2256: Biotin; 51910: 6,7-Diketolithocholic acid; 16085: 3-Oxocholic
acid; 14471: Murocholic acid; 76396: Taurochenodeoxycholate; 5608: FA 18:1+1O; 82138: LPC(18:1/0:0); 4333: Oleic acid; 71469: LPE(18:1/0:0);
42374: 3-Ketocholanic Acid; 26167: Oleoyl Ethanolamide; 53148: Hyocholic acid; 9518: N,N-Dimethyltetradecylamine-N-oxide; 58556:
Stearoyl-L-Carnitine; 79133: LPC(17:0/0:0); 18195: Palmitoleoyl Ethanolamide; 75519: LPC(16:0/0:0); 72242: LPC(15:0/0:0); 27125:
Docosahexaenoic acid; 26872: Stearoyl Ethanolamide; 65396: LPE(16:0/0:0); 82721: LPC(18:0/0:0); 81681: LPC(18:2/0:0).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.944591
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ji et al. 10.3389/fimmu.2022.944591
receptor is expressed on the surface of mast cells (38), while both

CB1 and CB2 receptors on eosinophils (39, 40) and T

lymphocytes (41, 42). As the gate opener assisting actions of

DAMPs, AEA exerts negative effects on the intestinal barrier,

presenting the gut microbiota-endocannabinoid system axis in

relation to the host metabolism (5). In contrast, several

endocannabinoid analogues have been recognised as the key

gate keepers. With the region-specific actions, intestinal OEA

plays a major role in gut physiological processes in the host (43).

As the natural agonist of peroxisome proliferator-activated

receptor-a (PPARa) with a high affinity, OEA effectively

relieves peripheral inflammatory conditions (44). Similarly, the

PEA of leukocytes actives PPARa at the early stage of LPS-

induced inflammation in a PPARa-dependent manner (45, 46).

The reduced levels of OEA, PEA and SEA also disturbed lipid

and fatty acid metabolism, resulting in proinflammatory

responses (47). Taken together, the specific alternation of

intestinal immunity has associations with endocannabinoid

system, microbial community and host metabolism (48).

Nevertheless, research study on the intertwined correlation

among the above three layers has not been reported.

Our study has some shortcomings. Due to technical

limitations, clarified protein-coding genes of duodenal

microbiome could not be confirmed. Verification studies on

host endocannabinoid system are needed, which are currently

on-going. Further studies at the cellular level, and clinical data

are also needed to suggest how the endocannabinoid system
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regulates the cause-effect relationship between microbial

metabolic function and host innate immune response.

In conclusion, this study provides multi-omics evidence to

suggest that duodenal microbiome regulate the biosynthesis of

lipopolysaccharide and peptidoglycan; and the host

endocannabinoid system acts as the potential regulator of

duodenal DAMPs-mediated low-grade inflammation in the rat

model of FD.
Methods

Animal model

The rat model of FD was developed as described previously

(9). In brief, acclimatization lasted one week after the quarantine

period of 3 days. In the model group, the oral gavage with 200ml
of 0.1% iodoacetamide solution (dissolved in 2% sucrose

aqueous solution) was administered once daily for 6 days,

while the control group was given normal 2% sucrose aqueous

solution at the same time. All the rats were fed on a standard

chow up to 8 weeks of age. The duodenal tissues of additional

two rats from each group were examined using transmission

electron microscopy. Another three rats from each group were

used for the assessment of behavioural response to gastric

distention due to any potential confounders related to

proinflammatory responses.
FIGURE 7

Variations of microbiome with DAMPs-related enzymes and duodenal metabolites have significant relationship with innate immune response-
related genes expression. Integrated analysis of multi-omics data was performed using Mantel test. AEA was selected from all the three profiles
(Mantel’s p < 0.05 represent significant) (n = 5 rats/group).
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Behavioral response to gastric
balloon distention

The balloon fabrication procedure, implantation surgery and

behavioral response to GD were performed according to

previous study (9). After 24-hour fasting, 8-week-old rats of

model group were anaesthetized with 10% chloral hydrate

intraperitoneally. Balloons with surface sterilization should not

obstruct the pylorus. Behavioral testing of GD was performed on

day 6 after surgery. The rats of model group were allowed an

hour to acclimate to the individual plastic environment.
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The inflating pressure was slowly increased to 20, 40, 60, 80

mmHg for 20 seconds with 5 minutes rest, respectively. The

behavioral response to GD was graded into 0–4 rating scale as

described previously.
Gastrointestinal transit

The calculation of gastrointestinal transit referenced the

previous study (49). Briefly, all the rats were gavaged with a

charcoal marker (mixtures of 20% charcoal and 5% gum arabic,
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FIGURE 8

Linear regression analysis of AEA and features of FD. (A) Gastrointestinal motor function. AEA was negatively linear correlated with the
gastrointestinal transit rate. (B-D) Duodenal permeability and absorption. AEA was positively linear correlated with L/M ratio (B) and the content
of D-lactate (C), while negatively linear correlated with TEER (D). (E-I) Duodenal mucosal barrier. AEA was negatively linear corelated with the
relative protein expressions of E-cadherin (E) and b-catenin (F) and the relative mRNA expressions of Dsc2 (G), Ocln (H) and Cln3 (I). (J-P)
Innate immune cells and proinflammatory signaling. AEA was positively linear correlated with the relative amounts of mast cells (J), the relative
mRNA expressions of Tlr2 (K), Tlr4 (L) and Rela (M), and the contents of proinflammatory cytokines IL-1b (N), IL-6 (O) and TNF-a (P) (All data are
log10 transformed. p < 0.05 represent significant) (n = 5 rats/group).
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1mL/100g body weight) into the stomach after 24-hour fasting.

Following the formula, the gastrointestinal transit rate (%) =

migration distance of charcoal marker/whole length of the small

intestine × 100%. Each measurement was repeated three times

and the mean value was taken.
Trans-endothelial electrical resistance

A Ussing chamber was used to measure the TEER as

described previously (50) with some modifications. Fresh

duodenum tissues (1cm long × 0.5cm wide) were cleaned and

rapidly put into Krebs-Ringer buffer with constant

carbogenation (O2/CO2, 95/5%) at 37°C. The parameters were

set as stable voltage of 5mV and polar constant-current pulses of

16 mA every 60 s with a 200 ms duration. Measurements were

recorded every 30 min within 2 h.
Quantitation of lactulose and mannitol

Duodenal permeability was assessed by L/M ratio using high

performance liquid chromatography (HPLC) Agilent 1260

(Agilent Technologies, Santa Clara, CA, USA) with a Waters

C18 column (Waters, Milford, USA), referring to previous

l i t era ture (51) with adjustment according to our

laboratory experience.
Immune organ index

The innate immune-related organs (thymus and spleen)

were collected and freshly weighed. Excess liquid was blotted

off using filter paper to reduce computational error. The immune

organ index was calculated by the following formula: organ

index (%) = organ weight/body weight × 100%.
Quantitation of D-lactate and cytokines

Plasma D-lactate and proinflammatory cytokines were

quantized using enzyme-linked immunosorbent assays

(ELISA). EnzyChrom™ D-Lactate Assay Kit was purchased

from BioAssay Systems (Hayward, CA). Rat IL-1 beta ELISA

Kit (ab255730), IL-6 ELISA Kit (ab234570) and TNF alpha

ELISA Kit (ab236712) were purchased from Abcam (Shanghai,

China). Establishment of standard curves and specific

experimental steps followed the instructions of above ELISA

kits. The optical density (OD) values of D-Lactate and cytokines

(IL-1b, IL-6 and TNF-a) were respectively read at 565 and

450 nm.
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Immunohistochemical and
immunofluorescence staining

IHC. A portion of the duodenum tissue was processed for

paraffin embedding. Immunohistochemical staining for CD3

(52), mast cell tryptase (53) and eosinophil MBP (54) were

performed as described previously. Anti-CD3 (ab5690) and anti-

mast cell tryptase (ab2378) antibodies were purchased from

Abcam (Shanghai, China). Anti-eosinophil major basic protein

antibody (MBP) [BMK-13] (ARG22591) was purchased from

arigo Biolaboratories (Shanghai, China).

IF. Immunofluorescent labeling of duodenal sections with

antibodies against b-Catenin (55) and E-cadherin (56) was

performed as previous studies. b-Catenin (D10A8) XP®

Rabbit mAb (#8480), E-Cadherin (4A2) Mouse mAb (#14472),

anti-mouse IgG (H+L), F(ab’)2 Fragment (Alexa Fluor® 488

Conjugate) (#4408), anti-rabbit IgG (H+L), F(ab’)2 Fragment

(Alexa Fluor® 555 Conjugate) (#4413) were purchased from Cell

Signaling Technologies (Shanghai, China).

For each specimen, three random visual fields as well as

three duplications were observed. The integrated optical density

(IOD) was calculated using Image-Pro Plus 6.0 software.
Transmission electron microscopy
analysis

For intuitively observing tight junctions between epithelial

cells, additional fresh duodenum tissues (chopped in 1mm3

pieces) of each group were fixed with pre-cooled 2.5%

glutaraldehyde. Standard procedures of TEM and image

processing referred to previous study (57).
16S rRNA sequencing

After 24-hour fasting, duodenum tissues with contents were

aseptically retrieved. Considering microbiome located in the

crypt-villus structure, duodenum tissues and contents were

mixed with the homogenate. The sodium dodecyl sulfate

(SDS) with grinding-based method was used to extract

genomic DNA. After purifying with GeneJET Gel Extraction

Kit (Thermofisher), PCR product was collected to generate

libraries of the V4 region (PCR primers: 515F/806R (58))

using Ion Plus Fragment Library Kit 48 rxns (Thermofisher).

Sequencing was performed on the Ion S5™XL platform

(Thermofisher). Raw SE400 reads were filtered with Cutadapt

(V1.9.1, http://cutadapt.readthedocs.io/en/stable/). Chimeras

were identified and removed with vsearch (V1.7.0, https://

github.com/torognes/vsearch). Clean reads obtained as

described above were clustered using Uparse (Uparse
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v7.0.1001, http://drive5.com/uparse/) to obtain operational

taxonomic units (OTUs) with a threshold of 97% similarity.

Species annotation was performed on the representative

sequences of OTUs using Mothur (https://mothur.org/), on

which SSUrRNA database of SILVA (Release 132) (http://

www.arb-silva.de/) was used with a threshold of 0.8~1).

Multiple sequence alignment was conducted to investigate

phylogenetic relationship by MUSCLE (v3.8.31, http://www.

drive5.com/muscle/). Alpha and beta diversity metrics were

analyzed using QIIME (V1.9.1) pipeline. Functional enzymes

and KEGG pathways prediction was analyzed using PICRUSt2

(https://github.com/picrust/picrust2). The publicly available

datasets can be download through NCBI SRA database

(BioProject ID: PRJNA575916, PRJNA719295). In-house raw

data are a l so ava i lab le for download (BioPro jec t

ID: PRJNA835600).
Transcriptome sequencing

Total RNA was extracted with Trizol (Invitrogen). The

magnetic beads with Oligo (dT) were used to enrich mRNA.

Concentration and purity were determined based on 260/

280nm UV absorbance ratios and the integrity was then

measured by Agilent 2100 bioanalyzer. The transcriptome

libraries were obtained using NEBNext® Ultra™ RNA

Library Prep Kit for Illumina® (NEB). Sequencing was

performed on the Hiseq 4000 (Illumina) platform. After

filtering, clean reads were aligned to the reference genome

using HISAT2 (https://daehwankimlab.github.io/hisat2/).

Transcripts were then assembled with StringTie (http://ccb.

jhu.edu/software/stringtie/). The resulting read counts were

converted to FPKM value. The genes in relation to innate

immunity were selected based on the InnateDB database

(https://www.innatedb.ca/). The PPI network was established

with STRING (http://string-db.org) with a minimum required

interaction score > 0.7. A subnetwork was then clustered with

a MCL algorithm. In-house raw data are available for

download through NCBI SRA database (BioProject

ID: PRJNA835595).
Untargeted metabolome

Sample preprocessing steps and TOF MS paraments were

the same as our previous described (59). The UPLC gradient was

programmed with some modifications. Raw data was converted

to abf using abfconvert. Based on MS-DIAL (V4.24) software,

peak detection, deconvolution, samples alignment, compounds

identification and computation of missing values were

performed using an in-house method.
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Western blot

A BCA assay was used to measure the concentration of total

protein extracted from homogenized duodenum tissues. Western

blot was performed following standard procedures. Briefly, 20ml
denatured protein each well was loaded onto SDS-PAGE. After

electrophoresis, the proteins were electroblotted to a PVDF

membrane. Incubations of the primary and secondary

antibodies were performed overnight at 4°C and for one hour at

room temperature, respectively. Anti-Tight Junction Protein 1

(ZO-1) antibody (NBP1-85047) was purchased from Novus

(Shanghai, China). Anti-Occludin (OCLN) (ab167161), anti-

Claudin 3 (CLN3) (ab15102), anti-Desmocollin 2 (DSC2)

(ab230039), anti-Toll-like receptor 4 (TLR4) (ab217274), anti-

IKK alpha + IKK beta (ab178870), anti-NK-kB p65 (ab16502) and

anti-beta Actin (ab8227) antibodies were purchased from Abcam

(Shanghai, China). After washing with TBST three times for

10 min, ECL detection, exposure and development were

performed. Protein band intensity was measured and quantified

by Image Lab software.
Quantitative PCR

Purified mRNA described above was reverse transcribed to

first-strand cDNA using an Evo M-MLV One Step RT-qPCR Kit

(Accurate Biotechnology). Templates were collected following

the condition of 37°C for 15 min and 85°C for 5 s. A SYBR®

Green Premix Pro Taq HS qPCR Kit (Accurate Biotechnology)

was used to amplification following the condition of one cycle

for 30 s at 95°C and 40 cycles for 5 s at 95°C, 30 s at 60°C. PCR

product was quantified using comparative DCt method (relative

quantification, RQ). Primers information was summarized in

Supplemental Table 7.
Statistics

Welch-corrected t test and Mann-Whitney test were

conducted using GraphPad Prism (9.2.0). In beta diversity,

adonis statistics were performed based on QIIME pipeline.

With thresholds of BH FDR < 0.05 and |log2(FC)| > 1,

differential expressed microbiome and genes were identified by

DESeq2 (https://git.bioconductor.org/packages/DESeq2). For

metabolomics data, multivariate analysis was performed using

MetaboAnalyst (v5.0) and SIMCA (V14.1). Compounds with

multiple thresholds of p < 0.05, |log2(FC)| > 1, |p(corr)| > 0.5 and

VIP > 1 with cross-validation standard error (cvSE) of VIP less

than the VIP value were selected as differential metabolites.

Mantel test was performed to established connections with

multi-omics data with Pearson correlation coefficient. The
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Spearman correlation coefficient was used to analyze the

correlations between microbiome and functional enzymes with

a threshold of p < 0.05.
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