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Abstract: Entropy is intrinsic to the geographical distribution of a biological species. A species
distribution with higher entropy involves more uncertainty, i.e., is more gradually constrained by
the environment. Species distribution modelling tries to yield models with low uncertainty but
normally has to reduce uncertainty by increasing their complexity, which is detrimental for another
desirable property of the models, parsimony. By modelling the distribution of 18 vertebrate species
in mainland Spain, we show that entropy may be computed along the forward-backwards stepwise
selection of variables in Logistic Regression Models to check whether uncertainty is reduced at each
step. In general, a reduction of entropy was produced asymptotically at each step of the model.
This asymptote could be used to distinguish the entropy attributable to the species distribution
from that attributable to model misspecification. We discussed the use of fuzzy entropy for this
end because it produces results that are commensurable between species and study areas. Using
a stepwise approach and fuzzy entropy may be helpful to counterbalance the uncertainty and the
complexity of the models. The model yielded at the step with the lowest fuzzy entropy combines the
reduction of uncertainty with parsimony, which results in high efficiency.

Keywords: Akaike Information Criterion; favourability function; fuzzy entropy; probability of
occurrence; Shannon entropy; species distribution models; stepwise logistic regression; uncertainty

1. Introduction

Species distribution models are widely employed by the scientific community to
detect species’ suitable areas in a territory [1,2], to understand the environmental variables
that define species distributions [3,4], to forecast the effect of global changes on their dis-
tributions [5,6], to detect priority areas for conservation [7,8], or to guide conservation
programmes [1,9]. There are a wide variety of procedures to perform species distribution
models, including Generalized Linear Models [10], Generalized Additive Models [11], Ar-
tificial Neural Networks [12], Maximum Entropy Models (MaxEnt) [13], and Classification
and Regression Trees [14].

Some of these approaches, such as MaxEnt, are based on the concept of entropy [15].
Shannon [16] defined entropy in the context of the information theory (see formulation in
Methods) as a measure of information, choice, and uncertainty. It reflects the uncertainty
associated with a probability distribution, i.e., a broad distribution represents more uncer-
tainty than does a sharply peaked one [17], and represents the degree of disorganisation
of a system [18]. Although the concept of entropy can be applied to different systems, it
is an intrinsic characteristic of the geographic distribution of a species, as a distribution
with higher entropy involves more uncertainty or choices [13], i.e., it is more gradually
constrained by the environmental conditions, whereas a distribution with lower entropy is
more abruptly constrained by the environment. With maximum entropy, the distribution of
the species is completely disordered, i.e., the probability of occurrence is equally distributed
in the entire territory. The smaller the entropy, the more orderly the distribution of the
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species is, i.e., more clearly suitable and unsuitable areas are distinguished. Therefore,
performing the models taking into account the concept of entropy is justified. MaxEnt
estimates target species suitability by finding the probability distribution of maximum
entropy (i.e., that is most spread out, or closest to uniform), subject to a set of variables
that represent our incomplete information about the target species distribution [13]. Model
selection using information theory is also based on the entropy principle because selecting
the model with the lowest Akaike Information Criterion (AIC) is equivalent to minimising
the entropy [19]. Stepwise Generalised Linear Models, and more specifically stepwise
logistic regression, a commonly used supervised machine learning algorithm [20,21], can
also be considered to be related to the concept of entropy. In this case, the goal is to find
the model that gives the maximum reduction of entropy in each of the steps. This can be
computed with the AIC of the steps but also with Shannon entropy and fuzzy entropy
(see below).

In stepwise modelling, each step of inclusion or deletion of variables yields a model,
and predictions can be obtained from each of the steps. This can be useful to assess if a
model with just the first few variables could already provide predictions close to the final
step, or to see which variables determine the more general trends in the model predictions
(i.e., those variables that first become part of the model), and which of them act on finer-
scale distribution patterns (i.e., those entering last) [1]. We can also calculate the entropy
of the final model and the entropy of those produced at each step. This can be done by
applying Shannon entropy to the probabilities obtained in each of the steps. Additionally,
there is also a definition of fuzzy entropy (see formulation in Methods) that can be applied
to fuzzy sets [22]. Related to fuzzy sets, favourability functions [23] can be used to identify
favourable areas for the occurrence of a species in a territory. The favourability value for
a species in a cell can be interpreted as the degree of membership of the cell to the fuzzy
set of cells that are favourable for the species [24]. Therefore, fuzzy operations, such as
fuzzy entropy, can be applied to the favourability values. Fuzzy entropy also reflects the
uncertainty of a system.

In this paper, we showed that forward-backwards stepwise selection of variables in
logistic regression generally increases the complexity of the models while reducing their
uncertainty, as the entropy tends to be reduced asymptotically at each step with respect to
the previous step. This characteristic of the procedure may be used to counterbalance the
complementary properties of parsimony and certainty, and to distinguish the entropy due
to disorganisation in the species distribution from that, due to deficiency in the model. We
also discussed the differential suitability of Shannon entropy, the AIC, and fuzzy entropy
for this purpose.

2. Materials and Methods
2.1. Modelling Method

We modelled the distribution of 18 vertebrate species in mainland Spain (Table 1).
Species included taxa of the four terrestrial vertebrate groups, i.e., amphibians, reptiles,
mammals, and birds. We chose only species whose distributions are restricted or mainly
restricted to the Iberian Peninsula. In the case of birds, distribution referred to breeding
sites. Presence/absence in each 10 km × 10 km Universal Transverse Mercator cell was
considered according to the distribution atlases of vertebrates in Spain [25–27]. Although
each of the atlases has its own specifications, in general, a cell was considered a presence for
a species when an individual was recorded in the cell; otherwise, the cell was considered
an absence for the species.
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Table 1. Species analysed in the present study. N is the number of presences in the study area. The
number of steps of the stepwise approach and the step with the lowest fuzzy entropy (R) are indicated.

Group Species Species Code N Total Steps Step Lowest R

Amphibians Chioglossa lusitanica Chi_lus 168 11 9
Euproctus asper Eup_asp 189 12 12

Triturus pygmaeus Tri_pyg 470 11 11
Alytes dickhilleni Aly_dic 135 12 12
Rana pyrenaica Ran_pyr 24 10 10

Reptiles Chalcides bedriagai Cha_bed 605 13 13
Algyroides marchi Alg_mar 30 12 11

Iberolacerta bonnali Ibe_bon 25 10 5
Lacerta schreiberi Lac_sch 576 15 13

Birds Aquila adalberti Aqu_ada 158 13 12
Caprimulgus ruficollis Cap_ruf 1725 13 13
Chersophilus duponti Che_dup 237 13 6
Sylvia conspicillata Syl_con 1299 10 8

Mammals Galemys pyrenaicus Gal_pyr 513 13 13
Lynx pardinus Lyn_par 29 8 7

Capra pyrenaica Cap_pyr 647 18 18
Microtus cabrerae Mic_cab 272 11 7
Lepus castroviejoi Lep_cas 69 10 6

To model the distribution of each species, we considered a pool of environmental
variables related to four predictor sets, i.e., climate, topography, lithology, and human
activity (Table S1 in Supplementary Materials). We performed a logistic regression of the
distribution of each species on each environmental variable and checked the significance
of these univariate predictive models according to Rao’s score test. The values of the
parameters of the logistic regression were established by maximum likelihood estimation
using a gradient ascent machine learning algorithm.

The number of variables, especially within the climate predictor set, was large and
many of them showed high values of correlation. We performed a species-specific selection
of variables in three stages. First, for each species and predictor set, we calculated pairwise
correlations between the variables and, among those pairs of variables with a Pearson
correlation value above 0.8, we excluded the one with the least significant individual
relationship with the distribution of the species. In this way, among variables correlated
and belonging to the same predictor set, which provides similar information, we chose
the most informative one for each species. Second, with the variables selected in the first
step, we calculated the false discovery rate to control for the increase in Type I error caused
by the number of remaining predictor variables under a false discovery rate value of
q = 0.05 [28–30]. We only retained in the analysis those variables that were significantly
(p < 0.05) related to the distribution of the species in univariate models under a false
discovery rate of q < 0.05 (i.e., given the overall pool of predictor variables evaluated, the
probability that a non-informative variable is retained for the subsequent procedures is
lower than 0.05). This procedure orders the variables according to decreasing significance
(increasing p-value), being I the position of each variable in this ordered list. Then, only
variables up to the highest I position whose p-value is lower than I*(q/V) were accepted,
where V is the total number of variables selected in the first step. Finally, we performed
a multivariate forward-backwards stepwise logistic regression based on the AIC on the
variables that were retained in the FDR test.

Logistic regression follows the expression:

P =
ey

1 + ey

where P is the probability of the presence of the species, e is the basis of the natural
logarithm, and y is a logit equation of the form:

y = α + β1x1 + β2x2 + . . . + βnxn
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where α is the intercept and β1, β2, . . . , βn are the coefficients of the n environmental
predictors x1, x2, . . . , xn included into the model.

In a forward-backwards stepwise multivariate model, the model starts with the in-
tercept or null model, and at each following step, the model alternates between forward
selection and backward elimination [18]. After each step of forward inclusion, all the
variables in the model are tested, and those that do not fulfil the AIC criterion are excluded
before the next forward selection step [31]. We used the AIC because we were interested in
the predictive capacity of the models, as Akaike derived the AIC from a predictive perspec-
tive [32]. The values of the parameters α and βi in the logit equation were established by
maximum likelihood estimation using a gradient ascent machine learning algorithm.

Thus, the output of the logistic regression model is a probability value. Probability
depends both on the response of the species to the predictors and on the overall prevalence
of the species [33] (prevalence being the ratio between presences and the total number
of cells). To remove the effect of prevalence from the model output in order to make
results comparable among species, we applied the favourability function proposed by Real,
Barbosa, and Vargas [23]:

F = [P/(1− P)]/[(n1/n0) + (P/(1− P))]

where P is the probability value in a cell, n1 is the total number of presences, and n0 is the
total number of absences in the dataset.

The favourability function reflects the degree (between 0 and 1) to which the local
probability values differ from that expected according to the species prevalence, where
F = 0.5 corresponds to P = prevalence. Favourability values only reflect the response of
the species to the predictors [24] and (unlike probability) can be regarded as the degree of
membership of the localities to the fuzzy set of sites with conditions that are favourable for
the species [24], which enables the easy application of fuzzy logic operations to distribution
modelling [34]. Fuzzy logic operations expand the potential of the favourability function
for comparison between models [7,35,36]. Thus, it is possible to calculate the fuzzy entropy
(see below).

We assessed the classification power of the models, i.e., how well presences and
absences are classified as such, by calculating Cohen’s kappa (correct classification over
chance), sensitivity (correct prediction of presences), specificity (correct prediction of
absences), and their Correct Classification Rate (overall accuracy), using the favourability
value of F = 0.5 as classification threshold. We evaluated the discrimination capacity
using the Area Under the Curve (AUC) of the Receiver Operating Characteristic, which is
independent of any favourability threshold. The goodness-of-fit of the models was assessed
by showing the calibration plot (observed prevalence against predicted probability) and
using the Hosmer and Lemeshow test for 10 bins of probabilities (each one with a range
of 0.1) [37] (obtaining a p-value of difference between observations and predictions). The
compensation between goodness-of-fit and complexity of the models was assessed using
the AIC.

All analyses were performed in R [38] with the packages fuzzySim [39,40] and mod-
EvA [41]. Specifically, we used the functions corSelect, multGLM and stepByStep of fuzzySim,
and multModEv of modEvA. We produced maps of the predictions with the package map-
tools [42] and represented them in QGIS [43].

2.2. Entropy Calculations

The formulation of entropy (H) developed by Shannon in 1948 [16] was as follows:

H = −
n

∑
i=1

Pi log Pi

where Pi are the set of probabilities, with ∑Pi = 1; log is the natural logarithm; and n is the
sample size.
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One property of H is that, for a given n, H is a maximum and equal to log (n) when
all the Pi are equal (i.e., 1/n) [16]. In our case, n is the total number of cells, i.e., 5308,
and to satisfy the above-mentioned property, all probabilities must sum to 1 [13]. This
makes sense when analysing the probability that a unique event occurs in a finite universe
(for example, the probability that a sampled individual belongs to each of many sampled
species), which in our case would imply that there is only a presence in the set of cells. If
the species has more than one presence in the study area, the sum of probabilities in all the
cells is equal to the number of presences. To satisfy the condition that ∑Pi = 1, we divided
the probability of presence of the species in each of the cells by the number of presences
of the species and then applied the formula of the Shannon entropy. Notice that this has
a mathematical justification but not a biogeographical sense (see Discussion). For each
species, we calculated the Shannon entropy at each of the steps of the stepwise procedure.

We also calculated a fuzzy entropy (R) with the favourability values. The fuzzy
entropy is defined as [22]:

R =
∑n

i=1
(

Fi ∩ Fc
i
)

∑n
i=1

(
Fi ∪ Fc

i
)

where Fi is the favourability value in a cell i; n is the total number of cells; Fc
i is the

complement of Fi (Fc
i = 1− Fi); ∩ is the fuzzy intersection, i.e., the minimum value between

the favourability and its complement; and U is the fuzzy union, i.e., the maximum value
between the favourability and its complement [44].

Note that we did not transform favourability values to obtain the fuzzy entropy. Fuzzy
entropy has values between zero and one. If fuzzy entropy is one, the distribution of the
species is completely disordered, i.e., favourability is equally distributed in the entire terri-
tory with Fi = 0.5. The smaller the entropy, the more orderly the distribution of the species
is, i.e., the model more clearly distinguished between presences and absences. For each
species, we also calculated the fuzzy entropy at each of the steps of the stepwise procedure.

3. Results

Although the initial candidate variables were 86, the number of variables selected
after controlling the pairwise correlations was between 20 and 24, the number selected after
performing the FDR test was between 15 and 22, and finally, the number of variables that
formed part of the models of the different species, i.e., those selected in the stepwise ap-
proach, was between 6 and 18 (see Supplementary Materials S1). Models included variables
of the four predictor sets considered (climate, topography, lithology, and human activity)
for all the species except four of them that included variables of three predictor sets. Final
models had good discrimination and classification capacity and goodness-of-fit [average
and range values for the 18 species: AUC: 0.929 (0.781–0.999), kappa: 0.358 (0.118–0.549),
sensitivity: 0.905 (0.736–1), specificity: 0.852 (0.646–0.989), Correct Classification Rate:
0.859 (0.683–0.989), Hosmer and Lemeshow test: 16.137 with p: 0.243 (2.513–72.795 with p
0–0.783)]. Individual models for all the species, their evaluation metrics, and the resulting
maps are shown in Supplementary Materials S1.

Minimum Shannon entropy of the models for the different species ranged between
3.80 and 8.27 (maximum possible value was 8.58), and minimum fuzzy entropy ranged
between 0.0057 and 0.41 (maximum possible value was 1). Most distributions had low
entropy, especially when using the fuzzy entropy, which indicates that they are restricted
to a certain range of the predictors. In general, both Shannon and fuzzy entropy tended to
go down in each step of the model. The exceptions appeared when a variable was removed
in a step or at the latest steps of the stepwise procedure but always with minor differences
with the previous step, i.e., the differences appeared at the third or fourth decimal place
of the entropy value. However, there were four species (Iberolacerta bonnali, Chersophilus
duponti, Microtus cabrerae, and Lepus castroviejoi) for which the step with the lowest fuzzy
entropy was located in the middle of the stepwise procedure (Table 1 and Supplementary
Materials S1). In any case, for all analysed species, even for these four, the correlation
between the favourability values at the step with the lowest fuzzy entropy and those of the
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final favourability model was always >0.90 (Supplementary Materials S1). This is because
fuzzy entropy went down meaningfully at the first steps, and then the values reached an
asymptote with similar values to the final steps (Figure 1).
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Figure 1. Graphs showing fuzzy entropy at each of the steps of the stepwise procedure for all analysed species, separated
according to taxonomic group. Exact values are given in Supplementary Materials S1. Species codes as in Table 1.

As examples, in Tables 2 and 3, we show the entropy of each step of the models of two
species, Algyroides marchi and Sylvia conspicillata. The entropy of each of the steps for all the
species can be seen in Supplementary Materials S1. In Figures 2 and 3, we represent the
favourability values of each step of the models for both example species. The fuzzy entropy
of step 0 is equal for all the species, and it is always equal to the unity. In step 0, the only
parameter to form part of the model is the intercept, which means that the probability of
presence in all the cells is equal to the prevalence of the species. Therefore, the favourability
in all the cells in step 0 is equal to 0.5, whichever the prevalence of the species.

Table 2. Steps of the model of Algyroides marchi. A “+” in the column Variable means the inclusion of
the variable, a “−“ means that the variable was removed in that step. Cor_P is the Pearson correlation
between the probabilities at each step and those of the final probability model. H is the Shannon
entropy (obtained after dividing the probabilities by the number of presences). Cor_F is the Pearson
correlation between the favourability values at each step and those of the final favourability model.
R is the fuzzy entropy. AIC: Akaike Information Criterion. The row highlighted in blue indicates the
step with the lowest fuzzy entropy. Variable codes as in Table S1.

Step Variable Cor_P H Cor_F R AIC

0 Intercept - 8.58 - 1 372.38
1 +Calc 0.169 7.39 0.224 0.1897 302.57
2 +U500 0.621 5.61 0.406 0.0729 190.01
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Table 2. Cont.

Step Variable Cor_P H Cor_F R AIC

3 +AET 0.7396 5.19 0.446 0.0618 161.07
4 +Alt 0.837 4.85 0.468 0.0469 137.66
5 +SISSum 0.884 4.54 0.638 0.0465 116.82
6 +Grav 0.908 4.43 0.692 0.0391 110.61
7 +CTI 0.927 4.37 0.721 0.0378 107.92
8 +Sil 0.9395 4.28 0.839 0.0265 104.18
9 +U100 0.971 4.14 0.906 0.0119 96.53

10 +DTn20Aut 0.994 4.090 0.990 0.00871 94.47
11 −Calc 0.996 4.095 0.992 0.00848 92.91
12 −Alt 1 4.12 1 0.00863 92.08

Table 3. Steps of the model of Sylvia conspicillata. A “+” in the column Variable means the inclusion of
the variable, a “−“ means that the variable was removed in that step. Cor_P is the Pearson correlation
between the probabilities at each step and those of the final probability model. H is the Shannon
entropy (obtained after dividing the probabilities by the number of presences). Cor_F is the Pearson
correlation between the favourability values at each step and those of the final favourability model.
R is the fuzzy entropy. AIC: Akaike Information Criterion. The row highlighted in blue indicates the
step with the lowest fuzzy entropy. Variable codes as in Table S1.

Step Variable Cor_P H Cor_F R AIC

0 Intercept - 8.58 - 1 5909.44
1 +DP10Aut 0.824 8.35 0.878 0.467 5160.62
2 +CTI 0.891 8.32 0.916 0.451 5063.95
3 +Sil 0.913 8.31 0.943 0.429 5021.69
4 +PSum 0.932 8.30 0.955 0.425 4994.18
5 +Alt 0.957 8.29 0.968 0.406 4955.96
6 +DHi 0.972 8.28 0.980 0.400 4929.42
7 +U500 0.983 8.276 0.989 0.3960 4911.05
8 +TRan 0.993 8.272 0.995 0.394 4894.74
9 +PET 0.997 8.271 0.998 0.395 4888.98

10 +Grav 1 8.270 1 0.3957 4885.93
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4. Discussion

Our approach to variable selection in three stages and with a stepwise selection in
the final stage allowed us to test 86 variables that we deemed potentially relevant for
the species distributions. It is common practice to include a low number of variables in
the models [45,46] because many modelling techniques do not allow for the selection of
variables [47], and strongly correlated variables are generally avoided beforehand [18,48].
Here, we have shown that starting the modelling procedure with 86 candidate variables
results in models with a relatively low number of variables (between 6 and 18, depending
on the analysed species). We controlled the correlation of the variables and the increase in
type I errors in a species-specific way and performed a stepwise approach to reduce variable
redundancy and increase parsimony. The inclusion of correlated variables may have an
undesirable effect if the intention is to extrapolate the model to other areas or periods of
time and if the pattern of the correlation is not maintained in the new environment or time
scale [49]. The advantage of controlling correlation on a species-specific basis instead of
selecting little correlated variables from the beginning is that different species may have
the highest significant relationship with different variables, so we selected for each species
those variables that have more influence on its distribution. This means that we focused
our attention on the species and, therefore, the pool of variables that were included in the
stepwise regression was different for the different species, which produced more realistic
and biologically plausible models.

Our approach also highlighted the importance of non-climatic variables as drivers of
the species distributions, although the number of climatic variables in the variable pool
was disproportionately large. In species distribution models, the inclusion of climatic
variables is a common practice [2,50] as it is reasonable to think that climate may have
an important effect on species’ distributions, especially at broad scales [51,52]. Indeed,
we found that climatic variables formed part of the models of the 18 analysed species
(Supplementary Materials S1). However, we also showed that other predictors related to
topography, lithology, and human activity were included in the models, and therefore they
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have an influence on species’ distributions. This is in accordance with studies that use
more variables than only climatic ones in the modelling procedure [5,53,54].

In general, we obtained a good discrimination capacity of the models according to
AUC. However, although this metric is commonly used to select good vs. bad models
(e.g., [45]), Lobo et al. [55] already warned against using it as a general measure of model
performance. Our results show that AUC is, in general, inversely related to the entropy of
the species, particularly to the fuzzy entropy (Pearson correlation between AUC and fuzzy
entropy and between AUC and Shannon entropy were −0.993 and −0.842, respectively,
while the correlation between AUC and AIC was −0.907). More disorderly distributions
(i.e., those less constrained) are more difficult to discriminate, whichever the type of model
applied. The majority of our study species had AUC values ≥ 0.9, which is considered as
outstanding discrimination capacity [37]; three of them had values between 0.8–0.9, and
two of them had only acceptable discrimination capacity (AUC: 0.7–0.8). These last two
species are Chalcides bedriagai and Sylvia conspicillata, which, in fact, are the species with
the highest fuzzy entropy: 0.411 and 0.396, respectively (Supplementary Materials S1).
The low AUC values of these two species do not directly mean that models for these
species were worse than those produced for other species; rather, it means that the models
predict wider and more gradual distributions along the available environmental domain,
which is intrinsically related to higher entropy and uncertainty. AUC values measure
the discrimination capacity of the models, and this is a characteristic only of the models,
whereas entropy may be a characteristic of the model and of the species distribution. It is
important to disentangle these two sources of entropy, i.e., whether lower values of AUC,
with higher values of entropy, indicate that the intrinsic distribution of the species is more
general or if the models are deficient. In the first case, lower values of AUC are perfectly
expected, whereas in the second case, an improvement of the model should be pursued.

Calibration plots could be used to this end. The calibration plots of Chalcides bedriagai
and Sylvia conspicillata show that the model for the latter species is very well calibrated,
while the model for Chalcides bedriagai still needs some improvement because the model fails
in the calibration of probability values higher than 0.5 (Supplementary Materials S1 and S2).
The calibration plots of the models produced along the stepwise procedure for Chalcides
bedriagai show that, although the discrimination capacity is improving and the entropy is
being reduced, the model still fails to identify the most favourable areas (Supplementary
Materials S2) correctly. This suggests that there are some relevant factors for the distribution
of Chalcides bedriagai that have not been included in the modelling procedure. However,
the calibration plot of step eight for Sylvia conspicillata shows that there is little room for
improvement in the calibration of the model. We can consider that the model for Sylvia con-
spicillata produced at this step is a good model that reflects the entropy of the distribution
of the species, even if the AUC value for this species (0.779) is lower than that of Chalcides
bedriagai (0.789). Therefore, the performance of models based on AUC has to be always
compared with the calibration [56] and entropy of the species to permit differentiation
between good or bad models.

Shannon entropy and fuzzy entropy differ not only on the calculation but also on
assumptions and mathematical constraints [16,22]. Shannon entropy has to be calculated
on probabilities, but the sum of these probabilities in the system or study area must sum
to 1 [17]. However, in species distribution models, the sum of probabilities of presence in
each locality throughout a study area, estimated, for instance, with logistic regression, has
to be equal to the number of presences of the species. This is why narrowly distributed
species have low probability values sometimes, even in cells where the species are present,
and common species have high values throughout the study area [24]. Therefore, assuming
that the sum of probabilities has to be 1 resolves this inequality, but this is equivalent to
assuming that the species is only present in one cell. Thus, the use of Shannon entropy in
species distribution models can be justified mathematically, but it has no biogeographical
justification. For this reason, Shannon entropy is commensurable between species only if



Entropy 2021, 23, 1014 10 of 13

models are performed with the same number of cells (as maximum entropy is equal to log
(number of cells)).

An effective way to avoid using probability is to remove the effect of the prevalence
from the model output. This is exactly what the favourability function does, and there-
fore favourability values are always commensurable between species [23]. Additionally,
favourable areas obtained through the favourability function constitute a fuzzy system [23]
and, therefore, favourability values can be used to calculate the fuzzy entropy (whose
requirement is that it has to be applied to fuzzy systems). When fuzzy entropy is calcu-
lated, there is no restriction on the sum of favourabilities. Another advantage of the fuzzy
entropy is that it always has values between zero and one, which produces results that
are commensurable between species even if the entropy is calculated in different study
areas (neither Shannon entropy nor the AIC are comparable for all species and systems).
The fact that AUC values are more correlated with fuzzy entropy than with Shannon
entropy is an additional indication that fuzzy entropy is more in line with the properties
that biogeographical modellers try to measure with species distribution models.

Boltzmann [57–60] developed the statistical concept of entropy as the criterion for
measuring the deviation of an observed frequency distribution from the homogeneous
distribution [61]. The smaller the deviation between the two, the greater the entropy. The
local favourability value indicates the degree to which the local probability value deviates
from the expected homogeneous probability under the assumption of maximum entropy,
which is given by the prevalence of the species in the territory. Therefore, the distribution
of favourability throughout a territory represents the distribution of the deviation between
the distribution of local probability and that of maximum entropy, fitting the criterion
developed by Boltzmann.

The form of the stepwise reduction of the fuzzy entropy could also be helpful to distin-
guish the entropy due to a failing model from that due to a generalist species distribution.
Our results showed that the stepwise modelling entails a reduction of fuzzy entropy; more
specifically, a reduction of entropy tends to be produced in each step of the model with
respect to the previous step. This could be expected because the concept of AIC is derived
from entropy [19], but a reduction of entropy is also obtained when the stepwise approach
is based on significance testing rather than on AIC (results not shown). In other words, the
stepwise procedure reduces the fuzzy entropy in each of the steps, i.e., in step 0, we have
maximum uncertainty as no variable is included (Figures 2 and 3); in step 1, we have the
entropy obtained with just one variable, and so on, and this reduction tends to proceed
asymptotically (Figure 1). The fuzzy entropy of the models above this asymptote could be
attributed to model deficiency, as the species is the same along the stepwise procedure and,
thus, possesses the same distribution entropy in all the steps. However, the fact that from
certain steps, the increase in complexity of the model entails practically no reduction of
entropy indicates that the remaining entropy is mostly intrinsic to the species distribution
rather than to the wrong model specification. This constitutes a new valuable finding,
as this distinction cannot be made with classification or discrimination metrics, such as
the AUC.

A step could yield a model with an entropy slightly higher than that of the previous
step, although the AIC decreases (Tables 2 and 3 and Supplementary Materials S1). Thus,
even if the AIC is related to entropy, they are not exactly the same. In those cases, the fuzzy
entropy could be designated as a new approach to select the final model, i.e., constructing
the final model with the variables that consecutively produce a reduction of the fuzzy
entropy in each of the steps. In our example species, this would mean that, according to the
fuzzy entropy, the model for Algyroides marchi could finish on step 11, whereas the model of
Sylvia conspicillata could finish on step 8. In both cases, favourable areas obtained in those
steps are very similar to favourable areas obtained with all the AIC steps (Figures 2 and 3),
as the variables of the final steps are those defining just fine-scale distribution patterns [1],
but, when producing models with higher entropy and lower parsimony, these last steps
may be (slightly) counterproductive. Also, models tend to be better calibrated at the step
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with the lowest fuzzy entropy than at the final step (see, for instance, calibration plots for
Iberolacerta bonnali, Chersophilus duponti or Sylvia conspicillata in Supplementary Materials
S1). We are not suggesting that selection of variables has to be always performed by taking
into account the entropy of the models, but this could be a possibility if the aim is to reduce
the uncertainty with the minimum number of variables, obtaining highly efficient models.

5. Conclusions

We suggest using the favourability function and the fuzzy entropy to assess the
uncertainty of the models. Fuzzy entropy does not have anything that makes it worse
than Shannon entropy or AIC, but it has the advantage that it is comparable for all species
and all systems, while neither Shannon nor AIC are. Furthermore, Shannon entropy is
not appropriate when dealing with species distribution models. The stepwise selection of
variables tends to produce increasingly complex and less parsimonious models that are
simultaneously less uncertain [18]. Therefore, this approach implies a trade-off between
parsimony and uncertainty in species distribution models. In stepwise modelling, each step
yields a model with its own fuzzy entropy value and, thus, selecting the model with the
lowest fuzzy entropy implies combining maximum reduction of uncertainty and maximum
parsimony, which results in high efficiency. The form of the stepwise reduction of fuzzy
entropy allows distinguishing the fraction of entropy attributable to the species distribution
from that attributable to inefficient model specification, which is impossible to disentangle
by analysing only the AUC of the model. Here we used some Spanish vertebrates as
example species, but the methodology can be applied to any other living form whose
distribution is known and to any other territory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/e23081014/s1, Table S1: Environmental variables considered, Supplementary Materials S1:
Complete results for all studied species, Supplementary Materials S2: Calibration plots of each step
of the models of Chalcides bedriagai and Sylvia conspicillata.

Author Contributions: Conceptualisation, R.R.; methodology, A.E. and R.R.; formal analysis, A.E.;
writing—original draft preparation, A.E.; writing—review and editing, R.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was funded by the project 1098/2014 (Organismo Autónomo Parques Na-
cionales, Spain).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in the UMA
repository at https://dx.doi.org/10.24310/riuma.22488 (accessed on 2 August 2021).

Acknowledgments: Agencia Estatal de Meteorología of Spain (AEMET) provided some of the
climatic data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muñoz, A.R.; Real, R.; Barbosa, A.M.; Vargas, J.M. Modelling the distribution of bonelli′s eagle in spain: Implications for

conservation planning. Divers. Distrib. 2005, 11, 477–486. [CrossRef]
2. Early, R.; Sax, D.F. Analysis of climate paths reveals potential limitations on species range shifts. Ecol. Lett. 2011, 14, 1125–1133.

[CrossRef]
3. Estrada, A.; Arroyo, B. Occurrence vs abundance models: Differences between species with varying aggregation patterns. Biol.

Conserv. 2012, 152, 37–45. [CrossRef]
4. Guarino, E.D.S.G.; Barbosa, A.M.; Waechter, J.L. Occurrence and abundance models of threatened plant species: Applications to

mitigate the impact of hydroelectric power dams. Ecol. Model. 2012, 230, 22–33. [CrossRef]
5. Estrada, A.; Delgado, M.P.; Arroyo, B.; Traba, J.; Morales, M.B. Forecasting large-scale habitat suitability of european bustards

under climate change: The role of environmental and geographic variables. PLoS ONE 2016, 11, e0149810. [CrossRef]

https://www.mdpi.com/article/10.3390/e23081014/s1
https://www.mdpi.com/article/10.3390/e23081014/s1
https://dx.doi.org/10.24310/riuma.22488
http://doi.org/10.1111/j.1366-9516.2005.00188.x
http://doi.org/10.1111/j.1461-0248.2011.01681.x
http://doi.org/10.1016/j.biocon.2012.03.031
http://doi.org/10.1016/j.ecolmodel.2012.01.007
http://doi.org/10.1371/journal.pone.0149810


Entropy 2021, 23, 1014 12 of 13

6. Barbet-Massin, M.; Thuiller, W.; Jiguet, F. The fate of european breeding birds under climate, land-use and dispersal scenarios.
Glob. Chang. Biol. 2012, 18, 881–890. [CrossRef]

7. Estrada, A.; Real, R.; Vargas, J.M. Assessing coincidence between priority conservation areas for vertebrate groups in a mediter-
ranean hotspot. Biol. Conserv. 2011, 144, 1120–1129. [CrossRef]

8. Araújo, M.B. Matching species with reserves–uncertainties from using data at different resolutions. Biol. Conserv. 2004, 118,
533–538. [CrossRef]

9. Santos, H.; Rodrigues, L.; Jones, G.; Rebelo, H. Using species distribution modelling to predict bat fatality risk at wind farms. Biol.
Conserv. 2013, 157, 178–186. [CrossRef]

10. McCullagh, P.; Nelder, J.A. Generalised Linear Models, 2nd ed.; Chapman & Hall: London, UK, 1989.
11. Hastie, T.; Tibshirani, R. Generalised additive models. Stat. Sci. 1986, 1, 297–310.
12. Lek, S.; Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 120, 65–73.

[CrossRef]
13. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006,

190, 231–259. [CrossRef]
14. De′ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis.

Ecology 2000, 81, 3178–3192. [CrossRef]
15. Gouveia, S.F.; Rubalcaba, J.G.; Soukhovolsky, V.; Tarasova, O.; Barbosa, A.M.; Real, R. Ecophysics reload—Exploring applications

of theoretical physics in macroecology. Ecol. Model. 2020, 424, 109032. [CrossRef]
16. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
17. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [CrossRef]
18. Legendre, P.; Legendre, L. Numerical Ecology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1998.
19. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.;

Springer: New York, NY, USA, 2002.
20. Schein, A.I.; Ungar, L.H. Active learning for logistic regression: An evaluation. Mach. Learn. 2007, 68, 235–265. [CrossRef]
21. Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic regression for machine learning in process tomography. Sensors

2019, 19, 3400. [CrossRef]
22. Kosko, B. Fuzzy entropy and conditioning. Inf. Sci. 1986, 40, 165–174. [CrossRef]
23. Real, R.; Barbosa, A.M.; Vargas, J.M. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat.

2006, 13, 237–245. [CrossRef]
24. Acevedo, P.; Real, R. Favourability: Concept, distinctive characteristics and potential usefulness. Naturwissenschaften 2012, 99,

515–522. [CrossRef]
25. Palomo, L.J.; Gisbert, J.; Blanco, J.C. Atlas y Libro rojo de los Mamíferos Terrestres de España; Dirección General para la Biodiversidad-

SECEM-SECEMU: Madrid, Spain, 2007.
26. Martí, R.; del Moral, J.C. Atlas de las aves Reproductoras de España; Dirección General de Conservación de la Naturaleza-Sociedad

Española de Ornitología: Madrid, Spain, 2003.
27. Pleguezuelos, J.M.; Márquez, R.; Lizana, M. Atlas y Libro Rojo de los Anfibios y Reptiles de España; Dirección General de Conservación

de la Naturaleza-Asociación Herpetológica Española: Madrid, Spain, 2004.
28. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.

Soc. B 1995, 57, 289–300. [CrossRef]
29. Farfán, M.A.; Aliaga-Samanez, A.; Olivero, J.; Williams, D.; Dupain, J.; Guian, Z.; Fa, J.E. Spatial modelling for predicting potential

wildlife distributions and human impacts in the dja forest reserve, cameroon. Biol. Conserv. 2019, 230, 104–112. [CrossRef]
30. Moreno-Zarate, L.; Estrada, A.; Peach, W.; Arroyo, B. Spatial heterogeneity in population change of the globally-threatened

european turtle-dove in spain: The role of environmental favourability and land use. Divers. Distrib. 2020, 26, 818–831. [CrossRef]
31. Yamashita, T.; Yamashita, K.; Kamimura, R. A stepwise aic method for variable selection in linear regression. Commun. Stat.-Theory

Methods 2007, 36, 2395–2403. [CrossRef]
32. Shmueli, G. To explain or to predict? Stat. Sci. 2010, 25, 289–310. [CrossRef]
33. Cramer, J.S. Predictive performance of the binary logit model in unbalanced samples. J. R. Stat. Soc. Ser. D (Stat.) 1999, 48, 85–94.

[CrossRef]
34. Robertson, M.P.; Villet, M.H.; Palmer, A.R. A fuzzy classification technique for predicting species′ distributions: Applications

using invasive alien plants and indigenous insects. Divers. Distrib. 2004, 10, 461–474. [CrossRef]
35. Estrada, A.; Real, R.; Vargas, J.M. Using crisp and fuzzy modelling to identify favourability hotspots useful to perform gap

analysis. Biodivers. Conserv. 2008, 17, 857–871. [CrossRef]
36. Real, R.; Márquez, A.L.; Olivero, J.; Estrada, A. Species distribution models in climate change scenarios are still not useful for

informing policy planning: An uncertainty assessment using fuzzy logic. Ecography 2010, 33, 304–314. [CrossRef]
37. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2000.
38. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna,

Austria, 2015. Available online: https://www.R-project.Org/ (accessed on 2 August 2021).
39. Barbosa, A.M. Fuzzysim: Applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 2015, 6, 853–858.

[CrossRef]

http://doi.org/10.1111/j.1365-2486.2011.02552.x
http://doi.org/10.1016/j.biocon.2010.12.031
http://doi.org/10.1016/j.biocon.2003.10.006
http://doi.org/10.1016/j.biocon.2012.06.017
http://doi.org/10.1016/S0304-3800(99)00092-7
http://doi.org/10.1016/j.ecolmodel.2005.03.026
http://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
http://doi.org/10.1016/j.ecolmodel.2020.109032
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1103/PhysRev.106.620
http://doi.org/10.1007/s10994-007-5019-5
http://doi.org/10.3390/s19153400
http://doi.org/10.1016/0020-0255(86)90006-X
http://doi.org/10.1007/s10651-005-0003-3
http://doi.org/10.1007/s00114-012-0926-0
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1016/j.biocon.2018.12.015
http://doi.org/10.1111/ddi.13067
http://doi.org/10.1080/03610920701215639
http://doi.org/10.1214/10-STS330
http://doi.org/10.1111/1467-9884.00173
http://doi.org/10.1111/j.1366-9516.2004.00108.x
http://doi.org/10.1007/s10531-008-9328-1
http://doi.org/10.1111/j.1600-0587.2010.06251.x
https://www.R-project.Org/
http://doi.org/10.1111/2041-210X.12372


Entropy 2021, 23, 1014 13 of 13

40. Barbosa, A.M. Fuzzysim: Fuzzy Similarity in Species Distributions. R Package Version 1.7/r79. 2016. Available online:
https://r-forge.R-project.Org/projects/fuzzysim/ (accessed on 2 August 2021).

41. Barbosa, A.M.; Brown, J.A.; Jimenez-Valverde, A.; Real, R. Modeva: Model Evaluation and Analysis. R Package Version 1.2.3/r91.
2015. Available online: https://r-forge.R-project.Org/projects/modeva/ (accessed on 2 August 2021).

42. Bivand, R.; Lewin-Koh, N. Maptools: Tools for Reading and Handling Spatial Objects. R Package Version 0.8-39. 2016. Available
online: https://cran.R-project.Org/package=maptools (accessed on 2 August 2021).

43. QGIS Development Team. Qgis Geographic Information System. Open Source Geospatial Foundation Project. 2016. Available
online: http://qgis.Osgeo.Org (accessed on 2 August 2021).

44. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
45. Araújo, M.B.; Alagador, D.; Cabeza, M.; Nogué s-Bravo, D.; Thuiller, W. Climate change threatens european conservation areas.

Ecol. Lett. 2011, 14, 484–492. [CrossRef] [PubMed]
46. Jiménez-Valverde, A.; Decae, A.E.; Arnedo, M.A. Environmental suitability of new reported localities of the funnelweb spider

macrothele calpeiana: An assessment using potential distribution modelling with presence-only techniques. J. Biogeogr. 2011, 38,
1213–1223. [CrossRef]

47. Thuiller, W.; Georges, D.; Engler, R. Biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.1-25.
2013. Available online: http://cran.R-project.Org/package=biomod2 (accessed on 2 August 2021).

48. Romero, D.; Olivero, J.; Brito, J.C.; Real, R. Comparison of approaches to combine species distribution models based on different
sets of predictors. Ecography 2016, 39, 561–571. [CrossRef]

49. Jiménez-Valverde, A.; Nakazawa, Y.; Lira-Noriega, A.; Peterson, A.T. Environmental correlation structure and ecological niche
model projections. Biodivers. Inform. 2009, 6, 28–35. [CrossRef]

50. Araújo, M.B.; Thuiller, W.; Pearson, R.G. Climate warming and the decline of amphibians and reptiles in europe. J. Biogeogr. 2006,
33, 1712–1728. [CrossRef]

51. Araújo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [CrossRef]
52. Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope

models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [CrossRef]
53. Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale.

J. Biogeogr. 2011, 38, 1–8. [CrossRef]
54. Márquez, A.L.; Real, R.; Olivero, J.; Estrada, A. Combining climate with other influential factors for modelling the impact of

climate change on species distribution. Clim. Chang. 2011, 108, 135–157. [CrossRef]
55. Lobo, J.M.; Jiménez-Valverde, A.; Real, R. Auc: A misleading measure of the performance of predictive distribution models. Glob.

Ecol. Biogeogr. 2008, 17, 145–151. [CrossRef]
56. Jiménez-Valverde, A.; Acevedo, P.; Barbosa, A.M.; Lobo, J.M.; Real, R. Discrimination capacity in species distribution models

depends on the representativeness of the environmental domain. Glob. Ecol. Biogeogr. 2013, 22, 508–516. [CrossRef]
57. Boltzmann, L. Weitere studien uber das wirmegleichgewicht unter gasmolek~len. Wien. Ber. 1872, 66, 275–370.
58. Boltzmann, L. Bemerkungen uber einige problems der mechanischen wirmetheorie. Wien. Ber. 1877, 75, 62–100.
59. Boltzmann, L. Uber die beziehung zwischen dom zweiten hauptsatze der mechanischen wirmetheorie und der wahrchein-

lichkeitsrechnung respective den sitzen dber des wgrmegleichgewicht. Weiner Ber. 1877, 76, 373–435.
60. Boltzmann, L. Weitere bemerkungen uber einige plobleme der mechanischen wirmetheorie. Wien. Ber. 1878, 78, 7–46.
61. Akaike, H. Prediction and Entropy; University of Wisconsin-Madison: Technical Summary Report; Mathematics Research Center:

Madison, WI, USA, 1982.

https://r-forge.R-project.Org/projects/fuzzysim/
https://r-forge.R-project.Org/projects/modeva/
https://cran.R-project.Org/package=maptools
http://qgis.Osgeo.Org
http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.1111/j.1461-0248.2011.01610.x
http://www.ncbi.nlm.nih.gov/pubmed/21447141
http://doi.org/10.1111/j.1365-2699.2010.02465.x
http://cran.R-project.Org/package=biomod2
http://doi.org/10.1111/ecog.01477
http://doi.org/10.17161/bi.v6i1.1634
http://doi.org/10.1111/j.1365-2699.2006.01482.x
http://doi.org/10.1111/j.1365-2699.2006.01584.x
http://doi.org/10.1046/j.1466-822X.2003.00042.x
http://doi.org/10.1111/j.1365-2699.2010.02416.x
http://doi.org/10.1007/s10584-010-0010-8
http://doi.org/10.1111/j.1466-8238.2007.00358.x
http://doi.org/10.1111/geb.12007

	Introduction 
	Materials and Methods 
	Modelling Method 
	Entropy Calculations 

	Results 
	Discussion 
	Conclusions 
	References

