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Abstract: In this paper, we propose a novel hybrid discriminative learning approach based on shifted-
scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some
challenging problems of medical data categorization and recognition. The main goal is to capture
accurately the intrinsic nature of biomedical images by considering the desirable properties of both
generative and discriminative models. To achieve this objective, we propose to derive new data-based
SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes
the following steps: the extraction of robust local descriptors, the learning of the developed mixture
model via the expectation–maximization (EM) algorithm, and finally the building of three SVM
kernels for data categorization and classification. The potential of the implemented framework is
illustrated through two challenging problems that concern the categorization of retinal images into
normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The
obtained results demonstrate the merits of our hybrid approach as compared to other methods.

Keywords: shifted-scaled Dirichlet distribution; mixture model; SVM kernels; data categorization
and recognition; medical image analysis

1. Introduction

Unsupervised data categorization and recognition are widely used tools in statistical
data analysis and are progressively being applied to complex datasets allowing the dis-
covery of similar statistical patterns. They have been applied in a diversity of applications,
ranging from the fields of image processing, data mining, to those of biomedicine, secu-
rity and social media. Nowadays, the trend of data mining applications in healthcare is
remarkable as there are huge datasets in this sector that require a deep analysis by effective
model-based techniques derived from artificial intelligence and machine learning areas.
Large scale artificial intelligence and machine learning tools are increasingly successful in
image-based diagnosis and have been employed for medical decision making [1–5] and
other complex problems like scene and web pages categorization [6–8], retinal images
classification [9] and action recognition [10]. The manual processing of these tasks is diffi-
cult, tedious and time consuming and so it is important to move to automatic methods,
which are able to learn models from labeled and non-labeled data and allow faster and
more accurate decisions. Most of the model-based techniques applied to classification and
recognition problems are approached through finite mixture models and the commonly
used mixtures are based on Gaussian assumption [11]. Mixture models are designed as
well principled statistical models and have the advantage of using different distributions
in order to describe its components. They are used for effectively modeling visual features
thanks to their capability of describing multidimensional distributions and heterogeneous
data in a finite number of classes [11–13]. They focus on modeling a given distribution by
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weighted sum (i.e., a mixture) of several basic distributions (combination of two or more
probability density functions).

It is noted that while the data follows a non-Gaussian distribution in nature, the Gaus-
sian model can give a weak performance. Noticing this fact, various mixture models have
been proposed in the literature and some distinguished ones are based on the general-
ized Gaussian [14], Dirichlet and generalized Dirichlet [15], Beta-Liouville [15], t-student
distributions, etc. For instance, the Dirichlet mixture and its extensions (like generalized
Dirichlet) have been successfully employed and can often outperform the Gaussian model
for data clustering, categorization and action recognition [9,16–18,18]. In this context,
the work in this paper is based on recent research outcomes that have shown the impor-
tance of some specific distributions for complex visual vectors modeling based on Dirichlet
and scaled Dirichlet mixture distributions [16,19]. In particular, some recent studies have
shown that the derived model, the called shifted-scaled Dirichlet mixture model (SSDMM),
can be applied successfully for a variety of applications [20,21]. SSDMM is presented as a
powerful generalization of both Dirichlet and scaled Dirichlet where the term shifted, here,
means a perturbation in the simplex.

It is noteworthy that several generative probabilistic models have a lot of benefits in
terms of their capability to categorize similar data and analyze complex data, but when the
data are heavily corrupted due to noise and outliers, these models sometimes fail. To cope
with these disadvantages, it is possible to envisage applying discriminative classifiers,
in particular Support Vector Machines (SVM), instead. However, most of the conventional
classifiers do not take into account the nature of input data and therefore fail to reach very
good results. Consequently, it is better to think of a hybrid approach that considers both the
benefits of generative and discriminative models in order to reach better performance. This
objective can be achieved for instance by generating powerful mixture-based probabilistic
SVM kernels.

Motivations and Contributions

In this paper, we propose to investigate recent research outcomes that have shown
the importance of the shifted-scaled Dirichlet mixture model (SSDMM) and then we go a
step further by developing a discriminative learning approach. First of all, we address in
this work an important step in mixture modeling problems, which is the model complexity
problem, and we propose to solve it in order to avoid the over-fitting issue. Indeed, in order
to determine the optimal statistical mixture model with less complexity we investigate
an effective criterion named Minimum Message Length (MML) [22]. This criterion has
the advantage of providing better generalization capabilities. Our second contribution is
to develop a family of SVM kernels generated from the finite mixture of SSDMM and its
approximation. In particular, we propose to derive some kernels on the basis of probabilistic
distances in order to tackle the problem of data classification using SVM. It is noted that
classical SVM kernel functions are used to compute the similarity between vectors and
not between mixture of distributions, which limit their use in terms of capturing the
intrinsic properties of the data to classify. In this work, we propose to address certain
practical shortcomings of standard kernels by taking into account the prior knowledge of
the problem at hand via mixture models. Thus, we propose to derive new kernels for SVM
from generative models, which are able to take into account the complexity of data, in order
to enhance its modeling and categorization capabilities. To the best of our knowledge,
this is the first time a hybrid approach based on SSDMM and some derived probabilistic
SVM kernels, such as Fisher kernel, Kulback–Leibler kernel, and Bhattacharyya-based
kernel [23–25], has been developed. As a result, we expect an improvement in terms of
image modeling and categorization, which can be achieved by our hybrid framework.

This paper is structured as follows. A brief introduction that describes our motivation
is given in Section 1. The generative model based on the shifted-scaled Dirichlet mixture
and its learning algorithm is presented in Section 2. The discriminative hybrid learning
approach is developed in Section 3. In Section 4, we summarize our complete algorithm.
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Section 5 shows the merits of our work through extensive experiments related to two
important applications namely lung disease recognition and retinopathy detection. Finally,
Section 6 summarizes this manuscript and emphasizes some potential future works.

2. Finite Shifted-Scaled Dirichlet Mixture Model

As a part of our research, we will demonstrate that the shifted scaled Dirichlet distribu-
tion can be applied with conjunction of discriminative classifiers to model and discriminate
complex biomedical multidimensional data. Let us define ~Y = (Y1, . . . , YD) a random
vector. We say that ~Y follows a shifted scaled Dirichlet distribution with parameters
θ = (~α,~β, b) such that~α = (α1, . . . , αD) ∈ RD

+, ~β = (β1, . . . , βD) ∈ SD and b ∈ R+ if its
density function is defined as [26]:

p(~Y|θ) = Γ(α+)

∏D
i=1 Γ(αi)

1
bD−1

∏D
i=1 β

−(αi/b)
i y(αi/b)−1

i

(∑D
i=1(yi/βi)(1/b))α+

(1)

where ~β denotes a location parameter. α+ = ∑D
d=1 αd. Γ(.) is the Gamma function.

The shifted-scaled Dirichlet distribution has 2D parameters. If the parameter a = 1,
then this model is reduced to a scaled Dirichlet model.

A mixture of K-components of SSDMM distributions can be written as:

p(~Y|Θ) =
K

∑
k=1

πk p(~Y|θk) (2)

where Θ is the set of all model’s parameters: Θ = (πk, θk). Here, we denote πk, k = 1, . . . , K
by the mixing proportion that must satisfy the unity condition (are positive and their sum
is equal to one). Let Y be a set of vectors, Y = {~Y1,~Y2, . . . ,~YN}, such that each vector
is a realization from a K-component mixture. Each sample vector ~Yn = (yn1, . . . , ynD) is
D-dimensional. The log-likelihood function of the complete dataset is as:

L(Y|Θ) =
N

∏
n=1

K

∑
k=1

πk p(~Yn|θk) (3)

where p(~Yn|θk) is the shifted-scaled Dirichlet probability with parameter θk = (~αk,~βk, bk).
In order to estimate the parameters of the mixture Θ, we consider here a widely

applied technique, which is the Maximum Likelihood Estimate (MLE) via the well known
algorithm expectation–maximization (EM) [27]. This algorithm is able to provide several
estimates {Θt, t = 0, 1, 2 . . .} by alternating between the following two steps (E-step) and
(M-step) until convergence based on certain criteria:

1. Initialization-step: Apply K-means algorithm to initialize the parameters of the
mixture.

2. E-step: Calculate the posterior probability Ẑij as :

Ẑij =
p(~Yi|θj)πj

∑M
l=1 p(~Yi|θl)πl

(4)

3. M-step: Update the model’s parameter by maximizing the log-likelihood function as:

Θ̂ = arg maxΘ L(Θ,Z ,Y)
= arg maxΘ ∏N

i=1 ∑M
j=1 Zij log(p(~Yi|θj)πj)

(5)

where the membership Z = {~Z1, . . . , ~ZN} , ~Zi = (Zi1, . . . , ZiM) with:

Zij =

{
1 if ~Yi ∈ component j
0 otherwise

(6)



Sensors 2021, 21, 2450 4 of 16

In the current study, the implemented learning statistical model takes into account the
problem of model complexity. Indeed, determining the optimal model M is an important
step in mixture modeling problems, which is able to provide better generalization capabili-
ties. To evaluate statistical models, we proceed with a criterion derived from information
theory named “Minimum Message Length criterion (MML)” as it was successfully applied
previously in [22]. It is noted that MML has the advantage to accurately estimate the model
complexity and returns the optimal number of components in the mixture by minimizing
this function:

MML(Θ, Y) ' −log(p(Θ))− L(Θ, Y) + 1
2 log|F(Θ)|+ Np

2 +
Np
2 log(KNp)

' −log(p(Θ))− L(Θ, Y) + 1
2 log|F(Θ)|+ Np

2 +
Np
2 log(12)

(7)

where p(Θ) is a prior probability for the model, |F(Θ)| is the determinant of the Fisher
information matrix, and Np is the number of parameters where it is in our case equal
to K(2D + 1)− 1. Here, the parameter KNp is named as the optimal quantization lattice
constant for RNp. It is noted that K1 = 1/12 ' 0.083, for Np = 1. Moreover, as Np increases,
KNp tends to an asymptotic value equal to 1

2πe ' 0.05855, which can be approximated by
1

12 [13,22,28] (since KNp does not vary much).
In the following, we determine an appropriate a prior distribution, p(Θ), and we

conduct an expression for |F(Θ)|. As there is no prior knowledge about the model’s
parameters (i.e., all mixture’ components are independent), thus we proceed by modeling
these parameters as follows:

p(Θ) = p(α)p(β)p(b)p(π) (8)

It is noted that both the location parameter β is defined on the simplex such that
∑D

d=1 βd = 1. In the same way, the mixing weight π, it is defined on the simplex and we
have ∑K

j=1 πj = 1. For such reason, it is a natural choice to choose a Dirichlet prior with
different hyperparameters Dir(π|u) and Dir(β|v) for both location and mixing parameters,
respectively. These priors are defined as:

p(π) = Dir(π|u) = Γ(∑K
i=1 ui)

∏K
i=1 Γ(ui)

K

∏
i=1

πui−1 (9)

p(β) = Dir(β|v) = Γ(∑D
d=1 vd)

∏D
d=1 Γ(vd)

D

∏
d=1

βvd−1 (10)

For the scale parameter, we determine it experimentally and the good choice for this
scalar is found equal p(b) = 1

10 . Finally, given there is no knowledge regarding the shape
parameter α, we suppose that all αj are independent. Thus, we proceed by taking a simple
uniform prior. According to Ockham’s razor, it has been previously proven that this choice
is able to give stable results [29]. We have:

p(α) =
K

∏
j=1

p(αj) =
K

∏
j=1

D

∏
d=1

p(αjd) (11)

where p(αjd) = e6 αjd
||αjd ||

. Here αjd denotes the estimated shape vector and ||αjd|| corresponds

to its norm.
Now, regarding the Fisher information matrix, it is noted that calculating this quantity

for the case of mixture models is very complex since there is no analytical form. For such
reason, we approximate this quantity by adopting the determinant of Fisher Information
matrix as

|F(Θ)| = |F(π)|
K

∏
j=1
|F(θj)| = |F(π)|

K

∏
j=1
|F(αj)||F(β j)||F(bj)| (12)
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where |F(θj)| is the determinant of the Fisher information of the parameters θj = (αj, β j, bj)
to be estimated. The Fisher information related to the mixing weights is given as:

|F(π)| = N

∏K
j=1 πj

(13)

For |F(θj)|, it is calculated by taking the determinant of the Hessian matrix of the
negative log-likelihood function (i.e., second derivative of the log-likelihood).

3. Discriminative Learning Approach Based on SSDMM

To deal with the disadvantages of generative models, one could apply instead discrim-
inative classifiers to improve expected results for data categorization and or recognition.
Actually, many classifiers such as SVM show great potential compared to generative models
for several applications [30,31]. However, in most applications, the conventional SVMs
kernels (i.e., linear, polynomial, RBF) [30] are not able to consider the nature of the data and
it was noted that choosing conventional SVM kernels was not the right choice [14]. This
disadvantage limits their performance. This problem has been well solved, for example,
by combining a discriminative classifier (such as SVM) with a generative learning model
into the same framework [9]. Indeed, building new SVM kernels directly from data, using
for instance information divergence or Fisher score [23,24] between distributions, may
lead to better performance. Thus, a hybrid approach could be a good choice, which is
designed as a compromise between generative and discriminative ones. In this current
work, we suggest to construct new data-based probabilistic classifiers through the shifted
scaled Dirichlet mixture model (SSDMM). It is noted that the resulting hybrid model has
the advantage of merging the strengths of both generative and discriminative models and
thus of increasing performance given that we will take into account the intrinsic structure
of input data (since we measure the similarity between input vectors). In this section, we
focus on generating three probabilistic kernels named as Fisher kernel, Kulback–Leibler
kernel, and Bhattacharyya-based kernel [23–25]. These kernels are developed as follows.

The Fisher Kernel (FK): The key intuition behind the Fisher kernel is to exploit
the geometric structure on the statistical manifold and it is defined in the gradient log-
likelihood space [23], which is obtained by calculating the gradient of sample log-likelihood
as regards to the model parameters. Therefore, similar mixtures involve similar log-
likelihood gradients. The similarity between SSDMM mixtures (Y and Y′) based on the
Fisher kernel is defined as:

FK(Y, Y′) = Utr
Y (Θ)I−1(Θ)UY′(Θ

′) (14)

The derivatives of the log-likelihood (i.e., the gradient of log(p(Y|Θ))) with respect
to parameters Θ are expressed as:

UY(Θ) = ∇ log(p(Y|Θ)) =
∂ log(p(Y|Θ))

∂Θ
(15)

To solve the previous equation, we need to compute the gradient with respect to
parameters πj and αj, j = 1, . . . , K,. The resulting derivative equations are given as:

∂ log(p(Y|Θ))

∂πj
=

N

∑
i=1

[
Ẑij

πj
− Ẑi1

π1

]
(16)

∂ log(p(Y|Θ))

∂αj
=

N

∑
i=1

Ẑij

(
ψ(α+)− ψ(αj) +

log(Yn)− log(β j)

bj
− log

(
D

∑
d=1

(
Ynd
β jd

)
1
bj

))
(17)

where ψ is the digamma function.
The Symmetrized Kullback–Leibler Kernel (SKK): We propose here to compute the

symmetrized Kullback–Leibler distance (SKK) [24] to measure the degree of similarity
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between two mixture models. This symmetrized distance has the advantage of offering a
more balanced measurement than the asymmetrized one and makes it more appropriate
for the classification task. It has been shown that, in speaker recognition, the Gaussian
mixture model (GMM) and SVM with Kullback–Leibler (KL) kernel [32] can give good
performance. It is also noted that, in a conventional hybrid system, the SKK measure has
often been applied to calculate the distance between two distributions and not between
mixtures. Subsequently, we propose here to develop new generative SVM-SKK kernels
based on SSDMM mixture models. The dissimilarity (SKK) between two mixtures p1 and
p2 is given as:

SKK(p1(~Y|Θ1), p2(~Y′|Θ2)) =

KL(p1(~Y|Θ1), p2(~Y′|Θ2))+

KL(p2(~Y′|Θ2), p1(~Y|Θ1))

(18)

KL(p1(~Y|Θ1), p2(~Y′|Θ2)) = e−BF(p1(~Y|Θ1),p2(~Y′ |Θ2)) (19)

where B is a real positive factor used for computational stability purpose, and

F(p1(~Y|Θ1), p2(~Y′|Θ2)) =∫
ω

p1(~Y|Θ1) log
p1(~Y|Θ1)

p2(~Y′|Θ2)
+ p2(~Y′|Θ2) log

p2(~Y′|Θ2)

p1(~Y|Θ1)

Unfortunately, a closed form expression does not exist in the case of the SSDMM
mixture. Therefore, we propose the use of a sampling approach based on the Monte Carlo
numerical approximation method [33]:

SKK(p1(~Y|Θ1), p2(~Y′|Θ2)) ≈
1
L

L

∑
i=1

log
p1(~Yi|Θ1)

p2(~Y′ i|Θ2)
(20)

The Bhattacharyya kernel (BK): In this study, we exploit another kernel distance
derived from the family of probability product kernels called the Bhattacharyya kernel [33]
(known also as Bhattacharyya’s symmetry measure of affinity between distributions).
Within this kernel we can inject the domain knowledge and invariance of the SSDMM
generative model to the SVM classifier. Here, a general inner product is evaluated as the
integral of the product of pairs of distributions (or mixtures) and defined as:

BK 1
2
(~Y1,~Y2) =

∫ ∞

0
p(~Y|Θ1)

1/2q(~Y|Θ2)
1/2d~Y (21)

In the absence of a closed form for the generative SSDMM mixture, it is possible to
approximate BK using the Monte Carlo simulation method [33].

BK 1
2
(~Y1,~Y2) ≈

β

N1

N1

∑
i=1

p1/2(~Yi|Θ1)

Z1
p1/2(~Yi|Θ1) (22)

+
1− β

N2

N2

∑
i=1

q1/2(~Yi|Θ2)

Z2
q1/2(~Yi|Θ2)

where β ∈ [0, 1] and the normalized factors Z1, Z2 are used for the densities p and q.

4. Complete Algorithm

The proposed hybrid approach includes different steps that must be taken in order
to achieve optimum performance. In this work, a first preprocessing step is performed to
extract robust visual features from each image in the dataset. Indeed, image description
is one of the crucial steps in many medical image processes, and extracting informative
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patterns (color, shape, or/and texture) help further steps such as image interpretation and
classification. For instance, many image modalities (like X-rays) are difficult to interpret
directly by radiologists; thus, it is important to extract relevant details and patterns for
better image understanding and decisions. Thus, each image in the dataset was represented
as a bag of feature vectors (i.e., the Speeded Up Robust Features (SURF) or the Haralick
texture features). The second step (i.e., the generative stage of the hybrid framework)
is performed by fitting the generative SSDMM model to the feature vectors extracted
from images. Consequently, each image in our dataset is modeled by a finite mixture
model of distributions SSDMM. We start by initializing the mixing weight π and model
parameters Θ with the conventional K-Means algorithm. After that, the statistical model is
learned using the maximum likelihood principle and the parameters are estimated through
the expectation–maximization (EM). The last step (the discriminative stage of the hybrid
framework) is dedicated to compute different probabilistic distances between each of
these mixture models that give us kernel matrices to feed the SVM classifier. In particular,
we focus on deriving some effective measures based on Fisher, Kullback–Leibler and
Bhattacharyya kernels for the mixtures of shifted scaled Dirichlet distributions. The goal
is to calculate the dissimilarity between mixtures that generates the different kernels
(matrices). The resulting matrices are fed to the SVM classifier to classify images (vectors).
Finally, the implemented algorithm will be trained with the computed kernel matrices
using the one-versus-all training approach and perform classification results using 10-fold
cross-validation. The implemented hybrid framework is summarized in Algorithm 1 and
the different steps are illustrated in Figure 1.

Algorithm 1: Discriminative learning approach based on SSDMM.
Input : Data set Y ; Mmax
Output : Data set categorized
foreach 1 ≤ M ≤ Mmax do

Initialization algorithm :
Apply K-Means to initialize the parameters of each component.
repeat

for 0 ≤ j ≤ M do
E-step :
Compute posterior probabilities using the following:

Ẑij = p(j | ~Yi) =
πj p(~Yi |θj)

∑M
j=1 πj p(~Yi |θj)

M-step :
Update all parameters for the model. Θj using Equation (5).

end
Allocate all vectors to their appropriate clusters using maximum posterior

probability (MAP) estimate.
until Convergence of Likelihood
Calculate the associated message length using Equation (7).
Save Θ, M and the MML of each model

end
Return the optimal model Mopt with the minimum MML criterion. foreach
1 ≤ i ≤ Mopt do

foreach i + 1 ≤ j ≤ Mopt do
Calculate all kernels’ matrices between each component i and j as:
- Compute Fisher measure using Equation (14).
- Compute Symmetrized Kullback–Leibler measure using Equation (20).
- Compute Bhattacharyya measure using Equation (22).

end
end
Feeding the SVM classifier by the Kernel matrices.
Return classified images.
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Features Extraction Modeling using Shifted Scaled 
Dirichlet MixturesDatasets

Abormal Normal

Abormal Normal

Generating SVM kernels 
classifiers from SSDMM

Classification
Output 

Figure 1. Steps of the developed approach. After extracting local features from each image, we move to the modeling step
using the flexible mixture model (SSDMM). Finally, we feed the Support Vector Machines (SVM) Kernel matrices, which are
built to classify images as normal or abnormal.

5. Experimental Results

The purpose of this section is to validate the proposed approach. We have considered
some real medical databases for performance evaluation.

5.1. Lung Disease Recognition

Lung disease is one of the most common diseases worldwide. It may include pneu-
monia, tuberculosis, asthma, and chronic obstructive pulmonary disease. Pneumonia
is one of the most serious respiratory diseases, which can be due to the causative virus
of COVID-19 [34,35] or may be caused by bacterial or viral infection in the lungs [36].
In developing countries, the danger of pneumonia is enormous as thousands of people
face air pollution and poverty. In December 2019, a new disease, named the COVID-19
pandemic, appeared in China and was rapidly spread worldwide [34]. This virus is a
highly contagious disease. It primarily occurs by a severe acute respiratory syndrome [37].
The World Health Organization (WHO) has declared the novel virus outbreak a global
pandemic of our time. Nowadays, the study of COVID-19 in particular and pneumonia in
general has attracted a lot of attention due to its strong spread and quite high mortality.
Early diagnosis of this disease is of great importance as it will significantly reduce its
death rate. Recently, chest X-ray (CXR) radiography diagnosis is assumed to be one of the
effective methods for the detection of pneumonia since it is less sensitive than CT-scan
in diagnosis of lung diseases [38]. The rapid and accurate diagnosis of these diseases
remains a difficult problem. To achieve this goal, it is important to develop new tools for
effective infection screening and recognition. However, the lack of contrast at the boundary
of lungs prevent the precise analysis of medical images. Many image processing and
machine learning models have been developed for this purpose. In this work, the proposed
framework is applied to identify which among the radiographic images are suspected or
not of pneumonia.

Our focus here is to evaluate the developed hybrid framework with some challenging
pneumonia and COVID-19 datasets. The first application is related to COVID-19 detection.
For this purpose, we considered the available dataset in [39,40] (https:https://github.com/
ieee8023/covid-chestxray-dataset, accessed on 20 January 2021). This dataset contains 542
chest X-ray (CXR) images. A subset of 434 CXR images are positive for COVID-19 and the
rest are normal cases. We also conduct our experiments to recognize pneumonia infections
from CXR images. To achieve this purpose, we consider the publicly repository “Kaggle”

https:https://github.com/ieee8023/covid-chestxray-dataset
https:https://github.com/ieee8023/covid-chestxray-dataset
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(www.kaggle.com/paultimothymooney/chest-xray-pneumonia, accessed on 20 January
2021). It contains 5856 images divided into Pneumonia and Normal categories. There are
1583 normal images and 4273 pneumonia cases. An example of both normal and abnormal
images from this dataset is given in Figure 2.

Figure 2. Examples of Chest X-Rays images. (Left) Normal patient, (Right) patient with pneumonia.

The proposed approach is built to discriminate between normal and abnormal lungs.
First, a step of features extraction is computed using the Haralick feature [41,42]. The extrac-
tion step involves the calculation of the GLCM matrix [43]. In our experiments, we picked
70% of the dataset to be used for training purposes and the rest for testing and validation.

To evaluate the performance of our hybrid approach for lung diseases classification, we
used the average accuracy (ACC), detection rate (DR), and false-positive rate (FPR) metrics.
The accuracy (ACC) defines the overall well-classified images. The DR is the proportion of
positive instances (vectors) in the data that are classified (or identified) correctly. The FPR
is the proportion of negative instances that are classified incorrectly. A summary of the
performance is displayed in Tables 1 and 2. These tables show the obtained results using
different methods based on Gaussian, Gamma, generalized Gamma, Dirichlet, scaled
Dirichlet, and shifted scaled Dirichlet mixtures, respectively. In these experiments, we fed
the SVM classifier with probabilistic kernels generated from different generative mixture
models. According to these results, we can notice that our hybrid framework (shifted
scaled Dirichlet mixture + SVM-kernels) achieves superior performance with ACC equal to
88.81% for the CXR-COVID dataset and 94.83% for the CXR-Pneumonia dataset. It also
reaches a high detection rate (DR) and low false positive rate (FPR). It is clear that these
values are considered very encouraging given that we approach the detection problem
in an unsupervised manner. The Gaussian-based framework has the worst accuracy
equal to 83.25% for CXR-COVID and 88.18% for CXR-Pneumonia. This degradation in
performance confirms the fact that Gaussian mixtures are not flexible enough for complex
multidimensional data. Furthermore, the accuracies increase as the size of the dataset
increases (here, performance is better for the larger dataset: CXR-Pneumonia). According
to these tables, when using shifted scaled Dirichlet mixture the average classification
accuracy was better than the accuracy achieved by scaled Dirichlet using different kernels.
Compared with Dirichlet and scaled Dirichlet, the lung disease recognition accuracy of
shifted scaled Dirichlet was improved by 1% for CXR-COVID, and more than 1.5% for
the CXR-Pneumonia dataset. This proves that the shifted scaled Dirichlet is a good choice
and flexible enough to be applied in medical classification problems. We report that the
developed framework does not take into account any background subtraction or pre-
segmentation step and for this reason the accuracy is considered quite high. To improve
more obtained findings, it may be a good idea to simultaneously incorporate a feature
selection mechanism into the developed statistical discriminative framework.

www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Table 1. Overall accuracy for the chest x-rays (CXR)-COVID dataset.

Approach/Metrics ACC(%) DR(%) FPR(%)

Generative Models
Gaussian Mixture 82.11 81.02 0.18
Gamma Mixture 85.22 83.76 0.16
Dirichlet Mixture 87.80 85.92 0.13

Scaled Dirichlet Mixture 87.96 86.02 0.13
Shifted Scaled Dirichlet Mixture 88.01 86.12 0.12

Hybrid Models
Gaussian Mixture + Fisher Kernel 83.43 82.29 0.17

Gaussian Mixture + Kullback–Leibler Kernel 83.27 82.20 0.17
Gaussian Mixture + Bhattacharyya Kernel 83.25 82.18 0.17

Gamma Mixture + Fisher Kernel 86.01 84.11 0.16
Gamma Mixture + Kullback–Leibler Kernel 85.99 84.08 0.16

Gamma Mixture + Bhattacharyya Kernel 85.94 84.03 0.16
generalized Gamma Mixture + Fisher Kernel 87.01 87.90 0.12

generalized Gamma Mixture + Kullback–Leibler Kernel 87.71 87.01 0.12
generalized Gamma Mixture + Bhattacharyya Kernel 87.67 86.96 0.12

Dirichlet Mixture + Fisher Kernel 87.80 85.92 0.13
Scaled Dirichlet Mixture + Fisher Kernel 87.96 86.02 0.13

Shifted Scaled Dirichlet Mixture + Fisher Kernel 88.81 86.91 0.11
Shifted Scaled Dirichlet Mixture + Kullback–Leibler Kernel 88.77 86.85 0.11

Shifted Scaled Dirichlet Mixture + Bhattacharyya Kernel 88.74 86.82 0.11

Table 2. Overall accuracy for CXR-Pneumonia dataset.

Approach/Metrics ACC(%) DR(%) FPR(%)

Generative Models
Gaussian Mixture 87.66 85.80 0.13
Gamma Mixture 90.54 88.54 0.10
Dirichlet Mixture 93.01 90.94 0.07

Scaled Dirichlet Mixture 93.33 91.90 0.07
Shifted Scaled Dirichlet Mixture 93.62 92.14 0.07

Hybrid Models
Gaussian Mixture + Fisher Kernel 88.25 86.90 0.12

Gaussian Mixture + Kullback–Leibler Kernel 88.22 86.83 0.12
Gaussian Mixture + Bhattacharyya Kernel 88.18 86.79 0.12

Gamma Mixture + Fisher Kernel 90.88 88.60 0.10
Gamma Mixture + Kullback–Leibler Kernel 90.85 88.53 0.10

Gamma Mixture + Bhattacharyya Kernel 90.84 88,51 0.10
generalized Gamma Mixture + Fisher Kernel 91.98 91.11 0.09

generalized Gamma Mixture + Kullback–Leibler Kernel 91.77 91.05 0.09
generalized Gamma Mixture + Bhattacharyya Kernel 91.75 91.02 0.09

Dirichlet Mixture + Fisher Kernel 93.01 90.94 0.07
Scaled Dirichlet Mixture + Fisher Kernel 93.33 91.90 0.07

Shifted Scaled Dirichlet Mixture + Fisher Kernel 94.83 93.99 0.06
Shifted Scaled Dirichlet Mixture + Kullback–Leibler Kernel 94.51 93.82 0.06

Shifted Scaled Dirichlet Mixture + Bhattacharyya Kernel 94.48 93.77 0.06

5.2. Retinopathy Detection

Diabetic Retinopathy (DR) is a human eye disease and one of the most aggressive
complications of diabetes, which causes damage to the retina. It is known that the aug-
mentation of the quantity of glucose in the blood due to the lack of insulin leads to
diabetes (https://www.idf.org/aboutdiabetes/what-is-diabetes.html, accessed on 20 Jan-
uary 2021). A previous study shows that diabetes affects the retina and nerves and can
attack millions of people worldwide [44]. It has been found to be the principal leading
cause of blindness among working elderly people worldwide, if not detected early [45].
It is reported by the International Diabetes Federation that Saudi Arabia and the Arab

https://www.idf.org/aboutdiabetes/what-is-diabetes.html
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world have the largest amount of affected people (in 2014, 3.8 million diabetics in Saudi
Arabia). Detection of diabetic retinopathy in early stages is one of the essential challenges
and is very important to avoid complete blindness and for treatment success. Unfortu-
nately, the accurate DR detection is time- and cost-consuming, known to be difficult and
requires a trained specialist to identify the presence of lesions and abnormalities in digital
retina photographs. Early and automated regular screening of DR is essential for good
prognosis and can help speed up the process of decision-making and can notably reduce
the risk of blindness of millions of people. Previous efforts have progressed well towards a
comprehensive DR screening using image processing, data mining, and pattern recognition
techniques. It is possible to detect DR by analyzing the presence of different types of lesions
such as microaneurysms (MA), exudates (EX), and hemorrhages (HM) [46]. For instance,
there are two types of HMs called blot (deeper HM) and flame (superficial HM). This lesion
looks like larger spots on the image of the retina (see Figure 3). DR is usually distinguished
into four stages: mild, moderate, severe, and proliferative. Generally, diseases begin with
little changes in blood vessels (Mild DR) and it increases further to achieve severe and/or
proliferative DR. At this final stage, if proper care is not taken, it will lead to blindness.

Figure 3. Types of hemorrhage (HM) [47].

In the literature, various works have been carried out for retinal image classification
and DR detection with interesting results. The study in [48] integrated a set of features of
higher-order with SVM to classify eye images as DR or not-DR. A CNN model is developed
in [49] for DR detection and macular edema (DME). The work in [50] introduced a method
based on features extraction (AM-FM) to detect some kind of lesions and then try to measure
their severity. Some works focus on classifying microaneurysms (MA) lesions by applying
different methods like dynamic thresholding [51], wavelet transform [52], and a detector
framework [53]. In [54], the authors proposed a method based on a convolution neural
network to classify DR. Exudates lesions are detected in [55] by integrating fuzzy FCM and
morphological operators into the same method. In [56], authors applied different machine
learning algorithms (Decision Trees, SVM, ANN) to evaluate their performance in terms of
DR prediction. Segmenting vasculature structures using robust segmentation techniques in
retinal photographs may help in predicting DR at an early stage, as shown in [57], where an
ensemble system and decision trees are investigated. The current problem of DR screening
and classification is addressed in the present study. Indeed, we demonstrate the use of the
developed hybrid generative discriminative framework for fundus images classification
and DR detection.

The first step, even before applying our statistical model, is to extract relevant details
(patterns) for retinal image classification. To address this step, we used “Speeded Up Robust
Features (SURF)” extractor local features [58]. It is able to provide accurate description of
input images. Each retinal image is then modeled through the developed shifted scaled
Dirichlet mixture model. The last step is to classify the resulting descriptors on the basis
of three constructed probabilistic kernels, which are deployed within an SVM classifier.
These kernels are used to train the SVM. For this application, input observed vectors are
divided into two subsets: training and testing subsets. We adopt a 10 fold cross-validation
technique such that 70% of the vectors are considered during the training phase and the
rest for testing. Our objective regarding the implementation of three different kernels is to
evaluate their robustness and to analyze the stability of the SSDMM model.
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It should be noted that we keep the same methodology for other models in order to
conduct a correct comparative study. These models are Gaussian, Dirichlet, scaled and
shifted scaled Dirichlet. The quantitative performance study is reported in terms of AUC
(Area Under the Curve) and accuracy (ACC) metrics. Here AUC and ACC are performance
measurements for the classification problem. They indicate how well the method is able to
distinguish between patients with disease and those without disease (i.e., between different
classes). Indeed, the higher the ACC and AUC, the better the method. In this study, we
have considered two publicly available datasets named e-ophtha and DRIVE.

• E-ophtha [59]: this first dataset contains 47 images with EX and 35 normal images and
includes 148 images with MA and 233 normal images.

• DRIVE [60]: This dataset includes 40 images with the size of 565 × 584 pixels where 7
are mild DR images, and the rest are normal retinal images.

The obtained results are given in Tables 3 and 4. According to these results, it is
clear that our discriminative framework based on the SSDMM model outperforms the
other frameworks and gives the highest accuracy scores for both datasets. In particu-
lar, for the DRIVE dataset, the average accuracy of classifying retinal images using our
method (SSDMM + Bhattacharyya kernel) is 91.65%, which is the best score. By contrast,
the Gaussian-based classifier has obtained the worst score. For the second dataset (e-
ophtha), we obtain the highest accuracy with our framework (SSDMM + Fisher kernel)
with 96.88% compared to 96.07% for SDMM + Fisher kernel, 95.42% for DMM + Fisher
kernel, and 94.84% for GMM + Fisher kernel. Here, the performance differences are sta-
tistically significant if we consider the Student’s t-test. Clearly, these results confirm the
efficiency of our framework for modeling and classifying complex data. On the other side,
the performance of the hybrid learning approaches outperform the generative mixture
models (i.e., their counterparts) and also other methods from the literature for both datasets.
It is noteworthy that the SSDMM mixture would be preferred here since it is more flexible
than the rest of the models. It is also noted that when analyzing the reported values for the
two datasets (DRIVE and e-ophtha), the accuracies of e-ophtha are better since its size is
larger than DRIVE.

Table 3. Classification performance (%) comparison using different approaches for the DRIVE dataset.

Approach/Metrics AUC ACC

Generative Models
Gaussian Mixture 0.70 84.01
Dirichlet Mixture 0.72 84.79

Scaled Dirichlet Mixture 0.75 84.99
Shifted Scaled Dirichlet Mixture 0.77 85.36

Hybrid Models
Gaussian Mixture + Fisher Kernel 0.81 87.84

Gaussian Mixture + Bhattacharyya Kernel 0.81 89.02
Gaussian Mixture + Kullback–Leibler Kernel 0.81 87.11

Dirichlet Mixture + Fisher Kernel 0.84 88.54
Dirichlet Mixture + Bhattacharyya Kernel 0.86 90.67

Dirichlet Mixture + Kullback–Leibler Kernel 0.84 88.01

Scaled Dirichlet Mixture + Fisher Kernel 0.87 90.87
Scaled Dirichlet Mixture + Bhattacharyya Kernel 0.90 91.33

Scaled Dirichlet Mixture + Kullback–Leibler Kernel 0.85 88.14

Shifted Scaled Dirichlet Mixture + Fisher Kernel 0.88 91.13
Shifted Scaled Dirichlet Mixture + Bhattacharyya Kernel 0.91 91.65

Shifted Scaled Dirichlet Mixture + Kullback–Leibler Kernel 0.91 88.98

Other Methods
Fleming et al. [61] 89.80
Garcia et al. [62] 73.55

Li and Chutatape [63] 85.50
Wang et al. [64] 85.00
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Table 4. Classification performance (%) comparison using different approaches for the e-ophtha dataset.

Approach/Metrics AUC ACC

Generative Models
Gaussian Mixture 0.81 81.45
Dirichlet Mixture 0.83 84.95

Scaled Dirichlet Mixture 0.83 85.34
Shifted Scaled Dirichlet Mixture 0.84 86.10

Hybrid Models
Gaussian Mixture + Fisher Kernel 0.90 94.84

Gaussian Mixture + Bhattacharyya Kernel 0.89 92.81
Gaussian Mixture + Kullback–Leibler Kernel 0.85 92.53

Dirichlet Mixture + Fisher Kernel 0.92 95.42
Dirichlet Mixture + Bhattacharyya Kernel 0.91 93.08

Dirichlet Mixture + Kullback–Leibler Kernel 0.88 93.77

Scaled Dirichlet Mixture + Fisher Kernel 0.95 96.07
Scaled Dirichlet Mixture + Bhattacharyya Kernel 0.94 95.91

Scaled Dirichlet Mixture + Kullback–Leibler Kernel 0.90 94.33

Shifted Scaled Dirichlet Mixture + Fisher Kernel 0.96 96.88
Shifted Scaled Dirichlet Mixture + Bhattacharyya Kernel 0.96 96.72

Shifted Scaled Dirichlet Mixture + Kullback–Leibler Kernel 0.93 95.12

Other Methods
linear-SVM [65] 0.89 85.33
RBF-SVM [65] 0.92 87.96

Random Forests [65] 0.92 95.08
Gaussian Processes [65] 0.93 87.62

6. Conclusions

In this paper, we proposed an effective hybrid approach that considered the advantage
of both generative and discriminative models. This approach utilizes a variant of a mixture
model named the shifted-scaled Dirichlet mixture model (SSDMM), which is quite flexible
to fit different shapes of observed data. In order to make our proposed framework particu-
larly appropriate for image classification and abnormality detection problems, we derived
new discriminative classifiers based on SVM kernels such as Fisher, Kullback–Leibler and
Bhattacharyya for SSDMM. This strategy makes the developed framework more effective
for complex and noisy data. Experiment results demonstrated that our approach has
improved the accuracy when compared to other related methods in terms of accuracy over
real CXR and retinal images. It has been found that our proposed algorithms outperformed
many other methods. In particular, the highest accuracies obtained with our framework
are 88.81% and 94.83% for CXR-COVID and CXR-Pneumonia datasets, respectively. On the
other side, for the case of retinopathy detection, we achieved superior accuracies equal to
91.65% and 96.88% for both DRIVE and e-ophtha datasets, respectively. A potential future
work could be devoted to extending the generative model to a non-parametric Bayesian
principle in order to address the issue of accurate estimation of the number of components.
We also plan to address other tasks such as image segmentation by classifying smaller
regions in order to improve classification and categorization tasks.
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