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ABSTRACT: Genetic design automation (GDA) tools hold
promise to speed-up circuit design in synthetic biology. Their
widespread adoption is hampered by their limited predictive power,
resulting in frequent deviations between the in silico and in vivo
performance of a genetic circuit. Context effects, i.e., the change in
overall circuit functioning, due to the intracellular environment of
the host and due to cross-talk among circuits components are
believed to be a major source for the aforementioned deviations.
Incorporating these effects in computational models of GDA tools is
challenging but is expected to boost their predictive power and
hence their deployment. Using fine-grained thermodynamic models
of promoter activity, we show in this work how to account for two
major components of cellular context effects: (i) crosstalk due to
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limited specificity of used regulators and (ii) titration of circuit regulators to off-target binding sites on the host genome. We show
how we can compensate the incurred increase in computational complexity through dedicated branch-and-bound techniques during
the technology mapping process. Using the synthesis of several combinational logic circuits based on Cello’s device library as a case
study, we analyze the effect of different intensities and distributions of crosstalk on circuit performance and on the usability of a given

device library.

KEYWORDS: genetic design automation, equilibrium thermodynamics, branch and bound, technology mapping, context effects, crosstalk

1. INTRODUCTION

Although genetic design automation (GDA) has made
significant progress in recent years,' " its widespread adoption
among synthetic biology researchers is still hampered by the
limited number and modest size of well-characterized part
libraries but also by the limited predictive power of those tools.
That is, the circuit designs found by employed computer
models often do not operate as predicted when realized within
a cell. There are several reasons for this, but to some extent
they can be traced back to the fact that our mechanistic
understanding of the complex molecular biology operating
within a cell is still incomplete. First, this leads to part libraries
possibly omitting key physical and biochemical parameters that
are required to fully specify the behavior of a part. As a
consequence, the derived part models are under-specified.”
Second, the interactions among parts of a genetic circuit and
moreover between those parts and the host cellular machinery
are even less characterized or understood and not accounted
for in current GDA tools. All those potential interactions are
traditionally subsumed under the term context effects.”® These
effects include but are not limited to (i) the dependence of a
genetic part on the adjacent up- and downstream sequences,”
(ii) the cross-talk among synthetic regulators due to their
limited binding speciﬁcity,8 similarly (iii) the titration of
regulators to noncognate binding sites on the host genome,9
(iv) the retroactive or loading effect exerted on upstream
© 2023 The Authors. Published by
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circuits elements by subsequent downstream loads,'”"" and

(v) the cross-talk between the host and genetic circuits on the
energetic level through, e.g, the competing use of the energy-
intensive translation machinery.

Molecular means to counteract detrimental context effects
are devised on a case-by-case basis,"*~"> but their systematic
inception requires models deployed in GDA tools to account
for those effects. Moreover, certain titration effects turned out
to be beneficial and could be leveraged with GDA to shape
gene response characteristics if used in a controlled manner.'®

Incorporating context effects into circuit models involves
extending them through first-principles biophysical consid-
erations, through acquisition of appropriate characterization
data (circuit behavior under different environments) and—
most effectively—through a combination of both. Context
effects stemming from the dynamic molecular environment of
a host cell will give rise to measurable cell-to-cell variability of
circuit behavior."” Those context variations were shown to be
dominant contributors to noise, surpassing intrinsic contribu-
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Figure 1. (A) Illustration of the thermodynamic perspective of the logic circuit. (a) Desired binding of cognate TFs to cognate promoters
implementing the gate’s transfer function. (b) Crosstalk with noncognate TF binding amplifying repression at the noncognate promoter. (c)
Titration of available TFs to the host genome or other nonspecific binding sites. (B) Circuit topological view of the effects available to the model.
(a) Crosstalk from another gate’s internal TF. (b) Crosstalk from out-of-circuit TFs available through the host context. (c) Titration to nonspecific
binding sites available through the host context. (C) Effect of crosstalk and titration on a NOT/NOR gate’s transfer function. Crosstalk at the gate’s
output promoter reduces the gate’s high output, while titration of the gate-internal TF to off-target binding sites skews the gate’s transition region

to the right. The binding energies further moderate these effects

tions due to small-copy-number fluctuations.'® Hence, single-
cell data for parts or circuits can be used to learn or calibrate
context models. In turn, GDA tools incorporating context
effects can then evaluate and score a circuit candidate based on
its generated single-cell data across an in silico cell
population.'””® This provides means to identify circuit
candidates or additional regulatory motifs leading to robust
circuit behavior in the presence of context effects.

Among the many context effects, two of them can be tackled
by relying on available, more detailed biophysical models of
gene regulation. That is, (i) cross-talk among gene expression
units stemming from limited TF binding specificity of
deployed transcription factors and (ii) titration of those TFs
to a noncognate binding site among the host genome can be
dealt with through thermodynamic models developed over the
past four decades.”' ~** They work out the statistical mechanics
of promoter occupancy states in order to derive rates of gene
expression in a nearly parameter-free manner. They have been
particularly successful in predicting promoter strengths within
prokaryotic cells, where these occupancy dynamics are believed
to happen at thermodynamic equilibrium. Moreover, they have
allowed us to quantitatively reproduce the effect of titrating
DNA binding sites on the dose— response characteristics of
repressors in Escherichia coli (E. coli).” Estimation of necessary
thermodynamic parameters accounting for context effects is
available through measurements. While in the case of cross-
talk, measuring expression levels of TF-regulated parts in the
presence and absence of noncognate TFs is sufficient, titration
effects can be quantified by introducing titration plasmids with
TF binding sites at different concentratlons 7

Both Cello”* and iBioSim* are well-known GDA tools
with features particularly relevant to this work. Cello does not
take context effects into account during circuit synthesis. It
merely estimates the metabolic burden of every design in a
postprocessing step and applies a hard threshold to discard
toxic circuits. The tool uses a scoring function to heuristically
optimize the assignment of library gates to the gates of a
circuit. In a similar way iBioSim employs branch and bound to
optimize the gate assignment. The optimization goal in this
tool is the length of base pairs. Thus, it does not ensure the
proper realization of the desired circuit function. Also, this tool
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does not take into account context effects. To the best of our
knowledge, no current GDA tool is capable of optimizing
circuit performance while taking context effects under
consideration.

In this paper we present an approach for incorporating the
effect of the two aforementioned context effects in the GDA
technology mapping process. In particular, we make use of and
extend thermodynamic models for gene regulation. As a
consequence, the gates within the device library have a more
fine-grained computational representation and ad-hoc phe-
nomenological Hill-type characteristics can be avoided. As the
incorporation of cross-talk renders the considered class of
combinational circuits to be dynamic circuits encompassing
feedback loops, we discuss the computational consequences of
this and lay out efficient algorithms. In order to overcome the
increased computational complexity incurred by such feedback
structures, by the fine grained thermodynamic models, and by
the single-cell circuit scoring we devise an efficient branch-and-
bound algorithm for the mapping process. In particular, we
derive score intervals for partial circuit topologies and, based
on them, allow the pruning of entire branches of candidate
assignments of library gates without evaluation even in the
presence of cross-talk. We demonstrate the methodology using
the gate library of Cello presented in ref 25, where we
artificially introduced noncognate binding affinities of TFs for
parts within the circuit and for the genomic DNA of the host.

2. RESULTS AND DISCUSSION

2.1. Logic Circuit Architecture. The circuit and gate
architecture in this work is similar to the one used in the Cello
suite.”> Accordingly, we consider combinational logic circuits
that are built from NOR logic gates. Each of these NOR gates
consists mainly of a fixed combination of a gene and an output
promoter. The gene encodes a repressing transcription factor
(TF) which binds to its cognate binding site at the output
promoter. The output promoter activity then acts as the output
level of the gate. Promoter activities of (noncognate) input
promoters placed upstream and pointing toward the gene
correspond to input levels of the gate. Thus, the TF encoded
by the gene connects a gate’s inputs with its output in the form
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of a gate-internal connection. Binding characteristics of the TF
with its cognate binding site at the output promoter and
expression characteristics of the gene then implement the
gate’s transfer function.

2.2. Modeling Context Effects in Genetic Circuits.
2.2.1. Nuisance-Free Thermodynamic Circuit Description.
Modeling the NOR gate’s transfer functions using equilibrium
thermodynamics allows convenient integration of the consid-
ered context effects. We will elaborate on this in the following.

We start with a given concentration f of a translated product,
i.e, its copy number w.r.t. constant volume. This product can
be, e.g,, a TF or a reporter. Since we work with averages of
statistical ensembles, we also introduce an associated random
variable F for the product concentration. Another random
variable X € {0, 1} accounts for the occupation of a single
promoter upstream of the product’s encoding gene by RNA-
Polymerase (RNAP). Finally, a collection of random variables
C is used to quantify any considered molecular context
moderating RNAP occupation of the promoter, i.e., changing
X’s distribution. Now, let F = f be the realization of the product
concentration given a fixed molecular context C = c. A
fundamental model assumption w.r.t. gene expression is then
that f and the expectation E(XIC = ¢) are proportional, i.e.,
fx E(XIC =¢). This expectation E(XIC =¢) is termed
occupancy. A second fundamental model assumption directly
related to equilibrium thermodynamics is that single binding
states, i.e, the permutations of assignments of available
molecules to available binding sites, follow a Boltzmann
distribution. This itself implies that energetically indistinguish-
able binding states are equally probable. Thus, the model
reduces the underlying complicated mechanics of gene
expression to combinatorics on the ensemble of RNAP
binding states.”"”>*** Naturally, quantities considered to
moderate RNAP promoter occupation (e.g, TF’s) and thus
included in C either inflate the ensemble or increase statistical
dependence among the binding states and thus complicate the
combinatorics.”” Approximate expressions then need to be
found that are reduced to the dominating terms to maintain a
certain scalability. As a final assumption, we set the promoter
activity a to be proportional to the promoter occupancy, i.e.,
a « E(XIC = ¢), and thus a « f. An illustration summing up
the interactions that we can tackle using the equilibrium
thermodynamic model is shown in Figure 1A.
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To initiate construction of a genetic logic circuit using
thermodynamic gene expression, we first consider the
construction of a simple NOT gate. We can understand this
NOT gate as a NOR gate with a single input. As described in
Section 2.1, the gate is comprised of an output promoter, its
cognate (gate-internal) TF, and the gene that encodes the TF.
To obtain the full transfer function h, we need to give it an
input promoter activity a;,. The transfer function h determines
the output promoter activity o as a function of its input
promoter activity a;,. Let us say, the cognate TF concentration
f is known and there is no cooperativity. Then, the promoter
activity o can be given in terms of f by
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where # = (kT)™' is a thermodynamic constant with k the
Boltzmann constant and T the temperature. E is a relative
energy term encoding the energy expense of having an RNAP
and a TF bound at the promoter. E on the other hand denotes
the expense of having only a TF and no RNAP bound. The
number ¢ is the concentration of nonspecific “background”
binding sites that are assigned average binding energy and q is
a proportionality constant. With the exception of ¢, a similar
expression can also be found in ref 28. In this work, we
consider cooperativity by recruitment. This means any bound
TF reduces the energy expense of an additional TF to be
bound as well. We assume this effect to saturate at around N
bound TFs and thus introduce N as a “cutoff’” order of
cooperativity. As a consequence, we allow the relative energies
E(n) and E(n) to obtain an integer argument encoding how
many TF are bound. For promoter activity @, we then obtain
the expression

2 N
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The last step is to formulate the f as a function of ay, to
obtain the gate’s full transfer function h. Since f and o, are
proportional, we can express f & @a;, using the proportionality
constant @ and finally obtain
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We show in Methods 4.1.2 that = %{l In the following,

we introduce the circuit and in this context the expression for
the transfer function of a NOR gate with an arbitrary number
of inputs. Because of the complexity of the resulting
expressions, we will resort to a more abstract notation in
comparison to eq 1.

Let in the following the set of all gates in the circuit be G
and we have a set of integers J = {1, .., |G|} enumerating
the gates. 7 assigns an index to each gate, so that for any gate
from G with index m € 7, the quantity f,, is the concentration
of the gate’s affiliated (internal) TF expressed by the gate’s

5
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gene. Again, we assign a random variable F,, to this
concentration. The random variable of RNAP occupation of
its output promoter will be written X,, and the collection of
random variables considered to comprise its relevant molecular
context will be C,. The promoter activity of the output
promoter of gate m is then denoted by a,,. In this section, only
the ideal case of no titration nor crosstalk is considered. Thus,
besides gate independent host constants, we consider only the
affiliated TF concentration f,, to be relevant in moderating
RNAP occupation of the output promoter, ie, C,, ={F,}.
Following the steps for the simple NOT gate, to obtain the
NOR gate model, we first consider the function mapping the

https://doi.org/10.1021/acssynbio.2c00361
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input promoter activity to the internal TF concentration f,,
The input promoter activity is roughly given by the sum of
activities of all promoters upstream. Let J,, C 1 denote the set
of indices of gates wired to the input of the gate with index m.
Then,

=bE X X| n E=f|=b,2 E(XJE=f)
i€l i€,

" i€,
v Y o

i€,

fm

2)

where @ is the promoter activity of the output promoter of the
i-th gate posing as one of the m-th gate’s input promoters and
®,, is a gate-specific proportionality constant. Second, we
consider the promoter activity of the output promoter of the
m-th gate as a function of the TF concentration f,,. We again
assume that there exists a “cutoft” integer N,, which bounds the
significant order of cooperativity for gate m’s TF. As a result,
we obtain for the transfer function h,, of the m-th gate, i.e., for
its output promoter activity a,,

1+ Y (fj) ¢~ PECmm) -

— =
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=

(03

m ~ q
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where g,, is a proportionality constant. We again expanded the
relative energy functions E and E by two integer arguments i
and j, so that E(n; i, j) is the relative energy of the binding state
where n TFs from the i-th gate bind to the j-th gate’s binding
site. Since we consider no crosstalk here, only the E(n; i, i) are
occurring (because they are finite). Note that also
a,, « B(X, IE, =fm)

As a template model for the repression mechanics, we used a
version of the “simple repression” from ref 21, a model suitable
to describe most repression mechanisms in bacterial cells. This
choice is reflected in the simple rational appearance of eq 3. To
implement basal expression, we adopted the concept of
imperfect competition between RNAPs and repressors from
ref 28. This allows RNAPs to bind to promoters and initiate
transcription under large energy expense even if a TF is bound
to the repressor binding site. The original model prohibits this
combination completely and is thus not able to model leaky
gene expression in high copy number regimes of repressors.
The choice to add this mechanism results in the appearance of
the numerator polynomial featuring the larger energies E (in
comparison to E) in eq 3.

As suggested by the two fundamental model assumptions
and reflected in eq 3, the circuit can be fully parametrized using
binding energies and proportionality constants—besides
constants associated with the host environment that are
independent of the circuit. Indeed, for the calculation of the
whole circuit response, only these quantities are needed. In the
following, we describe how to calculate this response.

Assume now, we are given a set of promoter activities
U={ Ay Ay auM} as circuit inputs for a whole circuit.
We further choose a set Y/ C I of gate indices referring to
those gates whose output promoter activities pose as the
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circuit’s output. Since any a,, for m € Y cannot be measured
directly, we introduce a postprocessing circuit that maps the
output activities to a measurable reporter concentration, e.g,
that of YFP. This postprocessing circuit then implements the

transfer function y = hy(zi cy @) with the reporter concen-
tration y. As an example, we refer to Cello™> where h, is the

identity function so that y = . cy & (termed “implicit OR”).

S

Then, the circuit response has a unique solution y for an input
U if and only if the equation system

0=a, - h, Zai

iel,

VmeI7:

and

0=y—h, Z a;

ey (4)
has a unique solution. In the case of a valid combinational
circuit where each gate can be described by an equation of the
type of eq 3, the system has a solution and there exists an order
of successive calculation of eq 4 following which each equation
can be solved explicitly.

Using the thermodynamic model, we can also introduce
titration effects with the host genome. In this work, only first-
order titration effects are considered. Furthermore, intracircuit
titration can safely be ignored with reference to circuit
function, since we restrict ourselves to NOR-only logic circuits
and assume a small copy-number of the circuit plasmids in the
host. To understand this, we can picture both possible
scenarios of a gate-internal TF with index m titrated away
from its target promoter. In the low copy-number regime, i.e.,
f is small, where we expect a high promoter activity at the
output promoter, i.e., @, & max a,, an effective reduction of f,,
as the result of the titration would even increase the output
promoter activity a,,, further strengthening the desired gate
output. In the high copy-number regime, i.e., where f,,, is large
and a,, & 0 is desired, a titration effect away from the target
promoter can in principle alter the gate’s output by increasing
a,,. However, under the assumption of a small concentration s,,,
of noncognate intracircuit binding sites due to a small copy-
number of circuit plasmids, the effect can be ignored, even if
the statistical weight of binding to the noncognate sites is
extremely large (and thus, strong crosstalk is modeled). While
dependent on the exact location of the gate’s transition region,
we show in the Supporting Information that the worst-case is
covered by an effective reduction f’,, & f,, — s, of the TF
concentration f,,. Thus, if we require s, to be small we can
safely assume ', = f,, . This idea is illustrated in Figure 1C.
Thus, given a set of off-target binding sites provided by the
host environment that attract a specific TF, we consider
titration of these TFs away from the circuit. We call these host-
provided off-target binding sites competitor sites. Introduction
of a concentration s,, of competitor sites attracting the m-th TF
can be effectively modeled using the transformation

Em(fm) - Em(fm - Tm(fm, s,,)) where Tm(fm, s,,) is a monot-

onically increasing nonlinear function of f,, and s,, that can be
precomputed for every fixed host-configuration. Then, we
obtain for the modified transfer functions

h, Zai Ehmmeai—Tm Zai,sm

ier, i€l ier,
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where the function mapping the TF concentrations to the
output promoter activity Em stays unchanged as in eq 3. Note
that this modification can be immediately applied to any gate
for a fixed host, and the circuit equation (eq 4) stays formally
unchanged using the modified h,, and h,.

2.2.2. Calibration to Cello’s Gate Library. To obtain
meaningful parameters for a whole set of NOR gates, we
adopted the gate library from the Cello suite® and calibrated
our gate’s transfer functions to match the corresponding
transfer functions from the Cello gate library as closely as
possible. For this, we used Simulated Annealing to minimize
the logarithmic quadratic error over 1000 collocation points
equally spaced in the logarithmic domain within the interval
[107% 10°] w.r.t. the thermodynamic parameters. The obtained
curves had a peak | average | least cumulative (summed) error
of ~0.1931 ~0.0166110™" in the logarithmic domain. To
visually grasp this result, we supply the plots comparing both
transfer functions in the Supporting Information.

2.2.3. Adding Crosstalk. The main advantage of the
thermodynamic approach w.rt. modeling crosstalk is the
explicit formulation of TF binding. Therefore, to implement
crosstalk for the target gate with index m € 7 we need to
consider the occupancy E(X,,IC,) to be dependent on more
than only the cognate TF {F,} C C,. In this general case,
where we assume the binding specificity of any TF to be
potentially imperfect, we need to consider the concentrations
of all available TFs, so C,={F, .., F} ={Eie I}.
We then find for the output promoter activity
a,, < E(X,| Nie; E = f) that

N (EY' —pEGi,
1+ Zie[ Zn=1 (Z) e’ (nstm)

m N (£ pEGrim)
1+ T 2 (1) e

& h, Z Q; z Q

i1, i€l

a, ®q Em(fl, vy fK)

©)

Note, that eq 5 only holds under the assumption that
cooperativity between different types of TF is negligible. Again,
similar to the above, the circuit response has a unique solution
y for the input U if and only if the equation system

a,, — h, Z a, . Z a;

i€l =

Vmel: 0= and

0=y—hy2ai

ey

(6)

has a unique solution. In contrast to eq 4, eq 6 usually cannot
be solved explicitly since the required order of successive
calculations does not exist. Since crosstalk in general
introduces feedback connections to the circuit, the computa-
tional resources needed are significantly increased because root
finding or—in this case preferably—fixed-point algorithms
need to be used to find a solution.

We explain how we solved eq 6 in Methods 4.2. In contrast
to the combinational case (eq 4), where each h,,, m € I, and
h, need to be evaluated only once, we need to iterate over h,,

Y

and hy a few times until convergence. While the amount of

iterations greatly varies with the circuit topology, around 10—
20 iterations have been observed in an average scenario. Thus,
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using our approach, an increase in simulation runtime, i.e., the
evaluation of one specific circuit implementation, by one order
of magnitude has to be expected under consideration of
crosstalk. Note that this increase depends on the algorithm
used, and we cannot rule out the possibility to reduce the
amount of iterations significantly by choosing a specific
solution algorithm.

This increased demand of computational resources to
determine the circuit response under crosstalk aggravates the
runtime bottleneck in technology mapping of genetic logic
circuits. While technology mapping in EDA typically finds
near-optimal assignments for huge circuit structures in
amenable time, in GDA the pronounced quantitative differ-
ences of functionally similar parts—and thus, their limited
mutual compatibility—make already finding better-than-
average assignments in small circuit structures computationally
expensive. With increased computational complexity caused by
the thermodynamic modeling and decreased number of good
assignments caused by the now-considered context effects,
scalability becomes a more important feature in the technology
mapping process. We thus present a novel technology mapping
procedure specifically tailored to the optimization require-
ments in current GDA problems in the following section.

2.3. Efficient Context-Aware Design of Genetic
Circuits. A main objective of the design of genetic logic
circuits is finding a topology and an assignment of gates from a
library to this topology that maximize a given performance
metric. In contrast to EDA, where metrics typically are based
on circuit speed and size, metrics in GDA take into a account
whether a circuit fulfills its functional specification. For
example, the GDA tool Cello uses a circuit score based on
the separation of the complementary Boolean outputs.”” It has
been shown that the circuit topology plays an important role in
genetic circuit design.”” Yet, the computationally challenging
part of circuit design is finding an assignment of genetic gates
from a library to the topology. Each single assignment needs to
be evaluated by simulating the circuit and determining its
score, making the gate assignment a combinatorial optimiza-
tion problem. To this end, we propose a method based on the
Branch and Bound (B&B) optimization approach that takes
into account context effects. It leverages fundamental features
of the dose—response curve of gates based on transcriptional
regulation and finds the optimal solution with respect to
Cello’s circuit score. First, we introduce a notion of signal-
compatibility of genetic gates that integrates into the B&B
scheme and ensures robustness with respect to variability.

2.3.1. Compatibility of Genetic Gates. Genetic gates
feature different transfer characteristics even if they represent
the same logic function. In contrast to electronic circuits, there
are no global levels for high and low signal values. This can
lead to mismatches in the signal levels in a cascade of gates. In
extreme cases, the complementary Boolean outputs of a logic
gate can fall into the same region of a subsequent gate. This
leads to a loss of logic information and thus to a
nonfunctioning genetic circuit. In less severe cases, the
subsequent gate is operating near the transition region of its
transfer function. This results in a reduced tolerance with
respect to signal perturbations and should be avoided when
designing robust genetic circuits. In Cello, this is taken into
account by ensuring that the minimum and maximum output
values of a gate lead to an output of the subsequent gate that is
higher than half the maximum or lower than twice the
minimum output value.” Circuits that violate this criterion are
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filtered out during the technology mapping process. We
propose to generalize this concept by defining 3 dB-thresholds
of the output signal of each gate and determining the
corresponding input signal levels (see Figure 2). Furthermore,

out
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Figure 2. (A) Visualization of the 3 dB-thresholds on which the signal
compatibility analysis is based. iy, i) represent the output values at the
upper and lower threshold respectively, and j), j, the corresponding
input values. (B) Compatibility of gates in Cello’s library. For each
pair of source gates, the number of compatible target gates is
presented. Interestingly, there is a significant number of pairs not
compatible with any subsequent NOR gate. This limits the number of
gates available for assignment at a distinct position within the circuit.

the notion of compatibility is extended to include not only
pairs of gates, but also (n + 1)-tuples of gates with n being the
maximum number of inputs of gates in the library (see
Methods 4.3). This renders possible the determination of the
exact compatibility of all combinations of gates present in the
circuit. Furthermore, it can be asserted that signal levels in a
circuit of cascaded compatible gates do not cross the defined
thresholds and thus exhibit a defined perturbation margin. By
precomputing the compatibility of gates of a library into an (n
+ 1)-dimensional matrix, it can be integrated naturally into
constructive technology mapping methods like the B&B
approach presented in the following.

We have evaluated the compatibility of the NOT and NOR
gates from Cello’s library (see Figure 2). As the library features
gates with at most two inputs, the resulting compatibility
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matrix is 3-dimensional, with Boolean elements representing
the compatibility of a triple of two source gates and one target
gate. Altogether, 21% of all triples that can be formed from the
library have compatible signal characteristics.

2.3.2. Branch-and-Bound Gate Assignment. The Branch
and Bound (B&B)*’ method is an optimization strategy for
traversing search spaces in an efficient way and obtaining the
optimum solution. Generally, in the branching step, partial or
complete solutions are generated from other partial solutions
according to a branching rule. By this, a search tree is
generated iteratively. Then in the bounding phase, the quality
of partial solutions is estimated optimistically and compared to
the current best known solution. This enables pruning parts of
the search tree that spring from inferior partial solutions and
thus reaching the optimum more efficiently.

In the context of gate assignment for genetic circuits, the
branching rule arises from the fact that the last gate in the
cascade defines the maximum output interval of the circuit. Let
x be the input promoter activity, h(x) the inhibitory Hill
function modeling the dose—response curve of the transcrip-
tional regulation, K the repression coeflicient, n the Hill
coefficient, and [y, O the output interval. Then

amax —
x n
1+ (E)

So the circuit’s output interval and thus its maximum score
are limited by [ Omay] of the last gate. Upstream gates only
determine which portion of the interval is driven by the circuit.
Thus, we propose to build partial solutions starting from the
output gate and iteratively assign further gates in reversed
topological order (see Figure 3A). This enables pruning

considerable parts of the search tree early in the search process.
Furthermore, it ensures that every partial solution to the

h(x) = amin +

Figure 3. (A) Excerpt of B&B’s search tree. A branch is performed by
mapping gate implementations in the library to the gate marked in
red. The formed partial solutions are then scored by the optimistic
estimator and pruned, if their estimated quality is below the current
best known solution. (B) Estimation of input intervals exemplary
shown for the signal m;. The optimistic input interval is composed of
the parameters [, Oy Of gates left in the library. (C) Extension
of the input interval estimation to crosstalk environments. The given
assignment of Boolean input values leads to an expected “0”-output of
the marked gate. Thus, during the estimation of the subcircuit the
gate is embedded into its 0-environment that contains the maximum
repressing crosstalk.
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problem represents a valid subcircuit of the original circuit with
new inputs. To estimate the quality of these subcircuits
optimistically, we make use of another feature of the Hill
dose—response curve, its monotonicity. If ideal, i.e., maximal
input values into the subcircuit are assumed, it can be stated
that these translate to ideal output values and thus score (see
Methods 4.4). Thus, by composing the maximally possible
input values from the output intervals of the gates left in the
library, each partial solution is embedded into an optimistic
complete solution (see Figure 3B). By simulating the subcircuit
configured in this way, the score maximally reachable with a
complete solution that contains the partial solution is obtained.
Thus, it represents an optimistic estimation of the partial
solution’s quality.

The estimation requires valid bounds to the possible signal
values to be present at every site of the circuit. That is, every
signal representing a Boolean 1 has to be estimated to the
highest possible value at this site and vice versa. This requires a
further step to be taken at gates with multiple inputs to
guarantee optimality. For example, a NOR-gate with two
inputs can be decomposed into the superposition of both input
values x = x; + «x, and the application of the inhibitory Hill
function y = h(x). If input signals of mixed Boolean polarity are
assumed, the gate is expected to output a value representing a
Boolean 0 by its functional specification. The value of this
output signal has to represent a valid lower bound to the signal
values possible at this site. Due to the monotonicity of h(x),
this translates to an upper bound at the gate’s input. However,
if both input signals are assumed to be valid bounds, the
superposition of these signals does not represent a valid upper
bound due to their mixed polarity. Therefore, the output signal
of the NOR gate does not represent a valid lower bound. Thus,
the input signal representing a Boolean 0 has to be substituted
by the highest value possible at this site to guarantee
optimality. Generally, this is o, of the gate driving the
input. This reduces the tightness of the estimation as the
substituted value typically deviates strongly from the value
present at the site. When mapping a circuit under the
constraint of signal-compatibility of gates, iy can be used as a
substitute instead, as it represents a valid upper bound for the
input signal representing a Boolean 0. This restores the
tightness of the estimation and thus benefits the efficiency of
B&B. Note that the substitution with i, only guarantees an
optimistic estimation when mapping with compatibility and
without crosstalk, as the feedback loops introduced violate the
compatibility constraint. Thus, when mapping without
compatibility or with crosstalk, we call the substitution with
iy the “heuristic” mode of B&B, while substituting with a,,,, is
called “optimal” mode.

So far, the estimation is only applicable to the evaluation of
circuits without crosstalk. To find the optimal gate assignment
under the influence of crosstalk effects, it is necessary to
include them into the optimistic estimation. To achieve this,
we propose the concept of crosstalk-environments in the
following. Additionally to the desired inputs of a gate depicted
by the wiring diagram, crosstalk introduces further inputs that
model the crosstalk effect that other TFs have on the target
gate. For each gate, depending on its desired Boolean output
according to the functional specification, we compile an
optimistic “0-” or “1-environment”. The gate is then embedded
into it during the circuit simulation (see Figure 3C). Besides
the optimistic values of the wired inputs, the environments
contain the maximum crosstalk effects that benefit its specified
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output (see Methods 4.5). In a circuit consisting of gates based
on transcriptional repression, e.g., maximum crosstalk from
other gates would be assumed in the gate’s 0-environment. In
its 1-environment, however, the minimal possible crosstalk is
assumed. It is possible to estimate the extremal effect of
crosstalk as it is limited by the maximum input values of the
gate causing the crosstalk.

The signal compatibility of genetic gates presented in
Section 2.3.1 can be used to further refine the proposed B&B
method as it integrates naturally in the branching step. Naively,
the compatibility of all gates in a circuit can be checked as soon
as a complete assignment, that is a complete solution, exists.
We propose a satisfiability (SAT) based look-ahead approach
that is performed after every branching step on the search tree.
It checks whether any combination of compatible gates left in
the library exists that completes the assignment (see Methods
4.6). By this, the evaluation of subtrees that lead to invalid full
solutions is suppressed as early as possible.

2.4. Experimental Results. To evaluate the performance
of the proposed gate assignment methods and the behavior of
genetic circuits considering crosstalk modeled thermodynami-
cally, we perform the technology mapping for a set of circuits
with different parameters. First, we examine the performance
of the B&B method in the classic GDA scenario without the
consideration of crosstalk. Then, technology mapping is
performed with different distributions of crosstalk across the
library of genetic gates. This allows conclusions about the
performance of B&B and the performance degradation of
genetic circuits with crosstalk.

For first evaluating the performance of the proposed B&B
method without the consideration of crosstalk, we carried out
the gate assignment for the 33 circuit topologies presented in
ref 25 using Cello’s library of genetic gates. We then measured
the number of circuit simulations needed as well as the
deviation from the maximum circuit score, i.e., solution quality,
observed in any circuit and compare it to an exhaustive search.
Furthermore, all methods have been evaluated both with the
application of the compatibility constraint and without.

Table 1 summarizes the results of all gate assignment runs.
Without the consideration of compatibility of gates, B&B

Table 1. Number of Circuit Simulations Needed and Worst
Case Deviation of the Reached Circuit Score for Mapping
the Set off 33 Circuits Presented in Ref 25 without
Consideration of Crosstalk

method compatibility simulations deviation (%)
exhaustive X 103 687 206 —
B&B optimal X 6905 142 0
B&B heuristic X 156 075 —2.7 X 107
exhaustive v 1299 193 -
B&B optimal v 12 044 0
Cello (SA)“ v 990 000 —65

“Cello uses a similar, but not identical notion of compatibility in
which approx. 30% instead of 21% of gate triples are considered
compatible.

reduces the number of simulations needed 15-fold compared
to exhaustive search, while also guaranteeing to find the
optimum solution. In heuristic mode, B&B even exhibits a 664-
fold efficiency gain, while the worst solution quality observed
deviates only —2.7 X 107> % from the maximum. The
application of the compatibility constraint reduces the search
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Figure 4. (A—E) Different distributions and total intensities of the considered crosstalk. (A) very peaked distribution, low total intensity. (B) Very
peaked distribution, large total intensity. (C) Distribution with moderate entropy, moderate total intensity. (D) Distribution almost uniform, high
entropy, low total intensity. (E) Distribution almost uniform, high entropy, large total intensity. (F) Mean number of simulations needed for
mapping circuits with the proposed B&B methods compared to exhaustive search with respect to the number of gates. All results in this plot depict
technology mapping runs without crosstalk. Dashed lines show results without the compatibility constraint, while dotted lines depict results with
compatibility. (G) Number of simulations needed for mapping the set of 66 circuits with different crosstalk configurations in relation to the result
without crosstalk. As a mapping method, optimal B&B with consideration of compatibility has been used. (H) Mean score of the 66 circuits
mapped with optimal B&B with different crosstalk configurations in relation to the scores reached without crosstalk. The color encodes the
multiplier needed to map the score with crosstalk to the one without crosstalk.

space to 1.25% of the original one. In this reduced space, the
optimal B&B exhibits a 108-fold gain in the number of needed
simulations compared to exhaustive search. Finally, the gate
assignment has also been carried out with Cello’s stochastic
simulated annealing (SA) optimization method. Note the
limitation that Cello applies a similar but not identical notion
of compatibility (see Section 2.3.1). Furthermore, due to the
stochastic nature of SA, all runs have been carried out 10 times
and the worst case deviation has been determined by
comparing the best and the worst solution quality observed
for each circuit. Cello’s SA features a fixed number of 30 000
simulations per circuit, leading to a total number of 990 000
simulations needed, while a worst case deviation of —65% has
been observed. B&B in comparison finds the optimum solution
deterministically and exhibits a 83-fold efficiency gain.

Figure 4F relates the mean number of simulations needed
per circuit and mapping method to the circuit size. The
exponential problem complexity when not considering gate
compatibility can clearly be seen. However, compared to
exhaustive search, optimal B&B reduces the number of
simulations by up to 2.4 orders of magnitude and heuristic
B&B again by up to 1.6 orders of magnitude. When
considering compatibility, the problem complexity is dimin-
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ished due to the number of allowed gate assignments
decreasing with increasing circuit size. In this case, the refined
estimation of partial solutions enables optimal B&B to reduce
the number of simulations up to 2.6 orders of magnitude,

In the following, we evaluate the influence of crosstalk on
the performance of the B&B gate assignment and genetic
circuits by performing technology mapping with multiple gate
libraries containing different crosstalk configurations. The
crosstalk configurations were generated in the following way.
First, for each available promoter with index m, a random
vector of values w = (i, .., W), one for each noncognate
TF k # m, was generated by sampling a Dirichlet distribution
with a single concentration hyperparameter y > 0. This allowed
us to control how sparse the random crosstalk will be
distributed across the noncognate TFs. These values were then
used to obtain normalized relative energy terms of the binding

state of the cognate TF at the promoter E(n; k, m)

E(n; m, m) — np~" log(Siw) for k € {1, 2, 171} and a
number S > 0. The number S poses as a total intensity
hyperparameter. This ensured that at w, =1 and S = 1, a
noncognate TF would repress transcription at the promoter
equivalently to the cognate TF. Since the entries of any sample
from a Dirichlet distribution are guaranteed to sum to one, i.e.,
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2. W = 1, introduction of S allowed us to control the total

crosstalk coming from all noncognate TFs. We generated 35
libraries for each combination of one of 7 different
concentrations y and one of S total intensities S. The y and
S used are given in the Supporting Information, but five
libraries are visualized in Figure 4A—E. Additionally, the set of
33 circuits is extended with structural variants synthesized in
ref 19 to form a set of 66 circuits. We could observe that for
low to moderate total intensity in crosstalk only a small
deterioration in either score of the found assignment or
number of simulations w.r.t. the crosstalk-free case occurred.
From around 15% total intensity on, the excess number of
simulations and the reduction in score depended strongly on
the concentration hyperparameter as shown in Figure 4G,H.
For very peaked crosstalk distributions, the assignments were
found in comparable time to the case of low intensity, but their
scores were at around 50% to 60% of the crosstalk-free case. In
this case, the acceptable results can be achieved by either
distributing crosstalk across the gates to match their desired
logic outputs or by mitigating assignments with gate
combinations exhibiting crosstalk at all. For crosstalk
distributions with high entropy on the other hand, the
strongest observed decrease in score and the largest excess in
number of simulations has been observed. In the most extreme
case, we observed a reduction to 20% in average score and a S-
fold increase in number of simulations. In this scenario, with
rising total intensity it seems to be increasingly hard to find
assignments that correctly implement the logic function. Also
the B&B algorithm’s bounding function becomes increasingly
nondescriptive w.r.t. prediction of the final score, which leads
to the search strategy starting to approach that of an exhaustive
search across the assignments. In the observed worst-case
crosstalk configuration, the heuristic B&B method exhibits a
10.5-fold efficiency gain compared to the optimal method,
while obtaining near optimal results that feature a mean —0.7%
deviation from the optimum score. Thus, heuristic B&B
represents a viable alternative for efficient technology mapping
of circuits that are subject to crosstalk. The nonsmoothness of
the color plots in Figure 4G,H can be explained by the fact that
each library represents a single sample of a random library with
fixed total intensity and concentration.

3. CONCLUSION

In this contribution, we presented a novel technology mapping
approach for GDA which can process device libraries that
exhibit crosstalk between different transcription factors. This
crosstalk leads to binding of TFs at noncognate binding sites
and thus leads to unintended repression or activation. The
approach is also capable of dealing with titration effects which
reduce the number of TFs available for binding at the cognate
binding sites due to off-target sites on the host genome. Both
effects have to be taken into account during circuit scoring in
order to find robust designs for genetic circuits, in particular,
for combinational logic circuits. The underlying principle of
our developed circuit models uses thermodynamic calculations
of TEF-DNA binding energies. We have shown that using this
modeling approach we can find good gate assignments even in
the presence of both context effects.

We investigated different types of crosstalk scenarios. They
vary in the intensity and in the entropy of the crosstalk
distribution, i.e., whether crosstalk is spread equally among the
library parts or whether crosstalk is confined to a few pairs of
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parts of the library. It turns out that a certain amount of
crosstalk can be tolerated in the library with a moderate
degradation in circuit performance, quantified in terms of
circuit score. For higher crosstalk levels, the circuit perform-
ance degrades significantly and the computational complexity
of the proposed B&B assignment method increases con-
currently. In case of severe crosstalk but with low entropy, the
B&B run-time showed almost no degradation, but the circuit
performance was strongly affected. In worst-case crosstalk
scenarios, the heuristic B&B assignment still found near
optimal results, yet still 13 times faster than the optimal,
exhaustive method.

We believe that these findings will help other researchers to
evaluate their device libraries at an early stage during research
and circuit development. They can judge the crosstalk situation
in their libraries and in their circuit designs without the need to
build many different test circuits in the lab.

4. METHODS

4.1. Thermodynamic Description of the Genetic
Logic Circuit. In the following sections, we derive an equation
which allows us to express the TF concentration f,, of a gate
with index m € I as a function of all TF concentrations f,
k € I of the other gates, and any additional nuisance TF’s in
the circuit if present. Since the circuit is comprised of NOR
gates that map promoter activities to promoter activities, we
then reformulate the expression to obtain the transfer functions
of the gates (eq S) and as a simplification (eq 3).

4.1.1. Gate-Internal TF Expression. We first present the
general expression for the partition function of bound RNAP
for the NOT (l-input NOR) gate’s output promoter under
potential crosstalk from all K available TF in the circuit. The
quantity p is the number of available RNAP.

W(P - b: f1: R fK)
K c
+k§ b f) e f =1 fJ
W = b, £y e o= 1 f)

completed multinomial coefficient

with b € {0, 1}, the

[4

[p; fl’ 2 fK] = p, fl’ v Jgr €T P ZfK
I=1

k-1

2

I=1

()
A

and the general statistical weight function w

w(q, v, ., v) = exp(=p(L(q, v, - vg)
+1(p — g, = e fie — 7))

which covers the partition across the background and specific
binding sites. For the background energy we assume
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independent binding. Thus, the function /, takes on the simple
form

lc(q, Viy ey UK) =qg,,

K
+ Z vkswfk
k=1

with the absolute binding energies ¢, for RNAP and & for

TF binding to a nonspecific background site. Whether or not
the specific binding energy function / can be written as a linear
combination of only a few energy terms for most arguments
depends on the degree of simplification in the model. A fully
independent specific binding would lead to a similar
appearance to /.. The particular choice for / implements, e.g,,
cooperativity and basal expression. Generally, we obtain the
expression for the expectation E(lel, oy fK) via

1
EX - S = =
Zl(P: fl; el fK)

The derivation of the final simplified expression takes a lot of
space, so we refer to the Supporting Information for it. Under
the assumption of no relevant RNAP titration, i.e., a sufficiently
large copy number of RNAP’s available for binding, and no
cooperativity, we then obtain as the result for the NOT gate
with imperfect competition and arbitrary crosstalk from other
TF’s

1
1
1+ Eiexp(—ﬂ(ec‘p -¢,))

EXIf, ., f,) =

(7)

where the regulation factor d is given by
L+ Y fkeXP( Ble,

1+ 2

1+ 35 Lexp(—pE(L; K, )

1+ 3 Rep(-pE( &, )

where we introduced the relative energy functions
E(L;k,-) =g, — ¢ — &y and E(L;k,-) = £ — &y
which encode the energy expense of the k-th TF binding to
the promoter which has no index and thus obtains a - here.
Note that d in the NOT case is approximately equal to the
fold-change ¢(f,, .., f,). To extend the result to the

cooperative case, we can simply follow the construction for
dependent multiple bindings from ref 21.

In the following, we will add the superscript (n) to any
“anonymous” input promoter for enumeration. In this way,
there is no confusion with the gate index placed as a subscript
and simultaneously allows us to specify an arbitrary n-th input
promoter.

The output expression in the N-input NOR gate is given by
a simple sum of the expressions for NOT gates with the same
output gene. This means that the decomposition

in the single expectations E(Zi\lle(")lfl, . fK>

ZN E(X(”)lf ,f) yields a sum of expressions that

match those of the NOT case. For this to happen, the random
variables X™ need to be independent. We can argue analogous
to ref 27 that they are independent under the assumption of no
relevant intracircuit interpromoter TF and RNAP titration.

— &)
c,fg)

d=

exp( ﬂ(gf
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This means that, conditioned on the binding of a TF or RNAP
to binding sites of another gate, the probability of binding to
the sites of the considered gate does not significantly change.
This can be seen as a “large” copy-number approximation,
while “large” will be relative to the potential binding sites
present in the circuit.

It is now a straightforward task to construct the expression
for the n-input NOR gate. Thus, in this case we directly obtain

N
E Z_:XW £ K]
i 1
= (14 S few(—ple, — )
with the promoter-specific regulation factors d™ given by
1+ ZK fkexp( ﬂ(s SIE”) - ec,fk))
1+ 2 Rexp(- ﬂ(f(”) &)

which is the final expression for the output expression of the
(N-input) NOR gate with imperfect competitivity (between
RNAP and TF’s) and crosstalk from an arbitrary number of
additional TF’s.

This is the first case where we are now interested in an
expression for the overall fold-change. The fold-change is given

by the expression
N ()
E(anlX - K)
N 5 (n)
E(anlX 0, - 0)
) :
1(1+W*EXP( Ble, —é("))))

2 N_ 1

"= (14 e, - o)

dm =

oy o fi) =

which we can approximate closely by assuming that the factors
iexp(—ﬂ(eclp - EI(,"))) > 1 for all n. This is based on the
assumption that the expectation of encountering an RNAP
bound at the specific promoter is in absolute numbers rather
small, ie, Pr(X" = Uf, ., f,) is small for all n and the

number of binding sites is reasonabl small as well (it is even
only 1 here at this moment). Also d" < 1 holds true anyway
and even amplifies this aspect for the scaled terms

“exp(— —ple,, - e;"))). Then, we get for the fold-change

d("}

c 1

p zN_ 1

=1 exp(—ple., — &)

(s o f) R

d(”) 1
¢ o exp(-Ble, — &)

vy 4 ep(=Ag” — )
= T ep(—ple ~ ¢,,)

N
— Z POFIC;
n=1
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which lets us state the final form for the fold-change by 1+ Zf:l ?kexp(_ B( By~ & — 8%) )
a, &

N
o o £ Y

n=1

where the weights o™ are given by the equation

G ))
RS ®)
Zk=1 exp(_ﬁ(gp - ec,p))
which relates the relative statistical weights of the promoters to

each other. Finally, we repeat the expression for the regulation
factors d, which is given by

1, n n
L+ T, texp(—plel) — & — &)

f; n
L+ 25 dexp(—pel — &)

d" =

We again refer to ref 21 on how to extend the d™ to the case
with cooperativity. Actively repressing stronger promoters has
a stronger influence on the overall fold-change of the NOR
gate. The fold-change together with a proportionality constant
then gives the absolute expression level f,, ie.,

f, ~ (pm(fl, . fK)bm

for some b, € R,;. In accordance to previous works on
thermodynamic gene expression,”' since ¢, € (0, 1) and
arg max; o q)m(fl, - fK) = (0, .., 0), the proportionality
constant b, = maxf, equals the unrepressed, maximal TF
concentration.

4.1.2. From TF Concentrations to Promoter Activity. While
being intuitive, working with mappings of TF concentrations
raises consistency issues with the gate and circuit models. This
stems from the fact that TF concentrations are gate-internal
quantities and thus any change in wiring would change the
“transfer” functions to compute, This is also incompatible with
common methods to improve performance, e.g., lookup tables
of function values. Thus, to keep logic circuit and
thermodynamic models consistent, we need to formulate the
output promoter activities ,, as functions of the other
promoter activities ay, .., ag. First, we assume the output

promoter activities @, & E(X, ey fK) to be proportional

|
mJy?
to their occupancies by RNAP. Thus, we obtain for the output
activity that a,,, & (pm(fl P fK)qm with a new proportionality
constant 4 € R. Clearly, by the same argument as used for

b,, we can see that q,, = max a,, ie., q,, must be the maximum
unrepressed promoter activity. Thus, we obtain for the
relationship between input promoter activity and TF
concentration at the m-th gate

max

7&2 o =
Zie] max & l

iiel,

LTI

Zielm 4; iel, iel,
(8)

The final step is to relate the internal TF concentration f,,
and the output promoter activity a,,. Since we decomposed the
NOR gate’s input to a sum of inputs of NOT gates which is
already reflected by eq 8, it is sufficient to consider this relation
w.r.t. the fold-change of a NOT gate. Then, we obtain from eq
7 that

f =
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T
1+ 25 Lexp(—ple; — ey)

=h, Z Ay oy z Q;

iel, i€l

4.2, Iterative Calculation of the Circuit Response.
Before we calculate the circuit response under crosstalk (eq 6),
we start by considering the crosstalk-free version (eq 4).
Calculation of eq 4 is very fast because there exists at least one
sorting of the [7] + 1 equations in the system, such that each
equation can be solved explicitly upon solution of the previous
one. As a consequence, a single iteration, ie., a single
calculation of each equation in the system, is sufficient to
obtain the final solution y given 9. Thus, under the
assumption that in most assignments traversed by the
technology mapping process the incorporation of crosstalk
through eq 6 does not fundamentally change the gate’s outputs
in comparison to eq 4, we use the solution of eq 4 as an initial
guess. As a nonlinear equation system, we can write
eq 6 in matrix form with the vector of unknowns
a = (a, .., qp, y) including the response y. Then, with

the fixed vector-valued function g, : R - RY™! which

maps gate-outputs to gate-outputs, we can solve the fixedpoint
problem 0 = @ — g(a) with the vector of zeros 0. This can
then, together with the initial guess ¢, obtained from eq 4, be
fed into a state-of-the-art fixedpoint or root solver. For our
evaluation, we simply used Python’s scipy.optimize package
with the function root and chose the Levenberg—Marquardt
algorithm as a solution method.

4.3. Defining Signal Compatibility of Genetic Logic
Gates. Let [ Qe be the output interval of a genetic gate.

Then iy = a;, + (1 - \/g )amax represents its output at the
lower 3 dB-threshold and j; = g"'(iy) the corresponding input

value. Similarly, i; = \/g Q... is the output at the upper 3 dB-

threshold and j, = g7'(i;) its corresponding input value.
Assume a library of gates based on repression with a
maximum of two inputs per gate. A triple of two source gates r,
s, and a target gate t is compatible if
iO,r + iO,s < jO,t
i.e., the superposition of the maximum input values
representing a Boolean 0 does not exceed the lower input
threshold of the target gate. Further,

il,r + amin ) Z jl,t A il,s + amax,r Z jl,t
ensures that the lowest input superposition representing a
Boolean 0 and a Boolean 1 does not fall below the target’s
upper input threshold.

4.4, Optimality of the Branch and Bound Method. Let
7 be the topology of the genetic circuit and a the assignment of
gates from the library to the abstract nodes of the circuit. Let
further be Y the set of output signal values representing a
Boolean 1 and Y the signal values representing a Boolean 0.
Then the circuit score (eq 9a) introduced by Cello rates the
minimum separation of the complementary Boolean output

states of the final gate in the circuit.”>*’
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Table 2. Source Gate Activity and TF Assumed in Crosstalk Environments for Optimistic and Heuristic Estimation

A B
Source Gate (s€D) Source Gate ()
env. 0 1 env. 0 1
Target Gate (fE D) 0 Cmax‘h: bs Cmax,ha bs Target Gate (tE D) 0 Cmax,h, bmax,! Cmax,hv bmax,t
1 Cmin,hr bs Cmin,hv bs 1 Cmin,h’ bmin,t Cmin,hv bmax,t

optimistic estimation, source gate assigned

optimistic estimation, source gate not assigned

C D
Source Gate (seD) Source Gate ()
env. 0 1 env. 0 1
Target Gate (te D) 0 Cmaxn Ds Jon bs Target Gate (te D) O Crmax P Josm rmaxs
1 jl,hr bs cmin,hv bs 1 jl,hv bmin,t Cmin,hv bmin,t

heuristic estimation, source gate assigned

heuristic estimation, source gate not assigned

ming ¢ (7)
sy, @) = —2=—
max , cy(y) (92)
i, @) = s
) min%e)’((hj(%)) (9b)
h'(amin i)
S( ’ a) < ! .
’ hj(amax,i) (9C)

Let j name that final circuit gate and let h;(x) be its transfer
function, the inhibitory Hill curve. Let x be the maximum gate
input value of all input values X representing a Boolean 0, ¥ be
the minimum gate input value of all input values X
representing a Boolean 1. Then eq 9b results from the
monotonicity and inverting characteristic of h;(x). Let [@pin,p
®nayi] be the bounded output interval of the preceding gate i,
then eq 9c represents a valid upper bound of the score, because
amin,i S %, X S amax,i'

4.5. Compilation of the Crosstalk Environments. Let ¢
€ G be the gate in the set of gates G comprising the abstract
circuit topology for which the crosstalk-environment shall be
built. Assume that it is assigned with a genetic gate
implementation ¢t € D from the set D of implementations in
the library. The crosstalk environment of g is built by
superimposing the contributions of all other gates h # g € G
in the circuit. Let furthermore [y Cmaxs] be the minimum
and maximum input values into source gate h determining its
output and thus crosstalk induced by it. If the input gates of h
are assigned an implementation from the library, this interval
comprises the superposition of the input gates’ minimum and
maximum output values, respectively. If the input gates of & are
unassigned, the interval is composed of the minimum and
maximum output values of gates left in the library, representing
an extremal estimation.

First, assume that the source gate h is assigned an
implementation s € D and its cognate TF is b,. Its contribution
to the crosstalk-environment of gate g is then calculated
according to the input values and expressed TFs shown in
Table 2A. To guarantee an optimistic estimation of the
partially assigned circuit, its produced crosstalk is assumed to
be maximal in the target gate’s 0-environment and minimal in
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the 1-environment. As the source gate’s TF is fixed, this is done
by minimizing or maximizing its possible input values.

Let bp,, and by, be the noncognate TFs of gate
implementation ¢ assigned to target gate g that are not
contained in the partial assignment and have the minimum and
maximum binding affinity to 's promoter, respectively. The
contribution to the crosstalk of a source gate that is not
assigned is then determined according to Table 2B. That is,
additionally to assuming extremal input values for the
crosstalk-inducing gate, it is assumed to express the TFs that
have the minimum or maximum effect on the target gate.

The choice of the composition of the crosstalk environments
depends only on the specified Boolean output value of the
target gate. Furthermore, feedback loops introduced by
crosstalk are cut by basing ¢, ), and ¢,y solely on minimum
and maximum activity values given in the library which
represent physical bounds. Both aspects ensure that the
estimation of the crosstalk is fully optimistic w.r.t. to the
functional specification.

Analog to the heuristic mode introduced in Section 2.3.2 for
the estimation of wired inputs, the crosstalk can be estimated
heuristically. Let j,, and j, , be the input values of source gate h
corresponding to the thresholds introduced in the signal-
compatibility analysis Section 2.3.1. For circuits built from
compatible gates, we can state that j,, represents a valid upper
bound for the possible inputs of gate h when its specified
output is a Boolean 1. Analog, j, ) represents a valid lower
bound for the possible inputs when the specified output of gate
h is a Boolean 0. Note that these bounds are only valid for a
circuit free of crosstalk, i.e., without feedback loops. Nonethe-
less, they can be used as a heuristic estimation for the output of
h when considering circuits with crosstalk. We implemented
this estimation into the heuristic mode of B&B according to
Table 2C,D. In contrast to the optimal mode, the optimistic
but not fully realistic estimation of the input activity ¢, in
the case of a specified Boolean 1 output of gate h is replaced by
jo Analog, ¢ is replaced by j, ; in the case of a Boolean 0
output.

4.6. Branching with Compatibility Look-Ahead. After
every branching step during the B&B, a look-ahead check is
performed whether the formed partial assignment of genetic
gates can be completed to form a valid solution that meets the

min,|
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constraints given by the compatibility matrix. To this end, a
satifiability (SAT) problem is formulated that is solved by a
SAT solver online during technology mapping. The problem
consists of four clauses, one of which is optional. Let ¢ € G be
a gate g from the set of all abstract gates in the circuit G and d
€ R C D the genetic gate implementation d from repressor
group R that forms a part of all implementations D present in
the library. Then A € B = {0,1} is the Boolean variable

representing an assignment of implementation d to gate g. Let
further be y € Y the logic type y of all logic types present in the
library and t(g): G — T, t(d): D — T the functions mapping
gates and implementations to their logic type. Then the first
clause of the SAT problem

Vge G,VdED:EIad_,g:azlAt(g)zt(d)

ensures that every gate is assigned at least one implementation
of the same type. Further, the clause

VRCD:I{VdeR,VgeG:ad_,g}=1I51

states that every repressor must be assigned maximally once.
Let furthermore be # the maximum number of inputs of gates
in the library and (s, s,, ., 5,, t) € T the (n + 1)-tuple of n
source implementations s, and target implementation ¢
of all (n + 1)-tuples T present in the circuit. Let
c(sy, Sy S,y t): D", D > B be the function that queries the
compatibility matrix for a given (n + 1)-tuple of implementa-
tions. Then the clause

Y (sgy Sy Sy t) € T: c(sy, 550y 5,, 1) =1

ensures that every tuple present in the circuit consists of
compatible implementations. The final clause

VgeG,VdeD:3a4g=1AVe#deD: fae,y=1

states that every gate is assigned maximally one implementa-
tion. It is optional for evaluating the compatibility, but can be
useful as it enables the retrieval of valid assignments from the
SAT model. To speed up the evaluation of the SAT problem, it
is set up prior to the technology mapping process based on the
circuit structure and the library of gate implementations. When
a (partial) assignment shall be evaluated, the variables a are
substituted with constants according to the existing assign-
ment.

The source code of the proposed methods is available at
https://www.rs.tu-darmstadt.de/ARCTIC.
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