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Mass spectrometry imaging is a powerful tool for inves-
tigating the spatial distribution of chemical compounds in
a biological sample such as tissue. Two common goals of
these experiments are unsupervised segmentation of im-
ages into newly discovered homogeneous segments and
supervised classification of images into predefined
classes. In both cases, the important secondary goals are
to characterize the uncertainty associated with the seg-
mentation and with the classification and to characterize
the spectral features that define each segment or class.
Recent analysis methods have focused on the spatial
structure of the data to improve results. However, they
either do not address these secondary goals or do this
with separate post hoc procedures.

We introduce spatial shrunken centroids, a statistical
model-based framework for both supervised classification
and unsupervised segmentation. It takes as input sets of
previously detected, aligned, quantified, and normalized
spectral features and expresses both spatial and multivar-
iate nature of the data using probabilistic modeling. It se-
lects informative subsets of spectral features that define
each unsupervised segment or supervised class and quan-
tifies and visualizes the uncertainty in spatial segmenta-
tions and in tissue classification. In the unsupervised set-
ting, it also guides the choice of an appropriate number of
segments. We demonstrate the usefulness of this frame-
work in a supervised human renal cell carcinoma experi-
mental dataset and several unsupervised experimental da-
tasets, including a pig fetus cross-section, three rodent

brains, and a controlled image with known ground truth.
This framework is available for use within the open-source
R package Cardinal as part of a full pipeline for the proc-
essing, visualization, and statistical analysis of mass spec-
trometry imaging experiments. Molecular & Cellular Pro-
teomics 15: 10.1074/mcp.O115.053918, 1761–1772, 2016.

Mass spectrometry imaging visualizes the spatial distribu-
tion of molecular ions in a sample by repeatedly collecting
mass spectra across its surface. Equipped with a computer-
controlled sample stage, a mass spectrometer rasters across
the sample and collects individual mass spectra from discrete
or continuous locations. The leading technologies for per-
forming MS imaging include matrix-assisted laser desorption/
ionization (MALDI) and desorption electrospray ionization
(DESI)1. MALDI imaging requires the application of a matrix
solution and is typically used to detect large molecules such
as peptides and proteins. DESI imaging does not require a
matrix and is typically used to detect small molecules such as
lipids, metabolites, and drug molecules (19). The intensities at
a particular m/z value and spatial location can then be plotted
as pixels in a false-color image, called an ion image, that dis-
plays the spatial distribution of the analyte associated with that
m/z value. MS imaging has been shown to be promising in a
wide range of biological applications such as molecular histol-
ogy of tissue, whole body sections, bacterial films, etc. (17) and
biomedical applications such as cancer diagnosis (7, 8).

Computational analysis of MS imaging experiments typi-
cally consists of preprocessing, followed by a statistical
analysis (1). The preprocessing ensures that mass spectral
intensities are comparable across all mass spectra in the
experiment. This is typically done via normalization and (if
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necessary) baseline reduction. Furthermore, the preprocess-
ing extracts spectral features that correspond to the underly-
ing analytes. This is typically done via peak picking, or m/z
binning or resampling. Much progress has already been made
in the preprocessing of MS imaging data. Many mature tools
for preprocessing mass spectra already exist (21). However, a
major bottleneck is the downstream statistical analysis of the
processed data. This manuscript focuses on the downstream
statistical analysis steps, which take place after the detection,
quantification, alignment, normalization, and (optionally) iden-
tification of the initial set of high-quality spectral features.

Related Work—Two common primary goals of statistical
analysis of MS imaging experiments post signal processing are
classification (for supervised experiments), i.e. assigning pixels
to predefined classes, and segmentation (for unsupervised ex-
periments), i.e. assigning pixels to newly discovered segments.
A number of methods for these purposes already exist.

Traditional multivariate methods are frequently used for
both classification and segmentation. For classification,
methods including linear discriminant analysis, projection to
latent structures discriminant analysis (PLS-DA), and orthog-
onal projection to latent structures discriminant analysis (O-
PLS-DA) have proven effective (8, 7, 10, 11, 16, 20). For
segmentation, clustering methods such as hierarchical cluster-
ing or k-means (sometimes preceded by principal components
analysis to reduce the dimensionality of the spectra) are fre-
quently used (6, 12, 13). The traditional multivariate methods
have two drawbacks. First, they are agnostic of the spatial
structure of the data. They treat each pixel independently and
ignore similarities of spectra acquired from spatially proximate
locations, thereby compromising the accuracy of the results.
Second, they do not reduce the input features to more inform-
ative subsets, thereby compromising the interpretation.

Several recent methods were specifically designed to ac-
count for the spatial structure of MS images. One family of
methods relies on the spatial structure to detect quality peaks
from raw spectra (2, 18). Although highly valuable, these
methods stop at processing the signals and do not address
the goals of image segmentation or image classification. An-
other family of methods, including spatially aware clustering
and spatially aware structurally adaptive clustering by Alex-
androv and Kobarg (4), account for the spatial structure of the
data and demonstratively improve the quality of image seg-
mentation (1). However, similarly to the multivariate analysis
methods, they do not select subsets of spectral features that
define the segments and rely on post hoc techniques to
interpret the features associated with the segments, e.g. us-
ing the Pearson correlation between a segment and the single
ion images (1, 13).

On the other hand, statistical regularization has become a
method of choice for extracting subsets of informative fea-
tures from highly multivariate data. One such method is near-
est shrunken centroids introduced by Tibshirani et al. (14, 15),
which was originally developed for classification of gene ex-

pression microarrays. A related method has been applied to
classify tissues in MS imaging experiments using regularized
logistic regression (9). However, similarly to the multivariate
analysis methods, they do not account for the spatial struc-
ture of the data.

Contribution of the Manuscript—This manuscript contrib-
utes a general statistical modeling and inference methodology
for unsupervised segmentation and supervised classification
of MS images. It takes as input a set of previously detected,
quantified, aligned, and normalized features, produced by any
signal processing method of choice. It combines the advan-
tages of both spatially aware clustering by Alexandrov and
Kobarg and statistical regularization by Tibshirani et al. We
show that, for unsupervised segmentation, the spatial prob-
abilistic modeling provides better quality segmentation. It
characterizes the probability of segment membership for each
pixel and allows us to quantify and visualize the uncertainty of
segmentation for each pixel. Moreover, statistical regulariza-
tion aids interpretation by automatically selecting subsets of
the spectral features, such that each subset defines each
segment. Statistical regularization also enables data-driven
selection of the number of segments. Similarly, for supervised
image classification probabilistic modeling characterizes the
probability of predefined tissue class membership for each
pixel and aids interpretation by automatically selecting sub-
sets of spectral features that define each class.

We evaluate the performance of supervised classification
on a human renal cell carcinoma experiment, demonstrating
its utility for diagnosing pixels as cancer or normal tissue. We
evaluate the performance of unsupervised segmentation on
several biological samples, including a pig fetus cross-section
and three rodent brain datasets, demonstrating its utility for
studying morphology. For unsupervised segmentation, we also
evaluate on a nonbiological sample of known composition in
order to test its accuracy under controlled conditions. This
framework has been previously implemented in the open-
source R package Cardinal (5), as part of a full pipeline for the
processing, visualization, and statistical analysis of mass spec-
trometry imaging experiments. This manuscript contributes the
theoretical framework behind this implementation.

EXPERIMENTAL PROCEDURES

Unsupervised Segmentation: Pig Fetus Cross-Section—The pri-
mary goal of this experiment was to discover morphological features
of the pig fetus, such as major organs, through unsupervised analysis
of the mass spectra. A secondary goal was to find spectral features
associated with the morphological features. Fig. 1A is an optical
image of the Hematoxylin and eosin (H&E)-stained tissue section
showing the general morphology of the pig fetus, including major
organs such as the brain, heart, and liver.

Mass spectra were collected using a Thermo Finnigan LTQ linear
ion trap mass spectrometer with a DESI ion source over the 150–
1,000 m/z range. The images were cropped to remove non-informa-
tive spectra originating from the glass slide. The cropped dataset
consisted of 4,959 mass spectra with 10,200 spectral features. The
mass spectra were normalized to a common total ion current, and
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peak picking was performed to reduce the dataset to 143 peaks. All
data processing and analysis were performed using Cardinal (5).

Fig. 1B shows a single ion image featuring the brain and liver, and
Fig. 1C shows a single ion image featuring the heart. Below, we will use
this dataset to demonstrate unsupervised statistical analysis using all
the mass spectral peaks to recover the major morphological features.

Unsupervised Segmentation: Cardinal painting with Known Seg-
mentation—The goal of this experiment was to use a controlled
sample to evaluate the quality of data acquisition and statistical
analysis. A painting of a cardinal on paper was affixed to a glass slide,
and MS imaging was applied. An optical image of the cardinal paint-
ing during data acquisition is shown in Supplemental Fig. 1A.

The mass spectra were acquired using a Thermo Finnigan LTQ
linear ion trap mass spectrometer with a DESI ion source over the
100–1,000 m/z range. The dataset consisted of 12,600 mass spectra
with 10,800 spectral features. Mass spectra were normalized to a
common total ion current, and peak picking was performed to reduce
the dataset to 51 peaks. All data processing and analysis were
performed using Cardinal.

Supplemental Fig. 1B shows a single ion image featuring the
“DESI-MS” text part of the painting, and Supplemental Fig. 1C shows
a single ion image featuring the red pigment used in the cardinal body.
The painting itself shown in Supplemental Fig. 1A can be considered
the ground truth image. We use this dataset to evaluate the ability
of the unsupervised statistical analysis of the mass spectral peaks to
recover the ground truth.

Unsupervised Segmentation: Rodent Brain Images of Varying Qual-
ity—The goal for these datasets is to compare the results of several
similar experiments of varying data quality. All three experiments
involved a rodent brain.

The first dataset (R1) is a high-quality image of a rat brain (3, 4),
which is shown in Fig. 2A. Mass spectra were acquired on a Bruker
Autoflex III MALDI-TOF mass spectrometer over the 2,500 to 25,000
m/z range. The images were cropped to remove noninformative spec-
tra, and only the 2,500 to 10,000 m/z range was used. The reduced
dataset consisted of 20,185 mass spectra with 3,045 spectral fea-
tures. The mass spectra were normalized to a common total ion
current, and baseline correction was performed using ClinProTools.
Cardinal was thereafter used to perform peak picking to reduce the
dataset to 80 peaks. Except for baseline correction and normalization,
all data processing and analysis were done in Cardinal.

The second dataset (R2) is a mouse brain shown in Fig. 2B. This
experiment produced high-quality spectra but with a moderate
amount of experimental noise. Mass spectra were acquired on a
Thermo Finnigan LTQ linear ion trap mass spectrometer with a DESI
ion source over the 200–1,000 m/z range. The images were cropped
to remove noninformative spectra. The cropped dataset consisted of
8,950 mass spectra with 9,600 spectral features. The mass spectra
were normalized to a common total ion current, and peak picking was
performed to further reduce the dataset to 123 peaks. All data proc-
essing and analysis were done in Cardinal.

The third dataset (R3) is a mouse brain shown in Fig. 2C. This
dataset features a high degree of experimental noise. Mass spectra
were acquired using an AB Sciex MALDI TOF/TOF 5800 System over
the 4,000 to 20,000 m/z range. The images were cropped to remove
noninformative spectra. The cropped dataset consisted of 4,923
mass spectra with 22,667 spectral features. The mass spectra were
normalized to a common total ion current, smoothed, and baseline
corrected. Peak picking was then performed to reduce the dataset to
57 peaks. All data processing and analysis were done in Cardinal.

FIG. 1. Pig fetus cross-section: morphology and single ion images. (A) Optical image of H&E-stained pig fetus cross-section showing its
morphology, including the brain (left), heart (center), and liver (dark region below heart). (B and C) Characteristic ion images for the pig fetus
dataset at (B) 888.67 m/z, showing the brain and liver, and (C) 186.42 m/z, showing the heart.

FIG. 2. Rodent brain morphologies. (A) Optical image of rat brain (R1). (B) Optical image of mouse brain (R2). (C) Optical image of mouse
brain (R3).

Probabilistic Segmentation of Mass Spectrometry Images

Molecular & Cellular Proteomics 15.5 1763

http://www.mcponline.org/cgi/content/full/O115.053918/DC1
http://www.mcponline.org/cgi/content/full/O115.053918/DC1
http://www.mcponline.org/cgi/content/full/O115.053918/DC1
http://www.mcponline.org/cgi/content/full/O115.053918/DC1


We will use these datasets to characterize the ability of the results
of statistical analysis to reflect differences in data quality.

Supervised Segmentation: Human Renal Cell Carcinoma—The goal
of this experiment was to classify renal tissue specimens as cancer or
normal. In accordance with approved Institutional Review Board pro-
tocols at Indiana University School of Medicine, matched pairs of
tissue were collected from human subjects with renal cell carcinoma
(RCC), with each pair consisting of cancerous tissue and adjacent
normal tissue (8). Supplemental Fig. 2 shows optical images of the
eight tissue pairs we analyzed. Each tissue was manually annotated
as normal or cancerous by a pathologist. However, the annotations
are based on the dominant tissue type for each whole tissue, so some
tissues may contain regions from the nondominant class.

The mass spectra were collected using a Thermo Finnigan LTQ
linear ion trap mass spectrometer with a DESI ion source over the
150–1,000 m/z range. The images were cropped to remove noninfor-
mative spectra originating from the glass slide. The cropped dataset
consisted of 6,077 mass spectra with 10,200 spectral features. Indi-
vidual tissue samples consisted of between 972 to 3,564 mass spec-
tra per matched pair. The mass spectra were normalized to a com-
mon total ion current and resampled to unit resolution, resulting in 850
spectral features. All data processing and analysis were performed
using Cardinal. Supplemental Fig. 3 shows single ion images for 215.3
m/z, which is an ion known to be more abundant in normal tissue, and
Supplemental Fig. 4 shows single ion images for 885.7 m/z, which is
known to be more abundant in cancerous tissue (8). Some tissues
appear to exhibit heterogeneity, such as the abundance of 215.3 m/z
along the edge of the cancerous tissue in sample UH0505 12 (Sup-
plemental Fig. 3B). We will use this dataset to demonstrate the ability
of the proposed framework to perform classification, while selecting
spectral features important in distinguishing the disease condition.

RESULTS

Overview and notation—Let m � 1, …, M denote the index
of the biological sample, i.e. a slide with one (or several)
tissues. On slide m, the experiment collects Nm spectra at Nm

total pixel locations. Therefore, over all the samples, the ex-
periment contains N � �m�1

M Nm spectra and pixels.
Let (i, j) denote the location of a pixel on a sample m. We do

not assume that the samples are rectangular in shape, so
the indices (i, j) are arbitrary. However, we do assume
(i � �i, j � �j) describes the location of a pixel (�i, �j) away
on the same sample. We assume that the spectra acquired at
these locations have been processed, so that every spectrum
has the same P features, defined as a picked peak or a binned
m/z range. We also assume that the pixel intensities are
normalized so that spectra are comparable across pixels and
across samples. Then, denote the spectrum acquired at a
pixel location (i, j) on sample m as xijm � {xijmp, p � 1, . . ., P}.
In other words, spectrum xijm is a vector of scalar intensities
xijmp for P spectral features.

Suppose also that the spectra and the pixels belong to one
of K classes (for supervised classification) or segments (for
unsupervised segmentation). For supervised classification,
the class membership is known, for example, from annotation
by a pathologist, and the statistical goal of the experiment is
to classify each pixel to one of these classes in a supervised
manner based on its spectrum. Alternatively, for unsupervised
segmentation, the class membership is unknown, and the

statistical goal of the experiment is to discover these classes
from the spectra in an unsupervised manner. Let Nk denote
the number of spectra, and the number of pixel locations,
assigned to class k � 1, . . ., K by an unsupervised or a su-
pervised procedure.

Additionally, we denote the mean spectrum for a known
class or discovered segment k as x�k and the overall mean
spectrum as x� . That is, x�k is a vector of P scalar intensities x�kp,
which are the mean intensities for spectral feature p, over
spectra from all pixel locations assigned to class k, and x� is a
vector of P scalar intensities x�p, which are the overall mean
intensities for spectral feature p, over all spectra.

In the following section, we discuss the proposed spatial
shrunken centroids framework for both supervised classifica-
tion and unsupervised segmentation. For supervised classifi-
cation, the method relies on the known classes. For unsuper-
vised segmentation, where the segments are unknown, the
segments are initialized randomly or by another segmentation
method such as spatially-aware clustering (4) and are up-
dated over multiple iterations until one of several convergence
criteria is met. We detail the important steps below. The full
algorithms are available in Supplementary Section 2.1.1 and
Supplementary Section 2.1.2.

Proposed Statistical Framework for Supervised Classification
and Unsupervised Segmentation of Mass Spectrometry Images—

Characterization of Classes and Segments by Their
Shrunken Centroids—In mass spectrometry, imaging tissue
region, condition, or class is typically summarized by a mean
spectrum, also called its centroid, x�k. Here, we propose that
each class (or segment) is better represented using shrunken
centroids, from the method of nearest shrunken centroids by
Tibshirani et al. (14, 15). This will allow us to compare the class
(or segment) centroids to the overall centroid and to select the
informative spectral features (defined as being very dissimilar
to the overall centroid). We detail this below.

We follow Tibshirani et al. and calculate the class (or seg-
ment) centroids, x�k and use statistical regularization to shrink
the centroids toward the overall centroid x� . We then calculate
the t-statistic for spectral feature p for class (or segment) k as

tkp �
x�kp � x�p

�̂p � �1
Nk

�
1

�
k�1

K Nk

(Eq. 1)

Here �̂p is the pooled estimate of the within-class standard

deviation for feature p. The number �1
Nk

�
1

�k�1
K Nk

makes the

denominator equal to the estimated standard error of the
numerator. Second, we apply the soft thresholding operator
()� to shrink the t-statistics toward 0.

t�kp � sign(tkp)��tkp� � s��, where t� � t if t � 0, and

t�� 0 if t � 0 (Eq. 2)
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and s is the shrinkage parameter. Larger values of s lead to a
larger number of t-statistics t�kp to be set to 0. Finally, we
define the intensities of the shrunken centroids for each fea-
ture p for each class (or segment) k as

x��kp � x�p � t�kp�̂p�1
Nk

�
1

�
k�1

K Nk

(Eq. 3)

so that x��k � {x�kp � 1,. . ., P} is the shrunken centroid for class
(or segment) k.

The shrunken centroids x��k here can be viewed as adjusted
mean spectra of the K classes (or segments), where the
intensities have been adjusted toward the overall mean spec-
trum. Therefore, the characteristic mean spectrum for a class
(or segment) should differ from the overall mean spectrum
only for those spectral features that are truly characteristic of
the class (or segment). Spectral features that are not mean-
ingfully different from the overall mean spectrum will have
intensities set to the overall mean intensity for that feature.

Selection of Informative Features—The shrunken t-statis-
tics t�kp calculated in Equation 2 are well suited for selecting
informative features. The spectral features with t�kp � 0 are
systematically enriched for class (or segment) k. Likewise,
spectral features with t�kp 	 0 are systematically absent from
class (or segment) k, as compared with the overall mean
spectrum. Spectral features with t�kp � 0 are noninformative,
as only the features with t�kp 
 0 matter when assigning a
pixel’s spectrum to class (or segment) k.

Spatially Aware (SA) and Spatially Aware Structurally Adapt-
ive (SASA) Distances—To classify the individual pixel or to
assign a pixel to a segment, we need to define a distance
between the spectra from individual pixels and the shrunken
centroids. We propose to use the spatially aware distance
defined by Alexandrov and Kobarg (4). We detail this method
below and show how we adapt it in the section Defining the
SA and SASA Distances to the Shrunken Centroid of a Class
or Segment.

Alexandrov and Kobarg proposed a spatially aware dis-
tance between two spectra xijm and xi�j�m, which depends on
the spectra from pixels within a neighborhood of (i, j) and
([i�, j�]). The authors showed that this approach is beneficial, as
it produces better quality segmentations, as compared with
naïve methods that do not account for the spatial relation-
ships between pixels (3). Therefore, for a neighborhood radius
of r, the distance between two spectra is defined as

d�xijm, xi�j�m�� � �
�r��i,�j,�r

��i�j�xijm, xi�j�m�� � �x�i��i�� j��j�m � x�i���i�� j���j�m��2

(Eq. 4)

Here, the ��i�j�Xijm, Xi�j�m�) are spatial weights of the neighbors.
The exact definition of these weights results in either a spa-
tially aware (SA) distance or a spatially aware structurally

adaptive (SASA) distance. In the SA distance, the weights are
defined as

��i�j � exp� �
�i

2 � �j
2

2	2 �, where 	 � �2r � 1�/4

(Eq. 5)

which are Gaussian weights independent of the spectra and
only depend on the neighborhood. Using Gaussian weights,
which decrease with the distance �i

2 � �i
2 from the neighbor-

hood center, is a natural choice because it assumes that
pixels further away from each other are less related than
pixels that are closer together. In the SASA distance, the
weights are defined as

��i�j�xijm, xi�j�m�� � exp� �
�i

2 � �j
2

2	2 � � �
�i�j�xijm�
�i�j�xi�j�m��

(Eq. 6)

where


�i�j�xijm� � exp��
1

2�2 � x�i��i�� j��j�m � xijm �2� (Eq. 7)

which are adaptive weights that downweight neighborhood
locations where the spectra are very different from the neigh-
borhood center. This is designed to preserve edges between
morphological regions and small details in local structure,
which could otherwise be lost due to oversmoothing by the
ordinary Gaussian weights. The term � is set empirically to the
half of the norm of the difference between the two most
differing spectra in the neighborhood.

Defining the SA and SASA Distances to the Shrunken Cen-
troid of a Class or Segment—The distance above can be
adapted to express the distance between the individual pixels
and the shrunken centroids as follows

d�xijm, x��k� � �
�r��i,�j,�r

��i�j�xijm� � �x�i��i�� j��j�m � x��k�2 (Eq. 8)

where defining the ��i�j using the Gaussian weights as in
Equation 5 results in our version of the SA distance, and using
adaptive weights defined as

��i�j�xijm� � exp� �
�i

2 � �j
2

2	2 � � 
�i�j�xijm� (Eq. 9)

with 
�i�j�xijm� as in Equation 7 results in our version of the
SASA distance. We normalize the weights in both cases so
that they sum to 1.

Unlike in Equation 4 above, in Equation 8, we consider the
dissimilarity between a pixel’s spectrum and a class (or seg-
ment), rather than the dissimilarity between the spectra at two
pixels. Note that our version of the SASA distance has only
one 
�i�j rather than two, reflecting this difference. In the case
of supervised classification, we will use this distance to
classify pixels according their spectrum’s similarity to the
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shrunken centroids of known classes. In the case of unsuper-
vised image segmentation, we will use this distance to itera-
tively update the pixels assigned to discovered segments.

Note also that, in both supervised and unsupervised situa-
tions, this requires the empirical selection of the shrinkage
parameter s. Moreover, for unsupervised segmentation, the
selection of the number of segments K is also required. The
procedure for selecting these parameters and their effect
and implications will be described further in Selection of
Parameters.

Assignment of Segment or Class Probabilities to Pixels—
For supervised classification nearest shrunken centroids can
be interpreted as a regularized version of linear discriminant
analysis (14, 15). In this case, each of the K classes has a prior
probability �k and is modeled as a multivariate Gaussian
distribution. All classes are assumed to share a common
diagonal within-class covariance matrix. This leads to a
straightforward way to calculate probabilities for individual
observations belonging to a class using Gaussian likelihoods.
By analogy, we calculate a discriminant score based on the
SA or SASA distances from each spectrum xijm to each of the
shrunken centroids x�k as

D�xijm, x��k� �
1
�̂p

2 d�xijm, x��k� � 2 log�k (Eq. 10)

where, as before, �̂p is the pooled within-class standard de-
viation for feature p. We typically estimate the prior probabil-
ities empirically as �̂k � Nk/N. If the training data are not
representative of the population, different priors could be
used. Because we are using spatial distances that incorporate
spectra from multiple pixels, the discriminant scores cannot
be interpreted directly as following Gaussian distributions.
However, we empirically demonstrate below that the tech-
nique still produces good results in practice. Therefore, we
further follow Tibshirani et al. by calculating class probabilities
for each spectrum xijm for each class (or segment) k as

p̂k�xijm� �
e��1/ 2� D�xijm, x��k�

�
l�1

K

e��1/ 2� D�xijm,x��l �

(Eq. 11)

A pixel is assigned to the class with the highest p̂k(xijm).
Unsupervised segmentation follows the same procedure. K

is the maximum number of segments, and the segments are
initialized randomly or with another segmentation procedure.
We typically use �k � 1/K, but a semi-supervised procedure
could be developed that uses different priors and a different
initialization procedure. During each iteration of the segmen-
tation, a pixel is updated as belonging to the segment with the
highest p̂k(xijm) using Equation 11.

Selection of Parameters—The proposed framework re-
quires the choice of the shrinkage parameter s, and, for un-
supervised segmentation, the number of segments K.

In the case of supervised classification, the classes are
known, and therefore, s can be selected by cross-validation.
Specifically, given a set of M biological samples on M slides,
each slide is viewed as an experimental unit for cross-valida-
tion. For experiments with a small number of biological repli-
cates, M-fold (i.e. leave-one-sample-out) cross-validation can
be performed. Within each fold (or sample) of cross-valida-
tion, fit spatial shrunken centroids for a range of values of s.
The final selected values of s is the one that maximizes the
overall classification accuracy on the left-out samples. This is
illustrated for the human RCC experiment in Supplemental
Fig. 10.

In the case of unsupervised segmentation, the individual
segments and also the exact number of segments are un-
known. However, there is a relationship between the number
of informative features in the model, expressed by the shrink-
age parameter s, and the number of segments K. First, spu-
rious segments tend to be defined by noninformative features.
When those are removed through statistical regularization, the
spurious segments become empty. They have Nk � 0, and
are, in fact, removed. Second, excessive regularization can
remove some informative features, and this results in the loss
of the correct segments. We balance the regularization and
the number of segments by creating segmentations for mul-
tiple values of s and K and then plotting the relationship
between s and the number of nonempty segments. We illus-
trate this using experimental data in Section 3.4.2 and in
Supplementary Section 2.2.2.

Algorithm and Implementation—The full algorithm for spa-
tial shrunken centroids for a single set of parameters is
described in Supplementary Section 2.1.1 for supervised
classification, and in Supplementary Section 2.1.2 for unsu-
pervised segmentation.

The proposed classification and segmentation methods are
implemented in the R package Cardinal (cardinalmsi.org) (5),
which is available from Bioconductor. Cardinal is free and
open source and runs on Windows, Mac, and Linux.

The implementation is efficient, utilizing C and C�� for
speed. It can efficiently handle large datasets and is limited
only by the requirement that the dataset must be fully loaded
into memory. For example, the segmentations for the fetal pig
dataset (143 peaks and 4,959 pixels) in Fig. 3E and Fig. 3F
took 51 and 52 s, respectively. The segmentations for the
cardinal painting (51 peaks and 12,600 pixels) in Supplemen-
tal Fig. 5E and Supplemental Fig. 5F took 67 and 48 s,
respectively. The cross-validation for the human RCC dataset
(850 features and 6,077 pixels) in Fig. 10 took 69 s.

Evaluation—
Spatial Probabilistic Modeling Improves the Quality of Seg-

mentation over Per-Pixel Segmentation—Spatial segmenta-
tions for the pig fetus cross-section dataset are illustrated in
Fig. 3, which compares results from existing segmentation
methods with the proposed segmentation method. In Fig. 3A,
k-means clustering was applied to the peak-picked spectra,
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resulting in a noisy segmentation. The heart is not assigned to
a unique segment. Figure 3B shows k-means clustering ap-
plied to the first five principal components of the peak-picked
spectra, which also results in a noisy segmentation, again
without the heart represented as a unique segment. Figure 3C
and Fig. 3D show the spatially aware clustering and spatially
aware structurally adaptive clustering of Alexandrov and
Kobarg (4), which both result in cleaner segmentations with
clearer edges between segments. The heart is assigned to a
unique segment in both segmentations, as well as the brain
and liver. All of the methods above require a predetermined
number of segments, which was set to 6, based on the
procedure described in the section Statistical Regulariza-
tion Enables Data-Driven Selection of the Number of Seg-
ments for Unsupervised Experiments. Figure 3E and Fig. 3F
show the proposed spatial shrunken centroids segmenta-
tion method with SA and SASA distances, which produce
clean segmentations comparable to those in Fig. 3C and
Fig. 3D. The number of segments for these methods was
initialized to 20 and resulted in six segments in the final

segmentations, as described in the section Statistical Reg-
ularization Enables Data-Driven Selection of the Number of
Segments for Unsupervised Experiments. In addition, the
segmentations in Fig. 3E and Fig. 3F are more similar to
each other than those in Fig. 3C and Fig. 3D, suggesting
that the proposed spatial shrunken centroids method pro-
duces more consistent results across different types of
spatial smoothing.

Spatial segmentations of the cardinal painting are shown in
Supplemental Fig. 5, which demonstrates the performance of
existing and proposed methods compared with the ground
truth.

Statistical Regularization Enables Data-Driven Selection of
the Number of Segments for Unsupervised Experiments—The
selection of the number of segments for the pig fetus cross-
section segmentation from Fig. 3E is illustrated in Fig. 4. To
select an appropriate segmentation, we initialize spatial
shrunken centroids with different numbers of starting seg-
ments K (e.g. 15 and 20) while increasing the shrinkage pa-
rameter s (e.g. from 0 to 9 in increments of 3). Appropriate

FIG. 3. Pig fetus cross-section: segmentation comparison. (A) K-means clustering applied to the peak-picked spectra. (B) K-means
clustering applied to the first five principal components of the peak-picked spectra. (C) Spatially aware (SA) clustering. (D) Spatially aware
structurally adaptive (SASA) clustering. (E) Spatial shrunken centroids with SA distance. (F) Spatial shrunken centroids with SASA distance.
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segmentations are those that result in a comparable number
of predicted segments from different numbers of starting of
segments. This suggests that all extraneous segments have
been dropped, and the remaining segments explain true bi-
ology. For the pig fetus dataset in Fig. 4, this occurs after
about s � 3. We also look for the predicted number of seg-
ments to stabilize (stop decreasing) as s increases. In Fig. 4,
this occurs around s � 6. The segmentation in Fig. 3E above
corresponds to r � 2, K� 20, s � 6.

Selection of the number of segments for the cardinal paint-
ing segmentation from Supplemental Fig. 5E is demonstrated
in Supplemental Fig. 7.

Feature Selection Aids Interpretation by Automatically Se-
lecting Spectral Features Associated with Differentiating Each
Segment from Others—For the pig fetus cross-section seg-
mentation from Fig. 3E, the selected spectral features using
the proposed spatial shrunken centroids segmentation
method are shown in Fig. 5. Feature selection is shown for the

FIG. 4. Pig fetus cross-section: selection of the number of seg-
ments. Spatial shrunken centroids with SA distance is performed with
different shrinkage parameters (s), spatial smoothing radii (r), and
starting numbers of segments (K).

FIG. 5. Pig fetus cross-section: t-statistics and representative single ion images. (A–C) The predicted segment membership
probabilities from spatial shrunken centroids with SA distance. (A) the brain segment, (B) the heart segment, and (C) the liver segment.
(D–F) The shrunken t-statistics of the spectral features. (D) The brain segment, (E) the heart segment, and (F) the liver segment. (G–I) The
single ion images corresponding with the top-ranked spectral feature by shrunken t-statistic. (G) The brain segment, (H) the heart segment,
and (I) the liver segment.
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brain, heart, and liver segments, along with their correspond-
ing t-statistics and top-ranked single ion images. Note that
each unsupervised or supervised segment is characterized by
its own reduced subset of informative features. Some features
may be found informative for multiple segments, and some
features may be found informative for no segment. For the
brain segment, 49 spectral features were systematically en-
riched, and 54 features were systematically absent. For the
heart segment, seven spectral features were systematically
enriched, and one feature was systematically absent. For the
liver segment, 41 spectral features were systematically en-
riched, and 74 features were systematically absent. Com-
pared with the brain and liver segments, the heart had very
few spectral features associated with it.

Feature selection for the cardinal painting segmentation
from Supplemental Fig. 5E is shown in Supplemental
Fig. 8.

Probabilistic Modeling Allows for Characterization and
Visual Inspection of Uncertainty in Segment Membership in
Unsupervised Experiments—The rodent brain datasets of
varying quality were used to evaluate the ability of the pro-
posed method to visually display uncertainty in its resulting
segmentations. Because spatial shrunken centroids segmen-
tation results in probabilities of segment membership, using
transparency to reflect this probability creates a straightfor-
ward way of visually assessing uncertainty in a segmentation.
Segmentations for the three rodent brain datasets are com-
pared in Fig. 6.

FIG. 6. Comparison of segmentation uncertainty in datasets of differing quality. (A–C) show the predicted number of segments as
the sparsity increases. (A) Rat brain (R1) with little noise. (B) Mouse brain (R2) with moderate noise. (C) Mouse brain (R3) with strong noise.
(D–F) show the “best” segmentations selected by choosing the first (least sparse) segmentation after which the predicted number of
segments are approximately equal for different initial numbers of segments. (D) Rat brain (R1). (E) Mouse brain (R2). (F) Mouse brain (R3).
(G-I) show the segmentations resulting in two predicted segments through increasing sparsity. (G) Rat brain (R1). (H) Mouse brain (R2). (I)
Mouse brain (R3).
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Spatial shrunken centroids segmentation was performed
for each rodent brain dataset with increasing shrinkage pa-
rameter (s), and the “best” segmentations were plotted in
Figs. 6D-6F using the criteria described in section Statistical
Regularization Enables Data-Driven Selection of the Number
of Segments for Unsupervised Experiments for selecting an
appropriate number of segments. This resulted in five seg-
ments for both the rat brain (R1) with little noise, three seg-
ments for the mouse brain (R2) with moderate noise, and
three segments for the mouse brain (R3) with strong noise. For
the strongly noisy mouse brain (R3), there was no clearly
appropriate parameter set, as shown in Fig. 6C. Even for K �

10 starting segments, s � 0 resulted in only two predicted
segments, and the predicted number of segments actually
increased to three temporarily as s was increased before
dropping to two again. This reflects the lower quality of the
information in this brain dataset.

For the sake of comparison, the shrinkage parameter s was
further increased past the point of stabilization until the pre-
dicted number of segments eventually dropped to only two
segments. That is, more and more spectral features were
excluded from the segmentation until the remaining ones only
explained two segments. These segmentations are plotted in
Figs. 6G–6I. For the rat brain (R1) with little noise, this oc-
curred at s � 25. For the mouse brain (R2) with moderate
noise, this occurred at s � 28. For the mouse brain (R3) with

strong noise, this occurred at s � 0, reflecting the lesser
amount of information in the data.

Classification in Supervised Experiments—Classification of
the human RCC dataset using the proposed method is illus-
trated in Fig. 7 for two of the matched pairs. Eightfold cross-
validation was used to select the shrinkage parameter, as
illustrated in Supplementary Fig. 10. Spatial shrunken cen-
troids achieves 88.9% cross-validated accuracy, defined as
correctly classifying pixels as cancer or normal with respect to
the manual annotation of the entire tissue. By comparison,
PLS-DA applied to the same dataset achieves 96.8% cross-
validated accuracy, and O-PLS-DA achieves 95.4%

A clear advantage of spatial shrunken centroids for classi-
fication is its selection of informative features that differentiate
each class, as shown in Fig.8C. Unlike PLS-DA and O-PLS-
DA, which use all features, making interpretation difficult,
spatial shrunken centroids only uses the features that best
distinguish each class. Among the selected features, the top
ion associated with cancerous tissue was 885.7 m/z, which is
known to be more abundant in cancer (8). The top ion asso-
ciated with normal tissue was 215.3 m/z, which is known to be
more abundant in normal tissue (8).

Another advantage of spatial shrunken centroids is the
estimation of probabilities of class membership. Plotting
these probabilities with transparency allows visual assess-
ment of the confidence in the prediction. This can help pin-

FIG. 7. Human renal cell carcinoma: classification. For each matched pair, cancerous tissue is on the left, and healthy normal tissue is on
the right. (A) Optical image of H&E-stained tissue pair UH0505_12. (B) Prediction based on spatial shrunken centroids for UH0505_12. (C)
Optical image of H&E-stained tissue pair UH9812_03. (D) Prediction based on spatial shrunken centroids for UH9812_03.

FIG. 8. Human renal cell carcinoma: shrunken centroids and t-statistics. (A) The shrunken centroids for cancerous tissue. (B) The
shrunken centroids for normal tissue. (C) The shrunken t-statistics for normal and cancerous tissue, showing 215 m/z (t’normal,215 � 18.83) is
strongly associated with normal tissue, and 886 m/z (t’cancer,886 � 15.9) is strongly associated with cancerous tissue.
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point heterogeneous regions of the individual tissues, and
possible inconsistencies in manual whole-tissue annotations.
For example, in Fig. 7B, the tumor tissue (left) shows an
indistinct border of normal tissue along the left side, and in
Fig. 7D, the normal tissue (right) shows an indistinct border of
tumor tissue along the left side. These borders are defined by
ions known to be associated with cancer and normal tissue (8)
(Supplemental Fig. 3 and Supplemental Fig. 4). Therefore, the
manual annotation may be imprecise, and PLS-DA and O-
PLS-DA may be overfitting.

DISCUSSION

The manuscript introduced a general statistical framework,
called spatial shrunken centroids, for both unsupervised seg-
mentation and supervised classification of MS imaging exper-
iments. For unsupervised segmentation, it produces better
segmentations than k-means clustering of the mass spectra
or k-means clustering of their principal components. It out-
puts probabilities of segment membership and therefore
helps characterize and visualize the uncertainty in the seg-
mentation. It automatically selects the total number of seg-
ments, as well as subsets of informative features that define
each segment to provide more interpretable results. For su-
pervised classification, spatial shrunken centroids achieves
similar accuracy as compared with commonly used methods
such as PLS-DA and O-PLS-DA. However, similarly to the
unsupervised segmentation, it characterizes and visualizes
the uncertainty of segment membership and subsets of in-
formative features that define each class.

Spatial shrunken centroids is designed to work with data
obtained after signal processing. It takes as input a set of
previously detected, quantified, aligned, and normalized fea-
tures and is not designed for detecting such features from the
raw data anew. Also, spatial shrunken centroids does not
require a previous identification on the underlying analytes.
The approach only aims at interpreting the quantitative infor-
mation in the spectra, and this can be done with or without the
knowledge of the analyte identity. However, spatial shrunken
centroids can potentially enhance the process of identifica-
tion. For example, the informative subsets of features se-
lected in each segment or class can reduce the possible
search space of analytes that we would like to identify.

This framework has been previously implemented in the
open-source R package Cardinal (5). The implementation in
Cardinal can efficiently handle large datasets, as long as they
can be loaded into memory and can be used as part of larger
MS imaging data processing pipelines. We hope that the
flexibility, versatility, and efficiency of the method will make it
a useful tool for biological and clinical investigations.
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