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Regulation of gene expression by chromatin structure has been under intensive
investigation, establishing nuclear organization and genome architecture as a potent
and effective means of regulating developmental processes. The substantial growth in
our knowledge of the molecular mechanisms underlying retinogenesis has been powered
by several genome-wide based tools that mapped chromatin organization at multiple
cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome
have allowed the systematic annotation of putative cis-regulatory elements associated with
transcriptional programs that drive retinal neural differentiation, laying the groundwork to
understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we
outline recent advances in our understanding of the chromatin architecture in the
mammalian retina during development and disease. We focus on the emerging roles of
non-coding regulatory elements in controlling retinal cell-type specific transcriptional
programs, and discuss potential implications in untangling the etiology of eye-related
disorders.
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RETINAL DEVELOPMENT

The retina has been an excellent system to study neurogenesis, due to its simplified anatomical
structure, accessibility and well-defined cell types (Agathocleous and Harris, 2009; Demb and Singer,
2015). The vertebrate mature retina contains seven morphologically and functionally distinct cell
types, including six types of neurons (ganglion cells, amacrines, bipolars, horizontal cells, and rod
and cone photoreceptors) and one type of glia, the Müller glia (Figure 1) (Cepko et al., 1996). Retinal
cells are organized into three layers (outer nuclear layer, inner nuclear layer and ganglion cell layer)
interconnected by two synaptic layers that facilitate processing of visual signals (Figure 1) (Fisher,
1979). The visual pathway initiates by the response of the photoreceptors to a light stimulus,
transducing it into action potentials that propagate to the retinal interneurons (horizontal, bipolar
and amacrine cells) and ganglion cells. Eventually the visual input is relayed to the brain through
retinal ganglion cell axons that collectively form the optic nerve.

Retinal differentiation initiates when multipotent retinal progenitor cells (RPCs) exit the cell cycle
and differentiate into neurons or glia in a temporally conserved order under the control of gene
regulatory networks and signaling pathways (Figure 1) (Wetts and Fraser, 1988; Turner et al., 1990;
Agathocleous and Harris, 2009). Early retinal development is coordinated by a group of transcription
factors (Rax, Otx2, Pax6, Six3, Lhx2, Vsx2 and other) that specifies the eye field within the developing
forebrain, promotes retinal proliferation and primes RPCs for subsequent neural differentiation
(Zuber et al., 2003). Mutations in many of these genes underlie severe retinal developmental
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disorders, as observed in microphthalmia (small eye),
anophthalmia (absence of the eye), and coloboma (failure in
optic fissure closure) cases (Slavotinek, 2011; Reis and Semina,
2015).

Unlike development in the mammalian cortex, retinal cell
types are born in waves during which the periods of neuron
generation overlap considerably (Figure 1) (Marquardt and
Gruss, 2002). Hence, retinal cell types are often classified into
early born cell types (ganglion cells, cones, amacrine and
horizontal cells) and late born cell types (rods, bipolar cells
and Mu€ller glia) (Ohsawa and Kageyama, 2008). Experimental
evidence suggests that the ability of retinal progenitors to produce
different cell types (competence) changes as development
progresses: early progenitors generate early born cell types
while late progenitors produce late born cell types (Livesey
and Cepko, 2001; Hafler et al., 2012).

The mechanisms that determine RPC competence are rooted
in the ability of progenitor cells to integrate signaling pathways
and the activities of complex networks of transcription factors
(TFs) that drive cell fate decisions at the genomic level (Livesey
and Cepko, 2001; Agathocleous and Harris, 2009). Chromatin
regulation allows interpretation of identical genomes in a variety
of ways, leading to cell type specific transcriptional outputs
(Soshnev et al., 2016). Hence, chromatin architecture of the
developing retina has been intensively studied, resulting in a
wealth of information on transcriptional programs influenced by
chromatin regulation during retinogenesis.

Chromatin regulators and retinal lineage-specific programs.
Nuclear DNA is wrapped around a disc of highly conserved

proteins (histones) to form the nucleosome, the basic unit of
chromatin. Histones are classified into core histones (H2A, H2B,
H3 and H4), the principal components of the nucleosome, and
linker histones (H1), which bind the nucleosome at the cross
point of DNA entry/exit sites (Luger et al., 1997; Vignali and

Workman, 1998). Accessibility to DNA requires nucleosome
mobilization, which is mediated by large complexes that utilize
ATP hydrolysis in the process (Wilson and Roberts, 2011;
Kadoch and Crabtree, 2015; Centore et al., 2020). The
structural changes in chromatin are often associated with
deposition and/or removal of chemical modifications on
histone tails, facilitated by distinct multimeric complexes with
enzymatic activity (Soshnev et al., 2016; Villasenor and Baubec,
2021).

Given the association between chromatin pathways and
regulation of gene expression, genetic studies have focused on
investigating the roles of chromatin remodelers and histone
modifying complexes during retinal development, a topic that
has been reviewed recently (Corso-Diaz et al., 2018; Raeisossadati
et al., 2021). Briefly, these studies revealed that chromatin
regulators influence retinal progenitor proliferation and cell
fate determination in a context-dependent manner. For
instance, multiple studies investigated the effect of loss of the
polycomb repressive complex 2 (PRC2), which catalyzes the
addition of the repressive mark H3K27me3, on retinal
development (Aldiri and Vetter, 2009; Aldiri et al., 2013; Iida
et al., 2015; Zhang et al., 2015; Yan et al., 2016; Cheng et al., 2018;
Fujimura et al., 2018). Mutations in the PRC2 core subunits Ezh2
or Eed lead to reduced retinal proliferation and alteration in
neuronal cell fate, particularly amacrine cells, and glia formation
(Iida et al., 2015; Zhang et al., 2015; Fujimura et al., 2018). In the
postnatal retina, loss of PRC2 function caused photoreceptor
degeneration, mediated by a de-repression of the PRC2 targets
Six1 and Eya2 (Yan et al., 2016). Meanwhile, perturbation of
H3K27me3 removal by knocking down the H3K27me3
demethylase Jmjd3 impacts retinal bipolar cell formation (Iida
et al., 2014). Cell-type specific alterations were also observed
whenMLL, the core subunit of a complex required for mono- and
di-methylation of H3K4, was mutated during retinal

FIGURE 1 | Retinal neurogenesis and organization of the mammalian retina. (A) Schematic diagram illustrating waves of retinal neurogenesis and approximate
timing of retinal cell type birth. Note that rod photoreceptors, bipolar cells and Müller glia are mainly formed postnatally. (B) DAPI staining of the adult mouse retina
showing its exquisite laminar structure. (C) Retinal laminar position of different cell types.
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development. Here, a conditional knockout of MLL impacts
retinal proliferation and leads to a progressive loss of
horizontal cells in the differentiating retina (Brightman et al.,
2018). These examples highlight how chromatin modifying
enzymes control multiple aspects of retinal development.

The function of chromatin remodelers that govern
nucleosome mobilization has been investigated as well (Das
et al., 2007; Lamba et al., 2008; Aldiri et al., 2015). For
instance, evidence indicates that Brg1, a core subunit of the
SWI/SNF complex, is required for retinal proliferation and
photoreceptor differentiation (Aldiri et al., 2015). The effect of
Brg1 is likely mediated by its ability to influence the chromatin
landscape near actively transcribed cell-type specific genes, as
Brg1 predominantly occupies active cis-regulatory elements in
the retina, and previous work demonstrated that Brg1 binds
transcription factors that drive neurogenesis such as Pax6 and
NeuroD1 (Seo et al., 2005; Ninkovic et al., 2013). Additionally,
work on cell lines suggests that activities of the enhancer
landscape of lineage specification genes is sensitive to the loss
of SWI/SNF chromatin remodeling complexes (Aldiri et al., 2015;
Alver et al., 2017).

Chromatin-associated complexes can change subunit
composition during development, indicative of cell-type-
specific roles (Lessard et al., 2007). Indeed, several auxiliary
subunits of chromatin regulator complexes are expressed in a
stage-specific manner during retinal development but the exact
molecular and cellular phenotypes resulting from mutating these
proteins during retinogenesis remains to be explored (Lamba
et al., 2008; Aldiri et al., 2015).

More recently, chromosome confirmation capture (3C)
techniques revealed that manipulation of chromatin regulators
such as SWI/SNF and the polycomb repressive complexes can
lead to changes in compartment-level chromatin organization
(Schoenfelder et al., 2015; Barutcu et al., 2016; Cruz-Molina et al.,
2017). These intriguing findings link regulation of gene
expression with 3D chromatin architecture via activities of
chromatin regulators, a function yet to be explored in the retina.

EPIGENETIC LANDSCAPE DYNAMICS
DURING RETINOGENESIS

Genome-wide profiling of histone marks and chromatin
associated proteins greatly facilitated the in depth probing of
chromatin signature dynamics during developmental stages of
mouse and human retina, revealing non-random genomic
localization of histone marks and association with gene
expression (Popova et al., 2012; Mo et al., 2016; Ueno et al.,
2016; Aldiri et al., 2017). In progenitor cells, differentiation genes
are poised (H3K27me3-occupied) toward activation and as
retinal development proceeds, H3K27me3 is lost and cell type
specific genes are expressed (Ueno et al., 2016; Aldiri et al., 2017).
Interestingly, the accumulation of H3K27me3 on progenitor
genes in differentiated neurons is not as common (Aldiri
et al., 2017).

The retinal enhancer landscape exhibits exquisite
reconfiguration concomitant with changes in gene expression

during retinal developmental transitions: whereas cis-regulatory
elements of progenitor genes lose their activities, enhancers
targeting differentiation genes are gradually activated (Aldiri
et al., 2017). Mechanisms of enhancer potentiation have been
the focus of many studies. Current models suggest that priming
enhancers for activation during embryonic development can be
achieved by a cooperative binding of lineage-specific TFs or by
the deployment of a unique set of TFs, termed pioneer factors,
that have the ability to bind closed chromatin and facilitate the
recruitment of chromatin regulators and lineage-specific TFs and
co-factors (Zaret and Carroll, 2011; Drouin, 2014). Retinal
pioneer TFs remain poorly characterized but recent genomic
data begins to shed light on their roles. For instance, a study
examining the genomic profiling of the RPC gene LHX2 reveals
global and local reduction of LHX2-bound chromatin accessible
sites upon loss of Lhx2, including regulatory regions nearby TFs
with potential pioneer function, suggesting that LHX2 functions
as a pioneer factor in the developing retina (Zibetti et al., 2019). In
another work, analysis of the regulatory elements bound by the
photoreceptor differentiation transcription factor Crx in wild
type and Crx-mutant retina in mice indicates a limited ability
of CRX to remodel chromatin and points toward a cooperative TF
binding module in promoting photoreceptor cell fate (Ruzycki
et al., 2018). Thus, priming the retinal enhancer landscape during
developmental transitions and cell fate choices likely involves
multiple mechanisms and is highly context specific.

Mechanisms of enhancer-mediated transcriptional control of
genes with multiphasic expression during retinogenesis are
particularly interesting, and underscore the complexity of gene
regulation. For instance, the transcription factor Sox2 is expressed
in RPCs and is confined to amacrine cells and Müller glia in adult
retina (Taranova et al., 2006). In principle, such a complex
temporal and spatial expression pattern can occur via
recruitment of stage- and cell-type specific TFs and/or by the
utilization of cell-type exclusive enhancers. Retina-specific
enhancer elements with temporally restricted activities have
been identified as the case with those nearby Otx2, a
transcription factor expressed in a subset of progenitor cells
and marks bipolar cells and photoreceptors (Emerson and
Cepko, 2011; Kaufman et al., 2021). Notably, Sox2 chromatin
architecture has been studied given its essential roles in
maintaining stem cell pluripotency, revealing a complex
regulatory landscape with multiple putative enhancer elements,
including stem cell-specific regulatory constituents that are
essential for Sox2 expression (Li et al., 2014; Zhou et al., 2014;
Bonev et al., 2017).

Interestingly, downregulation of Sox2 in rod photoreceptors is
accompanied by site-specific deposition of the repressive histone
mark H3K27me3 (Norrie et al., 2019). Whereas Sox2 coding
region and nearby enhancers are occupied by H3K27me3, Sox2-
regulatory elements that are hundreds of base pairs away holds
limited levels. This implies that not all regulatory elements are
created equally and underscores a locus-specific utilization of
repressive mechanisms on enhancer elements. Florescence in situ
hybridization (FISH) performed on rod nuclei indicates that
while Sox2 coding region is located in euchromatin, its long-
range putative enhancers reside in heterochromatin, thus likely

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7752053

Daghsni and Aldiri Chromatin Regulation of Retinogenesis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


inaccessible to the action of repressive complexes (Norrie et al.,
2019). These data are in agreement with the finding that rod
photoreceptors render a substantial fraction of vestigial
regulatory elements (enhancers that used to be active in earlier
stages of retinogenesis) inaccessible to repression mediated by
DNA methyltransferase (Mo et al., 2016).

Diverse histone marks tend to co-exist, leading to an excessive
number of possible combinatorial readouts and renders
interpretation of epigenomic maps challenging. To facilitate a
better understanding to the biological roles of combinations of
histone marks and chromatin associated proteins, a
computational modeling that utilizes machine learning
algorithms (ChromHMM) was developed to distinguish
groups (states) of co-occurring chromatin marks across the
genome (Ernst and Kellis, 2010; 2012). Applying this method
to ChIP-Seq data generated from mouse and human developing
retina led to the identification of several chromatin states that
capture known genomic elements such as active promoters and
enhancers, insulators and repressed regions (Aldiri et al., 2017).
ChromHMM analysis was also informative in exploring
prevailing chromatin states in retinoblastoma and retinal
organoids (Hiler et al., 2015; Aldiri et al., 2017). Later, a
computational work that integrates retinal chromatin states
and 3D FISH imaging successfully predicted genome-wide
euchromatin and heterochromatin compartmentalization in
the mouse retina (Norrie et al., 2019).

Mapping of the epigenomic marks and regions of chromatin
accessibility has emerged as a powerful tool to annotate retinal
putative regulatory elements, particularly enhancers (Wilken
et al., 2015; Aldiri et al., 2017; Hughes et al., 2017; Wang
et al., 2018; Cherry et al., 2020; Xie et al., 2020). Given the
essential roles of enhancer elements in controlling cell type
specific differentiation programs during retinogenesis, we will
discuss recent progress in the field and highlight examples related
to the gene regulatory networks controlling retinal cell fate
choices.

DISCOVERY OF RETINAL ENHANCERS

Enhancers are stretches of non-coding DNA elements that
spatially and temporally regulate transcription by acting as
platforms to recruit transcription factors and transcriptional
machinery, irrespective of sequence orientation (Gasperini
et al., 2020). Enhancers are the main source for
communication between chromatin and the environment as
they contain motifs that can bind transcription factors and
recruit effectors of signaling pathways (Long et al., 2016).
Biochemically, enhancers are characterized by occupancy of
active histone marks (i.e., H3K27ac and/or H3K4me1) and
chromatin-associated proteins (i.e., p300), overlaying areas of
open chromatin (Visel et al., 2009; Creyghton et al., 2010; Rada-
Iglesias et al., 2011; Thurman et al., 2012). Interestingly, while
H3K27Ac has been widely validated as a hallmark for active
enhancers in the animal kingdom, association of H3K27Ac
deposition with active regulatory elements in plants appears
species-specific (Yan et al., 2019).

Recent advances in techniques that map 3D genome
organization demonstrated that enhancers may act over long
genomic distances, via looping, to contact their cognate gene
promoters in 3D space (Li et al., 2012; Fang et al., 2016; Mumbach
et al., 2016). The prevailing model is that a promoter-enhancer
interaction mediates activation of gene expression by bringing
transcription factors and transcription machinery into promoter
proximity (Robson et al., 2019). However, whether promoter-
enhancer physical contact is a universal prerequisite mechanism
for gene activation is not firmly established (Chen et al., 2018;
Benabdallah et al., 2019; Crump et al., 2021). There are hundreds
of thousands of putative regulatory elements in the human
genome, far in excess of number of genes, underscoring the
complexity of enhancer function in organ development and
homeostasis.

Classically, strategies to pinpoint cell-type specific cis-
regulatory elements in the developing retina have exploited
DNA conservation and enrichment of lineage-specific
transcription factor motifs coupled with in vivo screening for
enhancer activities. This method was successful in the
identification of numerous distal regulatory elements near
genes essential for retinal development and cell-type
specification such as Vsx2 and Grm6 (bipolar cells), Nrl, Otx2
and Prdm1 (photoreceptors), Atoh7 (ganglion cells), Onecut1
and Thrb (cones/horizontal cells), and Pax6 (RPCs, amacrine
cells), among others (Kleinjan et al., 2004; Rowan and Cepko,
2005; Riesenberg et al., 2009;Willardsen et al., 2009; Emerson and
Cepko, 2011; Kautzmann et al., 2011; Emerson et al., 2013; Mills
et al., 2017; Goodson et al., 2020; Patoori et al., 2020).

Comparative genomics employing convergent evolution were
also useful in identifying and characterizing putative retinal
enhancer elements (Kvon et al., 2016; Partha et al., 2017;
Roscito et al., 2018). The logic behind this interesting method
is that regulatory elements that are essential for vision are under
evolutionarily constraints to preserve visual structures and
functions. In animals where vision is regressed, such as
subterranean mammals, vision-related regulatory regions and/
or their target genes undergo accelerated mutation rate and suffer
sequence divergence due to relaxed evolutionally constraints,
thus revealing DNA sequences potentially essential for
development of optical structures. Such a strategy was
employed to investigate enhancer elements in the ground-
dwelling moles, leading to the identification of several retina-
specific regulatory regions associated with vision deterioration,
including those nearby Pax6 (Partha et al., 2017). Still, not all
regulatory elements are conserved at the DNA level, and many
highly conserved enhancers lack in vivo activities in transgenic
assays (Pennacchio et al., 2013). Thus, complementary
approaches to profile the cis-regulome remain essential to
elucidate enhancer structure and function.

With the broad availability of next generation sequencing
platforms, profiling chromatin structure in the developing
retina has taken a momentum, facilitating the discovery of
genome wide putative distal enhancers with a relative ease.
Taking advantage of transcription factors occupancy as a
proxy to the identification of distal enhancer regions,
numerous transcription factors involved in retinal cell fate
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choices have been surveyed using ChIP-Seq and, more recently,
CUT and RUN, including OTX2, ATOH7, NRL, CRX, MEF2D,
RORB and LHX2 (Corbo et al., 2010; Swaroop et al., 2010; Samuel
et al., 2014; Andzelm et al., 2015; Zibetti et al., 2019; Cherry et al.,
2020; Brodie-Kommit et al., 2021). Likewise, histone
modifications associated with active promoters and enhancers
have been extensively charted in the developing retina, and
hundreds of cis-regulatory elements have been catalogued
(Popova et al., 2012; Wilken et al., 2015; Aldiri et al., 2017;
Hughes et al., 2017; Xie et al., 2020). More recently, a
transcriptional profiling of non-coding RNAs, often
transcribed from active enhancer regions, was performed to
delineate cone and rod regulatory elements in wild type and
Nrl mutant mice (Perez-Cervantes et al., 2020).

Chromatin accessibility has become a popular method to
identify cis-regulatory elements. Studies on bulk tissues from
human and murine developing retina revealed temporal
dynamics in chromatin accessibility associated with changes in
gene expression during retinogenesis. Earlier work utilized
DNaseI hypersensitivity (DHS) to profile the mouse
developing retina, leading to the identification of
developmentally regulated enhancer elements near the
transcription factors Neurog2, Otx2 and Olig2, (Wilken et al.,
2015). By far, assay for transposase-accessible chromatin with
sequencing (ATAC-Seq) has become the most common
technique used to profile regulatory elements, revealing
enhancer landscape dynamics in the mouse and human
developing retina (Mo et al., 2016; Aldiri et al., 2017; Hughes
et al., 2017; Cherry et al., 2020; Xie et al., 2020). As retinal
organoids become a powerful method to investigate and model
retinal development and disease (Eiraku et al., 2011; Volkner
et al., 2016), ATAC-Seq was used to demonstrate a high temporal
correlation of regulatory landscape dynamics in retinal organoids
and human fetal retina, further validating retinal organoids as a
robust model to study human retina (Xie et al., 2020).

To date, most of the studies surveying retinal open chromatin
regions used bulk tissues as input, which renders the
determination of cell type specific deployment of regulatory
elements in rare retinal cell types challenging. To overcome
this limitation, ATAC-Seq, and sometimes ChIP-Seq,
experiments have been performed on purified cells from
transgenic mice carrying cell type-specific reporter genes, and
as a result, epigenomic data from enriched rods, cones, bipolar
cells and Müller glia are now available (Mo et al., 2016; Ueno
et al., 2016; Hughes et al., 2017; Ueno et al., 2017; Murphy et al.,
2019; VandenBosch et al., 2020).

The advent of single cell technologies, methods that
circumvent heterogeneity and allow the investigation of rare
cell populations at high resolution, has revolutionized the field,
and a large cohort of studies focusing on surveying the adult and
developing retinal single cell transcriptome has been performed
(Clark et al., 2019; Kim et al., 2019; Liang et al., 2019;Menon et al.,
2019; Cherry et al., 2020; Lu et al., 2020; Sridhar et al., 2020;
Brodie-Kommit et al., 2021; Wu et al., 2021). Still, matching
studies that investigate retinal chromatin accessibility dynamics
at the single cell resolution remain limited (Xie et al., 2020). With
recent technical advances that enable the simultaneous profiling

of transcriptome and epigenome from the same cells, it is almost
certain that work is underway to accurately outlining the
epigenome dynamics in relation to gene expression in retinal
cell populations (Kashima et al., 2020; Weir et al., 2021).

FUNCTIONAL VALIDATION OF RETINAL
ENHANCERS

Genome-wide analysis to delineate putative regulatory elements is
a robust method to infer enhancer activities but not without
limitations (Halfon, 2019). With the wealth of information
available on the genomic location of predicted retinal
enhancers, derived primarily by biochemical annotations and
computational methods, in vivo experimental characterization of
those elements remains necessary to validate their functions. In
theory, a regulatory element should recapitulate its cognate gene’s
spatial and temporal expression pattern, and when mutated should
lead to alteration in gene expression. A large body of work has been
directed toward investigating enhancer activities in the retina using
reporter assays, which test the ability of a candidate enhancer
sequence to activate a reporter gene (i.e., GFP, LacZ and luciferase).
Electroporation of the mouse developing retina has been the main
method for construct introduction into the retina, testing enhancer
activity one element at a time (Montana et al., 2011; Wang et al.,
2014; Goodson et al., 2020; Kaufman et al., 2021). In vivo
transgenesis using mouse, zebrafish and the frog xenopus was
also used (Hutcheson et al., 2005; Ghiasvand et al., 2011; Fang et al.,
2017; Bhansali et al., 2020; Kaufman et al., 2021). High throughput
strategies to interrogate the activities of retinal enhancers has been
explored as well. In one such a study, massively parallel reporter
assay (MPRA) was used to investigate photoreceptor cis-regulatory
elements bound by CRX (White et al., 2013).

CRISPR-based genome editing technology has tremendously
facilitated testing the function of retinal enhancers in vivo by
providing a venue to efficiently delete non-coding regions with
precision (Osterwalder et al., 2018). Emerging studies on
enhancer elements nearby Vsx2, Otx2 and Prdm1 in retinal
explants and mouse knockouts uncovered lineage- and stage-
specific regulatory elements important for photoreceptor and
bipolar cell fates (Wang et al., 2014; Norrie et al., 2019; Chan et al.,
2020; Goodson et al., 2020; Kaufman et al., 2021). Still, whether an
enhancer is required for the expression of its target gene remains
challenging to address given the complex nature of the chromatin
landscape. Enhancers may regulate the expression of a single
target (i.e., a single or many enhancers, one target gene) or acting
promiscuously on multiple genes (i.e., one enhancer, multiple
target genes). As such, in vivo perturbations of regulatory
elements, especially those nearby functionally important genes,
may result in no molecular or cellular consequences, likely due to
enhancer redundancy (Kurokawa et al., 2004; Osterwalder et al.,
2018). Additionally, an enhancer may govern the expression of
gene(s) broadly expressed in multiple tissues during
embryogenesis, leading to pleiotropic effects and/or embryonic
lethality upon loss of enhancer function. Still, enhancer deletion
assays remain an important tool to reveal molecular mechanism
underlying biological functions of enhancer landscape.
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Super enhancers and retinal cell type
specific programs
Developmentally critical transcription factors are often marked
with strong enhancers to drive and/or maintain robust
expression. Work on embryonic stem cells defined a subclass
of regulatory elements, termed super-enhancers (SEs), that are
selectively enriched near genes important for stem cell identity
(Whyte et al., 2013). Super-enhancers tend to span large
genomic regions and are strongly enriched in mediator
complex and transcription factors, particularly those driving
lineage-specific programs (Parker et al., 2013; Adam et al.,
2015). The importance of SE size is not clear, but it was
proposed that strong H3K27Ac occupancy that demarcates
these regulatory clusters weakens DNA-histone interactions,
thus exposing DNA to transcription factors (Parker et al., 2013).
Evidence suggests that SEs drive high levels of transcriptional
activity and are particularly sensitive to perturbations (Hnisz
et al., 2013; Loven et al., 2013; Whyte et al., 2013; Bahr et al.,
2018). Recent studies propose that transcription factors,
activators and co-activators occupying SEs form condensates
with liquid-phase separation properties (Hnisz et al., 2017; Boija
et al., 2018; Sabari et al., 2018). However, the functional
significance of SEs and whether a super-enhancer constitutes
a single functional unit of cooperating regulatory clusters or a
mere stretch of aggregated enhancers remains unclear (Pott and
Lieb, 2015; Moorthy et al., 2017).

Given the emerging interest in SEs roles in regulating tissue-
specific gene expression, dynamically regulated SEs in mouse and
human developing retina have been annotated (Aldiri et al.,
2017). Studies that functionally investigate SEs in the retina
remain limited but available data suggest central roles in
driving retinal cell fate choices. For example, a large deletion
(35 kb) in an area that overlaps a super-enhancer nearby Vsx2
caused a complete loss of retinal bipolar cells, while proliferation
appears to proceed normally (Norrie et al., 2019). This regulatory
region contains conserved elements that can drive reporter
expression in RPCs, Müller glia and bipolar cells (Rowan and
Cepko, 2004; Kim et al., 2008), and a recent study demonstrated
that knocking down of a smaller portion of the Vsx2 SE also
impacts bipolar cell differentiation (Goodson et al., 2020). Thus,
while the concept of super-enhancers is appealing, detailed
functional studies are needed to elucidate the exact biological
roles of SEs and their constituents in promoting retinal cell fate
acquisitions.

RETINAL ENHANCEROPATHIES

Defining cis-regulatory elements is crucial to understand disease
mechanisms, as variations in DNA sequences linked to inherited
human disorders often lie in non-coding regions (Chatterjee and
Ahituv, 2017). Retinal diseases associated with alterations in
regulatory landscape have been reported but only in a handful
of cases has a causative link been suggested. A clear example
illustrating a direct role of regulatory elements in inherited retinal
disorders comes from studies on patients with nonsyndromic
congenital retinal nonattachment (NCRNA), an autosomal

recessive retinal disease characterized by congenital blindness
due to loss of RGCs and optic nerve atrophy (Keser et al., 2017). A
deletion in a non-coding DNA region 20 kb upstream of the
proneural bHLH transcription factor ATOH7 has been linked to
the disease (Ghiasvand et al., 2011). Transgenic reporter assays in
mouse and zebrafish demonstrated that this non-coding element
has developmental activities that matched the spatiotemporal
expression of Atoh7, suggesting that it acts as an enhancer
element for Atoh7 (Ghiasvand et al., 2011). Subsequent studies
identified pathogenic mutations in the ATOH7 coding region
itself, further linking NCRNA to misregulation of Atoh7 (Keser
et al., 2017; Kondo et al., 2018). Surprisingly, deleting the
orthologous murine enhancer region does not recapitulate the
disease phenotype, suggesting a differential biological significance
of mouse and human Atoh7 enhancer landscape (Miesfeld et al.,
2020). Other examples that identified variations in enhancer
elements with links to ocular disorders include those nearby
Pax6 (aniridia) and Samd7 (retinitis pigmentosa) (Bhatia et al.,
2013; Van Schil et al., 2016).

Global alterations in retinal enhancer landscape have been
observed in patients with retinal degenerative diseases. A recent
study profiled the genome-wide chromatin accessibility in
patients with dry age-related macular degeneration (AMD), a
disease characterized by a progressive loss of photoreceptors, and
revealed a genome-wide quantitative reduction in chromatin
accessibility associated with advanced stages of the disease,
particularly in the macular region (Wang et al., 2018). Of
note, the genomic regions that recruit gene regulatory
networks controlling photoreceptor gene expression seems to
be most impacted in those patients (Wang et al., 2018).

Retinal diseases can be associated with genomic
rearrangements that lead to the formation of a de novo
regulatory landscape, causing gene deregulation. In one such
instance, a cohort of patients with autosomal-dominant retinitis
pigmentosa suffered a structural rearrangement that led to a
repositioning of retina-specific regulatory landscape nearby
GDPD1, a gene involved in lipid metabolism. The ectopic
activation of GDPD1 driven by the newly created enhancer
region likely leads to de-regulation of lipid metabolism, an
essential process for phototransduction (de Bruijn et al., 2020;
Fu et al., 2021). This work demonstrates how recent advances in
surveying 3D genome organization can facilitate the discovery of
molecular mechanisms underlying retinal diseases.

Retinal 3D Nuclear Organization and High
Order Chromatin
Thanks to the rapid development of 3C techniques, the
mammalian 3D genome conformation has been profiled at
high resolution, illuminating that chromatin is organized into
compartments in which multiple levels of DNA-DNA
preferential interactions exist (Dixon et al., 2012; Lieberman-
Aiden et al., 2009). At the chromosome level, transcriptionally
active and inactive regions are spatially segregated into very large
genomic regions, called compartments A and B, respectively
(Lieberman-Aiden et al., 2009). Within each compartment
distinct territories, the topologically associated domains
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(TADs), exist in which promoter-enhancer contacts are heavily
constrained (Dixon et al., 2012; Rao et al., 2014). How
hierarchical genomic folding is formed and maintained is
under intensive investigation, but evidence points toward a
major role of the transcription factor CTCF (Merkenschlager
and Nora, 2016; Nora et al., 2012). Current models propose that
genomic contacts are established via loop formation that involves
homo-dimerization of CTCF at the loop anchors (Figure 2) (Rao
et al., 2014; Hnisz et al., 2016; Weintraub et al., 2017). These
interactions are further stabilized by a cohesin complex that
forms a ring around the loop anchor region (Kagey et al.,
2011; Hnisz et al., 2016; Merkenschlager and Nora, 2016; Rao
et al., 2017; Weintraub et al., 2017). The orientation of CTCF
binding seems to be important for the proper formation of the
loop (de Wit et al., 2015; Guo et al., 2015).

Research investigating high order chromatin of the developing
retina remains limited, and available data is primarily collected
from bulk mouse retina and purified rod photoreceptors (Falk
et al., 2019; Norrie et al., 2019; Tan et al., 2019). Overall, retina
hierarchical genomic organization is similar to what has been
reported in other tissues, including in the cortex, and
developmental transitions of compartments A and B correlated
well with retinal chromatin signature (Dixon et al., 2012; Norrie
et al., 2019). However, while the number of TADs remain
relatively constant as neural progenitors differentiate into
cortical neurons, rod photoreceptors have significantly more
TADs than in RPCs or cortical neurons, presumably due to
the compact nature of rod nuclei (Bonev et al., 2017; Norrie
et al., 2019).

Genomic technologies have enabled the identification and
cataloging of putative regulatory elements yet defining their
cognate genes remains challenging (Buecker and Wysocka,
2012; de Laat and Duboule, 2013). Promoter-enhancer
contacts are generally difficult to identify using Hi-C due to
resolution limitations but work on developing neural tissues
captured the dynamics of several prominent interactions
associated with genes important for neurogenesis (Bonev et al.,

2017; Norrie et al., 2019). This is illustrated by Sox2 locus, where
changes in the Sox2 expression during cortical and retinal
differentiation is associated with re-wiring of longs-range
contacts between Sox2 promoter and regulatory elements
hundreds of kilobases away (Bonev et al., 2017; Norrie et al.,
2019).

It is now broadly accepted that enhancers can act over great
genomic distances, via CTCF-mediated looping, to regulate
promoter activities, bypassing proximally located genes
(Schoenfelder and Fraser, 2019). The specific roles of CTCF in
retinal differentiation remain unclear but early studies on chick
retina suggest regulatory functions associated with Pax6 (Li et al.,
2006). CTCF is essential for proper retinal formation as loss of
CTCF expression in the murine developing retina leads to
massive cell death (Watson et al., 2014). The genome wide
occupancy of CTCF in the developing retina has been profiled,
revealing constitutive and dynamic CTCF occupancy across
retinal genome during retinogenesis (Aldiri et al., 2017).
Interestingly, work on retinal organoids suggest that
maintaining a robust CTCF binding memory in stem cells
reprogrammed from rod photoreceptors is important for
efficient differentiation of retinal organoids (Hiler et al., 2015).
Still, evidence from stem cells indicates that global loss of
chromatin loops has a minimal effect on gene expression
(Zuin et al., 2014; Rao et al., 2017). Thus the retina-specific
roles of CTCF likely reflect gene-specific regulatory functions
independent of 3D genome structure, although more work is
needed to examine this idea.

Inverted Nuclear Architecture in Mouse Rod
Photoreceptors
The chromatin spatial architecture is commonly shared
among animal nuclei, where inactive heterochromatin is
preferentially sequestered to the nuclear periphery while
active euchromatin occupies the nuclear interior (Holla
et al., 2020; Solovei et al., 2016). The structure of rod

FIGURE 2 | Retinal 3D nuclear organization. (A) Model for enhancer-mediated activation of gene expression. The process involves formation of a DNA loop,
facilitated by the recruitment of CTCF and cohesin, that brings distal enhancers into proximity of the promoters. Enhancers enable the recruitment of transcription factors,
co-factors and transcriptional machinery to the promoter. (B,C) Nuclear structure of murine rod (B) and bipolar (C) cells as revealed by DAPI staining.
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photoreceptor nuclei in nocturnal animals has deviated from
this organization: heterochromatin is densely concentrated in
the nuclear center while euchromatin occupies the outer edges
(Figure 2) (Solovei et al., 2009). Data suggest that the inverted
nuclear arrangement in rods reduces light scattering,
effectively converting the nuclei into micro-lenses that
enhance vision in dim light conditions (Solovei et al., 2009;
Solovei et al., 2013; Subramanian et al., 2019). As such, this
inverted nuclear structure in rods represents a clear example
of how 3D nuclear architecture may directly influence a
physiological function. Still, inverted nuclei structure is
also observed in other cell types such as olfactory sensory
neurons and neutrophils but the exact biological purpose of
this organization in these cells is not clear (Clowney et al.,
2012; Solovei et al., 2013).

Despite the stark structural differences between inverted and
conventional nuclei, Hi-C data indicate that the hierarchical
chromatin compartmentalization is qualitatively similar (Falk
et al., 2019; Tan et al., 2019). Additionally, studies integrating
Hi-C experiments with computational modeling suggest that the
spatial partitioning of heterochromatin and euchromatin in both
conventional and inverted nuclei is mediated by liquid-phase
separation dynamics, driven primarily by heterochromatin
interactions (Falk et al., 2019; Tan et al., 2019).

The establishment of inverted nuclei occurs during rod
photoreceptors terminal differentiation and is completed by
postnatal day 28 in mice (Solovei et al., 2009). During this
process, rod precursor nuclei experience morphological
reorganization where chromocenters gradually dissociate
from the nuclear periphery and coalesce centrally (Solovei
et al., 2009). At the molecular level, nuclear inversion is
correlated with loss of LBR and Lamin A/C, proteins
essential for tethering heterochromatin to the nuclear
periphery (Clowney et al., 2012; Solovei et al., 2013). The
molecular mechanism involving downregulation of lamina-
associated proteins during rod differentiation has not been
fully explored but preliminary evidence suggests a role for the
transcription factor Casz1 in association with polycomb
proteins in repressing Lamin A (Mattar et al., 2018). Casz1
is also expressed in cone photoreceptors and does not seem
to regulate LBR expression (Mattar et al., 2018). Thus, it is
likely that repression of lamina-associated proteins in
differentiating rods involves other rod-specific transcription
factors (Hughes et al., 2017; Mattar et al., 2018). Interestingly,
while loss of LBR can alter the nuclear structure, it does not
affect global gene expression (Solovei et al., 2013; Norrie et al.,
2019).

CONCLUDING MARKS

Genomic studies thus far have provided insights into modulation
of retinal development by chromatin structure, yet the field is still
in its infancy and a tremendous amount of work is needed to gain
a comprehensive understanding on how epigenetics shape retinal
development and are associated with retinal diseases. As
sequencing technologies and computational analyses continue
to rapidly evolve, it is likely that more high resolution data from
retinal cell types will be available in the near future.

What are the long-range interactions that occur among cis-
regulatory elements during retinal development and how
essential are they to retinal development and homeostasis? Are
these interactions disrupted in ocular diseases? If so in what way?
What are the factors that govern nuclear organization in retinal
neurons? How does nuclear architecture influence gene
expression during retinal cell type specification? Do liquid-
phase separation properties of nuclear compartments influence
retinal transcriptional programs? These are some of the
outstanding questions that are likely to help elucidating how
chromatin influence transcriptional regulation in the retina.

Animal models have been immensely valuable in
understanding molecular mechanisms underlying human
biology and diseases but more studies investigating chromatin
structure in human native and diseased retina are needed. This is
particularly important to advance therapeutic strategies aiming at
stimulating regeneration and/or preventing degeneration in the
mammalian retina.
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