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A B S T R A C T   

A high sensitivity and ultra-low concentration range photoacoustic spectroscopy (PAS) gas detection system, 
which was based on a novel trapezoid compound ellipsoid resonant photoacoustic cell (TCER-PAC) and partial 
least square (PLS), was proposed to detect acetylene (C2H2) gas. In the concentration range of 0.5 ppm ~ 10.0 
ppm, the limit of detection (LOD) values of TCER-PAC-based PAS system without data processing was 66.4 ppb, 
which was lower than that of the traditional trapezoid compound cylindrical resonant photoacoustic cell (TCCR- 
PAC). The experimental results indicated that the TCER-PAC had higher sensitivity than of TCCR-PAC. Within the 
concentration range of 12.5 ppb ~ 125.0 ppb, the LOD and limit of quantification (LOQ) of TCER-PAC-based PAS 
system combined with PLS regression algorithm were 1.1 ppb and 3.7 ppb, respectively. The results showed that 
higher detection sensitivity and lower LOD were obtained by PAS system with TCER-PAC and PLS than that of 
TCCR-PAC-based PAS system.   

1. Introduction 

Oil-immersed transformers are the most important parts of power 
systems. Transformer failures will affect the industrial production and 
human life. Acetylene (C2H2) is generally regarded as the characteristic 
gas of oil-immersed transformer. The concentration of C2H2 dissolved in 
oil could be used to judge the faults of transformer, such as overheating 
and discharge failures [1–3]. The C2H2 concentration in the dissolved oil 
is generally below ppm. Therefore, in order to realize the early faults 
detection of the oil-immersed transformer, the method to detect C2H2 
with high accuracy and sensitivity is demanded. There are many 
methods to detect C2H2 gas, such as electrochemistry method, semi-
conductor method, and catalyst combustion methods, but the disad-
vantages of these conventional methods are high price, difficult 
maintenance, poor stability, low selectivity and sensitivity [4]. Laser 
spectroscopy-based gas sensing approach has advantages of non-contact 
measurement and fast response [5–10]. Photoacoustic spectroscopy 
(PAS) is an important optical method to detect the trace gas due to its 
high sensitivity and excellent selectivity [11–21]. 

Over the last decade, researchers have mainly enhance performance 
of PAS through three types of techniques: (1) Optimizing the photo-
acoustic cell (PAC) structure, such as replacing the cylindrical resonance 
cavity with an ellipsoid, amplifying the number of resonance cavities to 
create a differential cell structure, modifying the buffer cavity to a step- 
type, or diminishing the number of buffer cavities by one, resulting in a 
shift from H-type to T-type designs [11–15,22]. (2) Using microphone 
with high sensitivity, such as silicon cantilever beam optical fiber mi-
crophones or high-quality quartz tuning forks, which are better choose 
for detecting and enhancing the performance of the PAS [23–25]. (3) 
Increasing the optical path length (OPL) or incident light power, such as 
the concave reflector mirrors or other type mirrors are used to increase 
the OPL by multiple reflections of laser in the PAC [26]. Installing 
multiple incident light on the same or opposite side are used to increase 
the power of laser [15,16,27–31]. 

Many works on the structural optimization of PACs have been re-
ported [12–15,32,33]. Zha et al. designed a resonant cavity in the T 
shape with a wide top and narrow bottom [32]. Instead of the typical 
conventional PAC, Liu et al. used a miniaturized T-type PAC composed 
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by a horizontal absorber cavity, vertical buffer and resonance cavity to 
quantitatively analyze the environmental pollutants [33]. Gong et al. 
presented a T-type half-open resonant PAC with a single buffer volume 
for C2H2 gas detection [34]. The H-type longitudinal resonant PAC with 
radius of 2 mm and length of 120 mm was optimized by Gong et al. for 
NO2 gas detection [29]. In 2021, Gong et al. reported a spherical inte-
grated PAC [35]. Furthermore, an ellipsoidal resonant PAC was pro-
posed by Wang et al., which was compared with the H-type PAC [36]. 
The experimental results showed that the signal-to-noise of ellipsoid 
PAC was better than that of cylindrical PAC. However, the impact of the 
airflow and vortex backflow on PAC was not considered. A trapezoid 
compound H-type PAC was presented and analyzed by Cheng et al., the 
results shown that the velocity gradient in the trapezoidal composite 
PAC cavity will become more stable, and the impact of gas vortex return 
to the cavity was reduced [37]. 

To get the combination of high sensitivity and ultra-low concentra-
tion detection, a PAS sensor with trapezoid compound ellipsoid resonant 
photoacoustic cell (TCER-PAC) and the partial least square (PLS) 
regression algorithm was proposed in this paper. The finite element 
model was built to simulate the acoustic properties of the novel PAC 
using COMSOL Multiphysics. The resonance frequency and acoustic 
pressure distribution on the performance of PAS were discussed. Ac-
cording to the simulation results, the PA signal of TCER-PAC-based PAS 
system was stronger than that of trapezoid compound cylindrical reso-
nant photoacoustic cell (TCCR-PAC)-based PAS system. With data pro-
cessing, the limit of detection (LOD) value and limit of quantification 
(LOQ) value have been reached the ppb level. In our experiments, the 
PAS sensor with TCER-PAC and data processing can be used to detect 
C2H2 trace gas with high sensitivity and ultra-low detection limit. 

2. System design 

2.1. PAC design 

The TCER-PAC was designed as shown in Fig. 1. The trapezoidal 
buffer cavity was composed by an ellipsoidal resonance tube and two 
cylindrical buffer cavities with different diameters. The PA signal of 
TCER-PAC would be increased with the cavity length [34]. The COMSOL 
software was used to establish a TCER-PAC model. In the meshing 
process, the element size was 0.5 mm～0.8 mm with 1.3 growth rate. 
The length of the first level and the second level buffer cavities were 
both 25 mm, and the diameters of the first level and the second level 
buffer volume were 35 mm and 17.5 mm, respectively. The length of the 
ellipsoidal resonance tube was 100 mm, and the diameters of semi-major 
axis and semi-minor axis were 60 mm and 4 mm, respectively. 

The frequency response and acoustic field characteristics of TCER- 

PAC were simulated and solved, as shown in Fig. 2 and Fig. 3. The 
resonance frequency of TCER-PAC was 1300 Hz in Fig. 2, which was 
lower than the resonance frequency of 1580 Hz for the TCCR-PAC. The 
lower resonance frequency, the easier to demodulate the Fabry-Perot (F- 
P) acoustic sensor. The acoustic pressure distribution of the TCER-PAC 
and TCCR-PAC were shown in Fig. 3. The maximum acoustic pressure 
in the middle of TCER-PAC was 5.25 × 10− 5 Pa with the 1300 Hz, which 
was two times than that of TCCR-PAC. The simulation results proved 
that TCER-PAC has a better performance than the TCCR-PAC. 

2.2. PA system design 

C2H2 had a strong absorption at 1532.83 nm. In our experimental, 
the distributed feedback lasers (DFB) laser with modulated wavelength 
range 1532.75 nm ~ 1532.85 nm was used as the excitation light. 
Firstly, the wavelength of DFB laser was modulated with sawtooth and 
sine waves of different frequencies. Then, an erbium-doped fiber 
amplifier (EDFA) was used to amplify the optical power of wavelength- 
modulated laser. Finally, the amplified laser was input into the PAC 
through the collimator. The Fabry-Perrot optical fiber sensor [38] was 
used to detect the PA signal. The diagram of the C2H2 PAS system was 
shown in Fig. 4. 

2.3. Data processing 

The peak of 2 f signal was proportional to C2H2 concentration is 
below 125.0 ppb. When the C2H2 concentration was below 62.5 ppb, the 
peak of 2 f signal was submerged in the noise and cannot be obtained 
directly. In this paper, the data analysis methods in chemometrics were 
firstly investigated. The pre-processing methods were used to reduce the 
effects of the noise and irrelevant information in the 2 f signal. The in-
fluence of spectral variability can be eliminated by the direct orthogonal 
signal correction algorithm (DOSC) [36]. Savitzky-Golay (SG) filters and 
the baseline correction were used for spectral smoothing and elimina-
tion of baseline shifts, respectively. After the pre-processing, the rela-
tionship between the C2H2 concentration and 2 f signal was established 
by PLS [37]. At first, the C2H2 concentration and 2 f signal were pro-
jected onto a latent space using PLS and the maximizes correlation be-
tween them can be obtained. Then, the best match function can be found 
by minimizing the sum of squares of errors, and a regression model can 
be built. At last, the C2H2 concentration can be predicted by the 2 f 

Fig. 1. The schematic structure of designed TCER- PAC. The length of the 
resonance tube was 100 mm. And the radiuses of the semi-major axis and semi- 
minor axis of the resonator tube were 60 mm and 4 mm, respectively. The 
length of the first level and the second level buffer volume on both sides were 
both 25 mm. The diameters of the first level and the second level buffer volume 
were 35 mm and 17.5 mm, respectively. 

Fig. 2. The simulated frequency responses of the TCER-PAC and TCCR-PAC. 
The resonance frequency of TCER-PAC and TCCR-PAC were 1300 Hz and 
1580 Hz, respectively. (In the meshing process, the heat source domain feature 
was used to replace the heat, and the element size was 0.5 mm～0.8 mm with 
1.3 growth rate.). 
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signal. In common words, the parameters of PLS model were firstly 
obtained by the 2 f signals with known concentration, and then the 
established PLS model was used to predicted the concentration corre-
sponding to the 2 f signal with known concentration. At last, the pre-
dicted concentration was compared with the known concentration to 
obtain the relationship between them. The coefficient of determination 
(R2) [38] is used to evaluate the relationship between the concentration 
of C2H2 trace gas and 2 f signal. There is a better fitness and prediction 
performance of the PLS model when the R2 is closer to 1. The residual 
predictive deviation of prediction (RPD) was used to indicate the pre-
cision of PLS model. When the value of RPD was larger than 3, the 
predictive performance of PLS model was considered excellent. The root 
mean squared error (RMSE) was used to represent the PLS model per-
formance in the calibration step (RMSEC) and prediction step (RMSEP) 
[39–42]. The smallest values of RMSEC and RMSEP, the quantitative 
performances of the model were best [43]. The definition of R2, RPD, 
RMSEC and RMSEP were calculated as: 

R2 = 1 −

∑Nc

i=1
(ŷi,c − yi,c)

2

∑Nc

i=1
(yc − yi,c)

2
(1)  

Fig. 3. The simulation results of the acoustic pressure distribution of the (a) TCER-PAC and (b) TCCR-PAC. The maximum acoustic pressure in the middle of TCER- 
PAC and TCCR-PAC were 5.25 × 10− 5 Pa at 1300 Hz and 2.66 × 10− 5 Pa at 1580 Hz, respectively. (In the meshing process, the heat source domain feature was used 
to replace the heat, and the element size was 0.5 mm～0.8 mm with 1.3 growth rate.). 

Fig. 4. Schematic diagram of the C2H2 PAS system. EDFA, erbium-doped fiber 
amplifier; GMS, gas mixture system; DFB, distributed feedback lasers, the 
wavelength was modulated from 1532.75 nm to 1532.85 nm. The path of the 
laser beam was labeled by red lines. The path of electrical signal was marked as 
black lines. The gray lines were used to show the transmission of gas. The PAC 
is the same structure as that shown in Fig. 1. 

Fig. 5. Frequency responses of the (a) TCER-PAC and (b) TCCR-PAC. The amplitude of the 2 f signal measured for 10.0 ppm C2H2:N2. The wavelength of DFB was 
modulated from 1532.75 nm ~ 1532.85 nm. The power of the DFB laser was amplified to 200 mW. The 2 f signal of TCER-PAC-based PAS system reached its 
maximum value when the modulation frequency was 663 Hz and the peak of 2 f signal peak of TCCR-PAC was at 798 Hz. 
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RMSEC =
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RMSEP =
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√

(4)  

where Nc and Np were represented the number of samples in the cali-
bration and prediction respectively; yi,c and yi,p were the reference 
concentration of samples in the calibration set and prediction set 
respectively; ŷi,c andŷi,p were the predicted concentration of the cali-
bration set and prediction set respectively; yc and yp were the average 
concentration of the calibration set and prediction set respectively. 

The limit of detection (LOD) was the ability to detect the minimum 
concentration and the limit of quantification (LOQ) was used to repre-
sent the accurate measurement ability of samples with known concen-
tration. For the PLS regression model, the LOD and LOQ can be obtained 
from the standard deviation (SD, Sa) of the model and the slope of the 

regression curve (b), as shown below [44–47]: 

LOD = 3 × Sa/b (5)  

LOQ = 10 × Sa/b (6) 

For the linear regression, the Sa can be estimated by the y-residuals or 
y-intercepts of the regression lines. In this paper, the Sa was the standard 
deviation of y-intercepts of regression lines. 

3. Experimental results and discussion 

The PA signal intensities with different modulated frequency of 
TCER-PAC-based PAS system and TCCR-PAC-based PAS system were 
shown in Fig. 5 (a) and (b), respectively. As shown in Fig. 5 (a), the 2 f 
signal peak of TCER-PAC-based PAS system reached its maximum value 
when the modulation frequency was 663 Hz. And the resonance fre-
quency of TCER-PAC-based PAS system was 1326 Hz, which was similar 
to the simulation result of 1300 Hz. In Fig. 5 (b), the modulation fre-
quency was 798 Hz when the 2 f signal peak of TCCR-PAC-based PAS 
system reached the maximum value. The resonance frequency of TCCR- 
PAC-based PAS system was 1596 Hz, which was similar to the simula-
tion results of 1580 Hz. In our experiment, the laser modulation fre-
quencies of the TCER-PAC-based PAS system and TCCR-PAC-based PAS 
system were 663 Hz and 798 Hz, respectively. 

The C2H2:N2 concentration was controlled by two mass flow 

Fig. 6. Measurement result and fitting curve of (a) the TCER-PAC and (b) the TCCR-PAC. The 2 f signal peak value of each concentration was continuously measured 
for 5 min with the sampling interval 1 s. The incident power was 200 mW. All these experiments were performed under room temperature and atmospheric pressure. 

Fig. 7. Allan deviation of the (a) TCER-PAC and (b) TCCR-PAC. The 2 f signal peak value was measured for an hour with a sampling interval of 1 s. The wavelength 
of DFB was modulated from 1532.75 nm ~ 1532.85 nm. The incident power was 200 mW. All these experiments were performed under room temperature and 
atmospheric pressure. 
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controllers, one mass flow meter was used to control the flow of pure N2 
gas and the other was used to control the flow of C2H2:N2 gas mixture 
(the concentration of C2H2 is 10.0 ppm). According to the 2 f signal 
detection method, the modulation frequencies of the laser were set at 
663 Hz in TCER-PAC-based PAS system and 798 Hz in TCCR-PAC-based 
PAS system, respectively. The each 2 f signal was continuously 
measured for 5 min with the sampling interval 1 s. The relationship 
between 2 f signal peak value and C2H2 concentration was shown in  
Fig. 6. In the concentration range of 0.5 ppm～10.0 ppm, there was a 
good linear relationship between the 2 f signal peak value and C2H2 
concentration. The linear equation was expressed as: 

2f PeakValue(μV) = a × C(ppm)+ b (7)  

where C was the concentration of C2H2 gas, a and b were the slope and 
intercept of the fit line, respectively. 

In Fig. 6 (a), the parameter values in the linear equation of the TCER- 
PAC-based PAS system were a = 20.6 ± 0.3 μV/ppm and b = 56.1 ± 1.5 
μV, respectively. In Fig. 6 (b), the parameter values in the linear fitting 
equation of the TCCR-PAC-based PAS system were a= 11.5 ± 1.1 μV/ 
ppm and b= 30.9 ± 6.1 μV, respectively. Experimental results showed 
that the sensitivity of was 2 times that of TCCR-PAC-based PAS system. 

The 2 f signals of PAS system with pure N2 were continuously mea-
sure for 60 min and analyzed as background noise of PAS system. The 
Allan deviations calculated results of the TCER-PAC-based PAS system 
and TCCR-PAC-based PAS system were obtained, as shown in Fig. 7. The 
LOD of TCER-PAC-based PAS system is 66.4 ppb at integration time of 
1 s. And the LODs were 4.6 ppb at 324 s integration time. When the 
integration times were 1 s and 330 s, the LOD the TCCR-PAC-based PAS 
system were 93.4 ppb and 11.4 ppb, respectively. From the experimental 
results, the LOD of TCER-PAC-based PAS system is 30% lower than that 
of TCCR-PAC-based PAS system. The normalized noise equivalent 

absorption (NNEA) coefficient of the TCER-PAC-based PAS system was 
2.2 × 10− 8 cm− 1•W•Hz-(1/2), which is lower than of 3.1 × 10− 8 

cm− 1•W•Hz-(1/2) of TCCR-PAC-based PAS system. The experimental 
results confirmed that the sensitivity of TCER-PAC-based PAS system 
was about 1.5 times higher than that of the TCCR-PAC-based PAS sys-
tem. It was verified that the TCER-PAC structure can improve the 
sensitivity of the PAS system. 

When the C2H2 concentration was lower than 125.0 ppb, it was 
difficult to obtain the relationship between peak values of 2 f signal and 
C2H2 concentration without the data processing. The 2 f signal obtained 
when the concentrations of C2H2 gas were changed from 12.5 ppb to 
125.0 ppb in 12.5 ppb intervals was shown in Fig. 8 (a). As shown in 
Fig. 8 (a), the 2 f signal cannot be observed when the concentration of 
C2H2 was below 75 ppb. In order to realize ultra-low and high linearity 
measurement of C2H2, it was necessary to use the data preprocessing and 
linear regression method to analyze the 2 f signal of PAS system. The 
preprocessing methods used in this paper were normalization, continues 
wavelet transform (CWT), baseline correction (BC) and orthogonal 
signal correction (OSC). After OSC preprocessing, the 2 f signal was 

Fig. 8. 2 f signal of C2H2 gas for an incident optical power of 200 mW (a) without pre-processing. (b) with OSC pre-processing. The concentration of C2H2 was varied 
from 12.5 ppb to 125.0 ppb. (c) the comparison between the original signal and the signal with DOSC preprocessing when the concentration of C2H2 gas was 
0.05 ppm. And the 2 f signal peak value of each concentration was continuously measured for 5 min with the sampling interval 1 s. 

Table 1 
The PLS regression results with different pre-processing.  

Pre-processing PLS R2 RPD RMSEC 
(ppb) 

RMSEP 
(ppb) 

None Yes  -0.1122  1.0  2.9  3.0 
Normalization Yes  0.8646  2.1  1.5  1.6 
Continues wavelet 

transform 
Yes  0.9463  2.2  1.4  1.2 

Baseline correction Yes  0.9535  2.8  1.1  1.2 
Orthogonal signal 

correction 
Yes  0.9997  7.4  0.4  0.4  
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show in Fig. 8 (b). When the C2H2 concentration was 0.05 ppm, the 
comparison between the original signal and preprocessing signal was 
shown in Fig. 8 (c). From visual inspection, the waveform preprocessed 
with OSC method can be better discerned than original signal. The 
comparison of the PLS model performance without and with pre-
processing method was shown in Table 1. Without preprocessing, the 
linear relationship between the predicted and true concentration (R2 

=− 0.1122) was bad. After preprocessing, the linearity of PLS model was 
greatly improved. The performance of PLS model established with OSC 
preprocessing method had the highest detection accuracy (R2 =0.9997). 
Therefore, OSC was used to preprocess 2 f signals in subsequent exper-
iments. Compared with other preprocessing methods, the OSC method 
was more suitable for analyzing 2 f signal of PAS system. The analysis 
results of the principal component (PC) numbers in the PLS were shown 
in Fig. S1, Fig. S2 and Fig. S3. 

The linear analysis result of PLS with OSC preprocessing was shown 
in Fig. 9. The predicted concentration is obtained by the PLS regression 
model. The linearity between the predicted concentration and the true 
concentration in 12.5 ppb ~ 125.0 ppb was obtained by the pre-
processing and PLS method. In this paper, the relationship between the 

predicted concentration and the true concentration in 12.5 ppb ~ 
10.0 ppm was shown in Fig. 10. The experimental results confirmed that 
the OSC preprocessing method was successful to exclude irrelevant in-
formation from original 2 f signal and PLS regression performed excel-
lently in quantitative analysis of 2 f signals in PAS system. 

According to the Eqs. (5) and (6), the LOD and LOQ of the TCER-PAC 
system with PLS regression can be given in the Table 2. In the range of 
12.5 ppb ~ 125.0 ppb, the LOD after data processing was 1.1 ppb, which 
was lower than 66.4 ppb without data processing (Fig. 7). 

Multiple experimental results have been analyzed through the PLS 
model, and the results were shown in Table 3. When the C2H2 concen-
tration was 12.5 ppb, the mean was 14.0 ppb and SD was 0.3 ppb. When 
the C2H2 concentration of 125.0 ppb, the mean was 125.5 and SD was 
1.0 ppb. When the concentration is ultra-low, the signal-to-noise ratio of 
2 f signal was poor. The noise had a greater impact on the PLS predicted 
results. So, the predicted results deviated from the actual concentration. 
But the results show that the model still has good predictive ability for 
ultra-low concentrations. 

4. Conclusion 

In summary, an ultra-low and high sensitivity PAS system based on 
TCER-PAC and partial least square regression algorithm was proposed 
for C2H2 gas detection. The resonance frequency and acoustic signal 
intensity of TCER-PAC was simulated by COMSOL software. The simu-
lation results indicated that the acoustic signal intensity of TCER-PAC 
structure was 1.5 times than that of TCCR-PAC. In the concentration 
range from 0.5 ppm to 10.0 ppm, the LOD of the TCER-PAC analyzed by 
Allan deviation was 66.4 ppb at integration time of 1 s, and 4.6 ppb at 
integration time of 324 s. The 2 f signal was analyzed by the OSC pre-
processing and PLS regression algorithm when the C2H2 concentration 
was below 125.0 ppb, and the obtained of LOD and LOQ of from PLS 
model were 1.1 ppb and 3.7 ppb, respectively. The LOD was improved 
by about 60 times than that without PLS algorithm. The experimental 
results showed that a PAS system with TCER-PAC structure and PLS 
algorithm had a higher detection sensitivity and lower LOD than the 
TCCR-PAC without data processing. A new solution was provided for the 
high sensitivity and ultra-low concentration detection in this paper. 
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