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Emotional contagion, in particular of happiness, is essential to creating social

bonds. The somatic marker hypothesis posits that embodied physiological

changes associated with emotions and relayed to the brain by the

autonomous nervous system influence behavior. Perceiving others’ positive

emotions should thus be associated with activity in brain regions relaying

information from and to the autonomic nervous system. Here, we address

this question using a unique corpus of brain activity recorded during

unconstrained conversations between participants and a human or a

humanoid robot. fMRI recordings are used to test whether activity in key brain

regions of the autonomic system, the amygdala, hypothalamus, and insula,

is differentially affected by the level of happiness expressed by the human

and robot agents. Results indicate that for the hypothalamus and the insula,

in particular the anterior agranular region strongly involved in processing

social emotions, activity in the right hemisphere increases with the level of

happiness expressed by the human but not the robot. Perceiving positive

emotions in social interactions induces local brain responses predicted by the

contagion of somatic markers of emotions only when the interacting agent is

a fellow human.

KEYWORDS

humanoid robot, social cognitive neuroscience, happiness, conversation, fMRI,
insula, hypothalamus, amygdala

Introduction

Human beings are intrinsically social creatures whose lives are intertwined with
others. Engaged in any social interaction, we cannot help but gather information
about others’ mental states, in particular their emotions that signal the quality of the
ongoing interaction. Facial expressions convey many signals about people’s internal
states, which are extremely relevant for smooth social interactions. Our capacity to take
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into account these signals allows us to adapt our behavior when
interacting with others. One adaptation is emotional contagion,
which describes the phenomenon that many components,
including the autonomous nervous system’s response, of others’
emotions, are shared by the observer (Hatfield et al., 1993).
Such contagion can even take place in the absence of explicit
perception, as it has been found for pupil size (Harrison et al.,
2006) and suggested for subtle facial blushing (Crozier, 2001).

Understanding brain mechanisms involved in emotional
contagion during naturalistic social interactions is required for
the advancement of second-person neuroscience (Redcay and
Schilbach, 2019), which advocates the study of real time and
reciprocal exchanges between individuals. The somatic marker
hypothesis postulates that autonomic responses associated with
specific emotions are re-enacted in response to certain stimuli
(Damasio et al., 1996). As part of the mirroring involved in
emotional contagion (Hatfield et al., 1993), such stimuli could
be perceiving emotions from others, which would automatically
entail re-enacting them, not only in the motor (Goldman, 2006)
but also in the autonomic nervous system level. A controlled
fMRI experiment showed that changes reduced the response
in the anterior insula bilaterally as well as in the amygdala
(Harrison et al., 2009).

The insular cortex and the amygdala (Damasio et al., 2000;
Pessoa, 2017) are core brain areas involved in associating
peripheral and central nervous systems. The hypothalamus
plays an important role in endocrine signaling. These regions
share many characteristics, such as being involved in core body
functions such as homeostasis, ubiquitous in the vertebrate
kingdom, and smaller in humans among primates relative to
other subcortical (e.g., hippocampus) or cortical (e.g., prefrontal
cortex) structures. It could be that, in most vertebrates, emotions
have a direct relation to survival and thus play an important role
in natural selection. For example, fear is associated with specific
homeostatic and behavioral “fight-or-flight” responses essential
for animal survival. In contrast, higher cognitive processes
taking place in the cortex, in particular the prefrontal cortex,
prevail in humans.

Investigating the mechanisms underlying the processing
of others’ emotions during natural interactions is difficult
given the incompatibility between the necessary experimental
control in experimental research and the freedom associated
with natural social behavior. Exceptional circumstances, such
as intracerebral sampling of hormones in narcoleptic patients,
clearly demonstrate that the amygdala physiology is influenced
by social emotions (Blouin et al., 2013). Artificial agents provide
an experimental tool to bypass this difficulty. Human-like robots
that can produce facial emotions have been developed, either
in mechanical form (Chaminade et al., 2010) or through a
projection (Al Moubayed et al., 2012), allowing the development
of new paradigms to better understand mechanisms involved in
human social interaction (Chaminade, 2017). They are unique
tools to dissociate perceptual, bottom-up processes that are

automatic and irresistible (such as speech understanding) from
top-down contextual processes that are influenced by a large
number of factors, amongst which the perceiver’s mental states
play a major role.

For instance, two fMRI studies comparing brain response
to the passive viewing of humans’ and robots’ facial expressions
of emotions reported reduced activity for the robot expressions
of emotions in the left insula and right amygdala (Hortensius
et al., 2018). Another fMRI study (Chaminade et al., 2010) found
reduced activity in the hypothalamus when participants believed
they were playing with a robot compared to a human, without
even seeing their opponent (Chaminade et al., 2015). However,
these studies are not sufficient to answer the crucial question: are
these effects due to the nature of the agent, a dichotomic factor,
or rather quantitative differences in the intensity of the social
emotions conveyed by the interaction? Here, we investigate
this question, important both for understanding natural human
social cognition and for the future of human-robot interactions,
by analyzing a unique fMRI corpus of human–human and
human–robot face-to-face conversations (Rauchbauer et al.,
2019).

Considering “the six canonical emotions” as distinct
categories, following a long trend of research initiated by Charles
Darwin (Darwin, 1872) and continued one century later by Paul
Ekman (Ekman, 1974), we proposed that the main emotion
for social bonding is the positive emotion “happiness.” In
fact, positive emotions are reciprocally associated with social
bonding, a robust relationship in most of our social interactions
(see, for example, the strong linear correlation between reported
happiness and the proportion of time spent with other people,
Figure 1 in Quoidbach et al., 2019). Also, it has been proposed
that “ autism spectrum disorder (ASD) can be construed as
an extreme case of social motivation” (Chevallier et al., 2012),
meaning that abnormal positive appraisal of social interactions,
a process referred to as “social motivation” that combines, at the
behavioral level, the orienting toward social stimuli, the liking
of social interactions, and the maintenance of social bonds, is
responsible for a major disorder of social cognition.

At the brain level, our initial postulate is that the
processing of facial expressions of emotions comprises at
least two distinct mechanisms (Adolphs, 2002), as do many
perceptual mechanisms involved in social interactions, such
as the perception of faces or voices (Belin, 2017). First, a
fast visual mechanism identifies the geometric configuration
of facial features, usually described as norm-based coding
of facial patterns elicited by muscular activations. These
activations, also known as Facial Action Units, can indeed
be used to characterize the emotions expressed (Ekman and
Friesen, 1978). A later mechanism involves the representations
of emotions embodied in the autonomous nervous system.
This mechanism does not compute a norm-based coding of
the sensory percept but, according to the somatic markers
hypothesis (Damasio et al., 1996), it induces a response
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of the autonomic nervous system that spreads through the
whole body. Brain structures at the interface of the central
nervous system and the peripheral autonomous nervous system,
including neuroendocrine signaling, should play a key role in
this response.

In practice, we tested this hypothesis by automatically
extracting facial happiness expressed by the human and robot
agents and using it as a covariate in multivariate analyses
of the signal in functional subregions of the insula, in two
divisions of the amygdala, and in the hypothalamus, bilaterally.
We hypothesized that should emotional resonance yield an
autonomic reaction to positive emotions perceived by the
participants during a natural conversation, the response in these
particular brain structures would correlate with the level of
happiness expressed by the human (the natural agent) but not
the robot (the artificial agent).

Materials and methods

As the analysis presented here is based on an existing
available corpus described in extenso in previous publications
(Rauchbauer et al., 2019, 2020), we will only summarize the
information necessary to support the results and discussion,
but readers are referred to the technical publications for more
details.

Data acquisition

When participants (n = 24, 17 women, µ = 26.76 years,
σ = 7.96) arrived at the MRI center, one experimenter presented
them with the cover story. To allow participants to have natural
conversations despite the experimental setting, they were kept
in the dark about the actual purpose of the experiment through
a cover story. They were told that they were participating in
a neuromarketing experiment. Specifically, a company asked
neuroscientists to determine whether two people could guess

the meaning of an upcoming advertising campaign simply by
discussing the images used to illustrate it. The experimenter
then introduced them to the agents with whom they would
be discussing. The human partner was a confederate of the
experimenter gender-matched with each participant, and the
artificial agent was a back-projected conversational robotic head
(Al Moubayed et al., 2012) with an appearance, voice, and
accessories reminiscent of the natural agent (Figure 1). Only one
version of the artificial agent was used per participant.

During functional magnetic resonance imaging (fMRI)
acquisition, participants discussed online with these two agents
alternatively while lying supine in the scanner and having their
brain activity recorded. A BOLD signal (blood oxygen level
dependent) was recorded in four sessions of fMRI acquisition,
each lasting approximately 8 min. Each session comprised 6
experimental trials that proceeded as follows: a picture appeared
for 8.3 s, then after a 3-s pause with a white fixation cross
on a black background, a 1-min live conversation took place
with either the human or the robot agent, alternatively. The
participant and interlocutor could hear each other in real
time, and the participant additionally saw a live feed of their
interlocutor. All audios and videos available were recorded
for further analysis. Other variables were recorded, such as
the participant’s eye movements or heart rate, but these will
not be discussed further here since they are not used in
the current analysis. In total, each participant took part in
twelve 1-min conversations with the human and twelve 1-min
conversations with the robot.

Unbeknown to the participants, who believed the robot
was autonomous, it was actually controlled remotely by the
confederate acting as the human interlocutor. A set of pre-
recorded answers stored as text snippets chosen based on a
preparatory version of the experimental procedure were selected
in real time by pressing virtual buttons on a touch-sensitive
tablet. Responses were played using the voice synthesizer
provided by the robot. Some answers were generic (e.g., “yes,”
“no,” “maybe,” and “I do not know”), and others were specific to
an image (“It is a yellow pear”) or to one of the two advertising

FIGURE 1

Snapshots from the live video feeds projected to the scanned participants, with the human (left) and robot (right) interlocutor.
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campaigns (“Maybe it is a campaign to promote local fruits
cultivation”). Importantly, emotional expressions by the robot
were not actively controlled but happened as part of random
movements encoded in the robot to increase its naturalness,
except on very rare occasions when happiness expressions were
used as non-verbal feedback.

Data preparation

The processing of fMRI data followed standard procedures.
The volumes acquired represent the BOLD signal in 2.5 ×

2.5 × 2.5 cm3 voxels of the brain. Each volume contains
54 slices of 84 × 84 in-plane voxel and is recorded in
1.205 s. Pre-processing entails a correction of the temporal
synchronization of the acquired slices, a realignment of the
volumes of each session on the first one, and a correction of the
deformations due to the local distortions of the magnetic field
and participants’ movements. Normalization uses the DARTEL
procedure (Ashburner, 2007) to put the imaged brains of all
participants in the standard MNI space. The artifact detection
tools (ART) were tested for any movement-related artifacts,1

and none were detected using the standard threshold of 2
mm. Several nuisance covariates were computed to eliminate
motion artifacts, potential blood pulse, and respiration artifacts,
which were highly relevant in a paradigm involving speech,
as well as global gray matter signal, white matter activity, and
cerebrospinal fluid activity to control global signal fluctuations
unrelated to the task (TAPAS toolkit; Kasper et al., 2017).

The analysis of fMRI data was first based on the general
linear model implemented in SPM (Friston et al., 2007). Each
trial was modeled as a single regressor, and the presentation
of images before each discussion was modeled as a single
regressor. We used a brain parcellation formed from functional
and connectivity brain data, the Brainnetome atlas (Fan et al.,
2016), so that the 246 regions of interest of the atlas represent
sets of voxels that are homogeneous in terms of function.
For each of the 24 trials (12 for the human and 12 for
the robot) of each of the 24 participants, we extracted the
average response across the 1-min duration using the MarsBAR
toolbox (Brett et al., 2002). We then focused on regions of
interest (ROIs) that belong to the insular and subcortical
insular regions that form the core of the somatic emotional
system. The insula can be parcellated according to a gradient
of increasing granularity from front to back. Within the
Brainnetome atlas numbering system, insular regions are (in
left/right hemispheres) 165/166 [ventral agranular, (vA)] and
167/168 [dorsal agranular, (dA)] anteriorly, 169/170 [ventral
dysgranular, (vD)] and 173/174 [dorsal dysgranular, (dD)] in
intermediate location, and 171/172 [dorsal granular insula,
(dG)] and 163/164 [hypergranular insula (H)] posteriorly. The

1 www.nitrc.org/projects/artifact_detect

amygdala is composed of regions 211/212 [medial part of the
amygdala (M), roughly corresponding to the medial and basal
nuclei] and 213/214 [lateral part of the amygdala (L), roughly
corresponding to central and lateral nuclei; Saygin et al., 2011].
The activity of the hypothalamus [Hy] was also extracted using
a mask previously developed (Wolfe et al., 2015), given that this
key region for homeostasis is not featured in the Brainnetome
atlas. Figure 2 shows all regions.

Data analysis

Facial emotions were extracted automatically from the
videos of the human and robot interlocutors using a freely
available machine learning algorithm (Arriaga et al., 2019)
available at https://github.com/oarriaga/face_classification. The
algorithm uses a convolutional neural network to classify
facial expressions into 7 classes (anger, disgust, fear, happiness,
sadness, surprise, and neutral). According to its developers,
it can achieve an accuracy of 66% in the Facial Emotion
Recognition (FER-2013) dataset, which consists of manually
labeled 35,887 48 × 48 pixels grayscale images. More precisely,
the algorithm achieved a correct recognition of 87% of happy
faces, with mislabeling below 5%, while the correct recognition
was in the range of 41% (for fear) to 77% (for surprise) for the
other emotions according to the confusion matrix. We verified
that emotions depicted by the robotic device were correctly
recognized by the algorithm and found correct detection for
the happy and neutral emotions, which were the only facial
expressions used in the recording of the corpus. In addition,
the recordings used for this classification, 640 × 480 images of
the full-screen face of the human or robot interlocutor looking
directly at the camera, were particularly well-suited for this
automatic classification, in contrast to the more variable faces,
in terms of age, orientation, brightness, and occlusion, used for
the development of the algorithm. Altogether, these arguments
support the use of automatically recognized happy emotions in
our analysis. In practice, the probability predicted for happy
emotion was extracted frame by frame, then summed over all
frames of a trial, therefore providing one happiness score for
each trial.

Statistical analyses were performed in R using the package
lme4. Multivariate models were used as the effect of each
predictor (level of facial happiness, type of agent) was evaluated
while holding constant the effect of the other predictors
on the dependent variable. We introduced the happiness
score obtained for each trial as a predictive continuous
variable for all regions evaluated, with the nature of the
agent as the categorical factor of interest. The identity of the
participant and sessions were used as random variables. We
used Holm’s correction for multiple comparisons (Holm, 1979)
to control the family-wise error rate. Holm’s correction has
been used in neuroimaging analyses when multiple comparison
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FIGURE 2

Top: Regions of interests (acronyms described in Table 1) overlaid on sections of the average of participants’ brains after normalization to MNI
space. In blue are the areas showing a significant main effect of happiness; in yellow, a significant main effect of the type of agent; and in green,
a significant interaction. Bottom: Plots of significant effects on BOLD response [arbitrary units (AU) after normalization] against the level of
happiness expression for human (red) and robot (blue). The significant correlations are indicated as follows: ∗∗p < 0.001, ∗p < 0.050, §p < 0.100.

corrections for family-wise errors are too stringent given a
large number of observations, in the analysis of functional
MRI brain activation (Leong et al., 2018), but also in whole-
body anatomy (Breznik et al., 2020). The models were selected
in a backward process based on the restricted maximum
likelihood.

Results

As expected, there is a significant difference between the
happiness extracted for the human and robot interlocutors
(t = 21.08, p < 0.001, CI 95% [0.89, 2.76]), with higher scores
for the human. This significant difference argues in favor of the
multivariate linear model approach that allows us to evaluate
independently each term’s unique contribution to the variation
of the average BOLD signal per trial, therefore controlling for
the significant difference in happiness between agents.

We tested the effect of the dichotomous factor, describing
the nature, human or robotic, of the participant’s interlocutor

(agent) and of the continuous happiness score (happiness), as
well as the interaction between these two terms (happiness
by agent) on the BOLD signal in the insula, amygdala, and
hypothalamus ROIs. Statistical results for all ROIs are presented
in Table 1 and illustrated in Figure 2 (top). The interaction term
is particularly important as it indicates that the happiness score
affects local brain response differently depending on whether
the interlocutor is a human or a robot. This term reveals
different but consistent patterns in the amygdala ROIs on the
one hand, for which it is never significant, and in the insula and
hypothalamus ROIs on the other hand, for which it is significant
in many regions.

Results provided in Table 2 and illustrated in Figure 2
(bottom) indicate a significant positive correlation between
BOLD signal and happiness for the human agent in two right
hemisphere insula ROIs (dorsal agranular and hypergranular)
as well as a trend for the left hypergranular region. In parallel,
the analyses revealed a negative correlation for the robot
agent in the right ventral and dorsal agranular insula ROIs.
The correlation was positive for the human agent in the
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TABLE 1 Results of the statistical analysis.

MNI coordinates Effect Statistics 95% CI

x, y, z T p β (Lower–Upper)

Insula

Ventral agranular (vA)

Left
–32, 14, –13

Agent 0.25 0.805 0.022 –0.207 – 0.266

Happiness –0.89 0.374 –0.040 –0.016 – 0.006

Happiness*Agent 0.97 0.330 0.085 –0.005 – 0.016

Right
33, 14, –13

Agent –1.03 0.302 –0.090 –0.346 – 0.107

Happiness 0.54 0.587 0.024 –0.007 – 0.013

Happiness*Agent 2.12 0.035 0.185 0.001 – 0.021

Ventral agranular (dA)

Left
–34, 18, 1

Agent –1.50 0.134 –0.131 –0.454 – 0.061

Happiness 1.56 0.121 0.070 –0.002 – 0.021

Happiness*Agent 0.19 0.846 0.017 –0.011 – 0.013

Right
36, 18, 1

Agent –3.24 0.001 –0.281 –0.696 – –0.170

Happiness 0.53 0.599 0.024 –0.009 – 0.015

Happiness*Agent 2.21 0.028 0.192 0.001 – 0.025

Ventral Dysgranular (vD)

Left
–38, –4, –9

Agent –2.01 0.045 –0.175 –0.501 – –0.006

Happiness –0.92 0.356 –0.041 –0.017 – 0.006

Happiness*Agent 2.94 0.003 0.255 0.006 – 0.028

Right
39, –2, –9

Agent –3.39 0.001 –0.290 –0.709 – –0.189

Happiness 1.35 0.179 0.059 –0.004 – 0.020

Happiness*Agent 4.93 0.000 0.422 0.018 – 0.042

Dorsal Dysgranular (dD)

Left
–38, 5, 5

Agent –1.49 0.138 –0.130 –0.436 – 0.061

Happiness –0.22 0.830 –0.010 –0.013 – 0.010

Happiness*Agent 0.82 0.414 0.072 –0.007 – 0.016

Right
38, 5, 5

Agent –2.70 0.007 –0.236 –0.566 – –0.089

Happiness 0.32 0.752 0.014 –0.009 – 0.013

Happiness*Agent 1.83 0.068 0.160 –0.001 – 0.021

Dorsal Granular (dG)

Left
–38, –8, 8

Agent –1.09 0.277 –0.095 –0.373 – 0.107

Happiness 2.27 0.024 0.102 0.002 – 0.024

Happiness*Agent 1.34 0.180 0.117 –0.003 – 0.018

Right
39, –7, 8

Agent 0.04 0.966 0.004 –0.252 – 0.263

Happiness 1.23 0.221 0.056 –0.004 – 0.019

Happiness*Agent –0.21 0.835 –0.018 –0.013 – 0.010

Hypergranular (H)

Left
–36, –20, 10

Agent –0.36 0.716 –0.031 –0.307 – 0.211

Happiness 2.11 0.035 0.094 0.001 – 0.025

Happiness*Agent 2.43 0.015 0.210 0.003 – 0.026

Right
37, –18, 8

Agent –1.07 0.287 –0.091 –0.408 – 0.121

Happiness 2.52 0.012 0.112 0.003 – 0.028

Happiness*Agent 3.20 0.001 0.275 0.008 – 0.032

(Continued)
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TABLE 1 (Continued)

MNI coordinates Effect Statistics 95% CI

x, y, z T p β (Lower–Upper)

AMYGDALA

Medial (M)

Left
–19, –2, –20

Agent 1.40 0.162 0.063 –0.032 – 0.193

Happiness 1.75 0.081 0.079 –0.001 – 0.019

Happiness*Agent 0.55 0.582 0.048 –0.007 – 0.013

Right
19, –2, –19

Agent 2.51 0.012 0.113 0.031 – 0.253

Happiness 0.81 0.418 0.036 –0.006 – 0.014

Happiness*Agent 1.17 0.241 0.102 –0.004 – 0.016

Lateral (L)

Left
–27, –4, –20

Agent 3.12 0.002 0.140 0.067 – 0.295

Happiness –0.15 0.882 –0.007 –0.011 – 0.009

Happiness*Agent 1.25 0.214 0.108 –0.004 – 0.016

Right
28, –3, –20

Agent 3.34 0.001 0.149 0.079 – 0.306

Happiness 0.48 0.635 0.021 –0.008 – 0.012

Happiness*Agent 0.54 0.587 0.047 –0.007 – 0.013

Hypothalamus (Hy)

Left
–3, –7, –8

Agent –0.29 0.773 –0.025 –0.222 – 0.165

Happiness 0.57 0.568 0.025 –0.006 – 0.011

Happiness*Agent 2.45 0.015 0.212 0.002 – 0.020

Right
3, 7, 8

Agent –0.24 0.815 –0.020 –0.220 – 0.173

Happiness 1.15 0.250 0.051 –0.004 – 0.014

Happiness*Agent 2.34 0.020 0.202 0.002 – 0.020

Significant effects (p < 0.05) are indicated in bold.

TABLE 2 Effect of happiness on BOLD signal calculated separately for the human and robot agent in ROIs having a significant agent *
happiness interaction.

Regions Human 95% CI Robot 95% CI

t p β (Lower – Upper) t p β (Lower – Upper)

Insula

Ventral agranular (vA), right 1.46 0.147 0.092 –0.004 – 0.027 –2.68 0.008 –0.167 –0.038 – –0.006

Dorsal agranular (dA), right 4.34 <0.001 0.265 0.021 – 0.055 –2.59 0.010 –0.160 –0.038 – –0.005

Ventral dysgranular (vD), left 1.55 0.121 0.098 –0.003 – 0.027 –1.05 0.295 –0.066 –0.024 – 0.007

Ventral dysgranular (vD), right 0.43 0.667 0.027 –0.012 – 0.019 –0.72 0.470 –0.046 –0.022 – 0.010

Hypergranular (H), left 1.90 0.059 0.119 –0.001 – 0.028 –1.10 0.271 –0.070 –0.023 – 0.006

Hypergranular (H), right 2.02 0.044 0.127 0.000 – 0.033 –1.15 0.252 –0.072 –0.028 – 0.007

Hypothalamus (Hy), left 1.93 0.054 0.121 0.000 – 0.027 –1.50 0.136 –0.094 –0.020 – 0.003

Hypothalamus (Hy), right 2.41 0.017 0.150 0.003 – 0.029 –0.86 0.391 –0.054 –0.018 – 0.007

Significant effects (p < 0.05) are indicated in bold.
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hypothalamus (significant on the right; trend on the left) and
not significant for the robot.

Discussion

Using a multimodal corpus of human–human and human–
robot conversations in which participants’ brain activity was
recorded with fMRI, we investigated how the emotion expressed
by the interlocutor influences activity in central brain areas
interacting with the peripheral autonomous nervous system,
looking for evidence of emotional contagion at the somatic
level. More precisely, the facial expression of happiness of the
interlocutor, human or robot, was quantified automatically for
each trial and used as a continuous variable against the BOLD
response in subregions of the hypothalamus, the amygdala, and
the insula. The rest of the discussion focuses on brain regions in
which the interaction term between the happiness score and the
nature of the agent is significant, as it identifies areas in which
the response to the emotion depends on the nature of the agent
expressing this emotion. This interaction term was significant
in the hypothalamus bilaterally as well as in subregions of the
insula but not in the amygdala. Particularly interesting was
the activity in the right anterior insula, which increased with
happiness expressed by the human, but not the robot, face.

The expression of happiness was significantly higher for
humans than for robots. This was expected given that the
artificial device used in this experiment (refer to Figure 1,
left) had clear limitations in the expression of emotion, not
only visually (smiles had to be controlled explicitly, which was
extremely rare) but also auditorily (voice intonations could
not be controlled). In contrast, humans behaved naturally,
regularly engaging in jokes and laughter. Therefore, humans
expressed quantitatively higher levels of happiness than robots.
Multivariate models were used to control for the potential
statistical bias that could result from this intrinsic difference in
the analysis of the BOLD response in the insula, the amygdala,
and the hypothalamus, with the nature of the agent and level of
happiness as factors of interest.

In the amygdala, only the main effect of the agent was
statistically significant, with increased BOLD response during
human trials in 3 out of the 4 subregions (lateral amygdala
bilaterally; medial amygdala in the left hemisphere). As
explained in the “Introduction” section, emotions are a complex
construct and difficult to investigate, in particular during natural
interactions. Fear has been the focus of most attention in animal
models thanks to the paradigm of fear conditioning that allows
investigating this emotion without verbal assessment of the
participant’s feelings. Thanks to these animal studies, it is well
known that the amygdala is necessary for fear conditioning,
which takes the form of long-term potentiation within fear
circuits. Interestingly, the lateral parts of the amygdala depict a
larger effect of agent (t-scores > 3 in the two hemispheres) than

the medial division (t-scores < 3)—the latter is associated with
visceral inputs compared to the former being associated with
sensory, including visual and auditory, inputs (LeDoux, 2007)
that carry the emotional information in the present experiment.
The main effect of the agent in the amygdala, corresponding
to an increased response for the human compared to the robot
agent, could reflect the large differences in the facial expressions
and voice intonations of the two agents. In fact, by directly
measuring the levels of two hypothalamic neuropeptides in the
amygdala, Blouin et al. (2013) reported an increase in hypocretin
release in the amygdala associated with positive emotions and
social interactions.

In many regions of the insula (colored green in Figure 2,
top) and in the hypothalamus bilaterally, the facial happiness
expressed by the interlocutor affected the brain activity
differently depending on the nature of the agent displaying the
emotion. In regions with significant interactions, plotting the
BOLD response as a function of happiness (depicted with green
background in Figure 2, bottom) always resulted in similar
profiles, with a positive correlation of the response for the
human agent and no effect or a decrease for the human agent.
More precisely, increases for the human agent were statistically
significant in the right hemisphere for the hypothalamus, the
hypergranular, and the dorsal agranular insula regions, and
the decrease for the robot was significant for the right dorsal
agranular insula region only. The insula and hypothalamus
are closely related to embodied emotional processing and are
known to be influenced by social context (Bartz et al., 2011;
Bernhardt and Singer, 2012). The responses of these regions
could be interpreted as central somatic markers of emotions,
the former receiving visceral-somatic signals (Uddin et al.,
2017) and the latter secreting, in the brain and in the blood
circulation, neuropeptides including oxytocin associated with
social bonding (Chevallier et al., 2012) and hypocretin discussed
previously (Blouin et al., 2013). In particular, the anterior part
of the insula (Morel et al., 2013), which includes the right dorsal
agranular region where we report a positive correlation of brain
activity with happiness expression by humans and a negative
correlation for robots’ expression, contains Von Economo
Neurons that have a fundamental role in subjective feelings
(Craig, 2009). We speculate that this inversion of correlation
not only signals the expected empathy for fellow humans, as an
increase in the happiness displayed by the interlocutor triggers
an increase in the local response, but also the repulsion for
imperfect human-like robots postulated by the Uncanny Valley
hypothesis (Mori et al., 2012).

The results of the correlation analysis provide important
insights into how the regions under scrutiny are involved
in social cognition. First, they support the dominance of
the right hemisphere in emotional processing, which was
proposed to be related to the asymmetry of the autonomous
nervous system involved in homeostasis (Craig, 2005), as no
significant correlation was found in the left hemisphere. In
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the hypothalamus, it is interesting that the brain response is
similar for the two agents at the lowest levels of happiness
expressed, and the difference increases with the expression
of emotion, a strong argument in favor of the role of this
region in the building of empathetic bonds exclusively with
conspecifics, possibly through the release of oxytocin. In the
insula, the results provide an interesting parcellation with
regard to social cognition. The anterior agranular regions,
known to be involved in socioemotional processes, in fact,
depict, in the right hemisphere, the responses expected for this
function. Dorsal regions, associated with cognitive functions,
do not show a clear pattern in relation to the experimental
conditions. Finally, results suggest an involvement of posterior
hypergranular and ventral dysgranular regions, associated with
sensorimotor and chemical senses, respectively (Uddin et al.,
2017), in social interactions, in line with the view of embodied
cognition. Differences in the patterns of these two regions
are of potential interest, but the absence of strong statistical
significance precludes interpretations relying exclusively on
social cognition explanations. For example, increased happiness
by the human interlocutor could cause increased verbalization,
leading to a stronger reliance on sensorimotor processes.

Limitations

An important limitation pertains to the automatic
extraction of the happiness scores from the videos. The
convolutional neural networks were trained and tested with
human faces (Arriaga et al., 2019) but not validated with
the robotic device we used. We ran the algorithm on ad hoc
video files in which the different facial emotions had been
controlled by the experimenter and found that neutral and
happy emotions (i.e., smiles) were correctly recognized, while
there were attribution errors on the other, in particular negative,
emotions. Importantly, as noted previously, the algorithm
makes the same type of errors on human images. Finally, it is
important to keep in mind that the robot’s facial emotions, as
well as its utterances and intonations, are fully controlled and
therefore show less variation from trial to trial. Given all these
reasons, we are confident that the rating of happiness on the
robot’s face is objective as smiles are the only facial expressions
used when recording the corpus. Finally, it should be added
that, from a social cognition standpoint, subjective annotation
or rating of a robot’s facial expression of emotion is associated
with other issues that are research questions of their own; for
example, how does the knowledge and vision that the emotion
is displayed by an artificial agent cause a top-down bias in the
way the emotion is being perceived by a human observer?

The robotic device used in this experiment had clear
limitations in the expression of emotion, both visually and
orally. Even though there was no expression of negative
emotions, its expression of happiness was restricted to a limited

number of smiles, and we cannot rule out that the limited
positive emotions depicted by the robot precluded creating
more social bonds with the humanoid interlocutor. Efforts
are underway to endow the robot with more natural facial
expressions of emotion to complement the current corpus and
address this question more directly. The statistical analysis was
devised to take into account this unbalances between the human
and robot agents. Three comments on the results comfort the
experimental paradigm and the statistical analysis used here.

First, there are statistically significant results, demonstrating
that despite difficulties related to the experimental approach
chosen, that is, recording brain activity during unconstrained
behaviors and post hoc relating the activity to conversational
characteristics extracted from the recorded behaviors, the
analysis allows to reveal brain correlates associated with these
characteristics of natural interactions. This is particularly
important as such approaches could become a hallmark
of second-person neuroscience if its goal is to investigate
natural interactions. Second, in all of the regions investigated
(sometimes only in one hemisphere), activity is significantly
affected by the characteristic under investigation, here the
happiness expressed by the human and robot interlocutor. This
also supports our choice of regions to investigate the perception
of emotions in relation to emotional contagion and homeostasis.
Finally, the finding that not only the factor describing the nature
of the interlocutor, human or robot, but also the interaction
term involving the more subtle happiness score estimated
automatically, yields statistically significant results is in direct
agreement with one central assumption of this project, that
during natural social interactions, the nature of the interacting
agent, human or robot, is an outstanding factor influencing the
behavior and underlying neural correlates.

Conclusion

The analysis presented here demonstrates how robots
can help understand how the human brain processes social
information during natural interactions. Focusing on brain
regions at the interface between the central and autonomous
nervous system—insula, amygdala, and hypothalamus—the
results demonstrate that emotional resonance, in relation to
homeostasis and the somatic markers hypothesis, is differently
affected by the facial expressions of happiness according to the
nature of the interlocutor. Positive correlations with the level
of happiness expressed by the human interlocutor were found
in two key regions for social bonding, namely, the anterior
insula and hypothalamus. These correlations are particularly
important because they are not found for the robot agent,
illustrating the importance of artificial agents to investigate the
specificities of human social interactions.

The development of robots capable of complex social
interactions requires an objective assessment of their social
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competence. Despite the limitations of the current analysis,
its results illustrate how crucial interdisciplinarity—bringing
together social cognitive neuroscience, automatic analysis of
complex behaviors, and the design of interactive agents—is for
social robotics. Considering the fundamental role of emotions in
social interactions, the results directly question the acceptability
of human-like robots as natural partners. Thus, in addition to
providing insights into the brain correlates of human social
interactions, such paradigms also help answer the question: “To
what extent can human-like robots be treated as social agents?”
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