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Gliomas are the most common malignant brain tumors. High-grade gliomas,

represented by glioblastoma multiforme (GBM), have a poor prognosis and are

prone to recurrence. The standard treatment strategy is tumor removal

combined with radiotherapy and chemotherapy, such as temozolomide

(TMZ). However, even after conventional treatment, they still have a high

recurrence rate, resulting in an increasing demand for effective anti-glioma

drugs. Drug repurposing is a method of reusing drugs that have already been

widely approved for new indication. It has the advantages of reduced research

cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for

alcohol dependence, has been repurposed for adjuvant chemotherapy in

glioma. This article reviews the drug repurposing method and the progress

of research on disulfiram reuse for glioma treatment.
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1 Introduction

Glioma is a central nervous system (CNS) tumor and is one of the most common

malignant brain tumors (Özcan et al., 2021), accounting for approximately 80% of all

brain-related malignancies (Ostrom et al., 2019). According to the World Health

Organization (WHO) classification, gliomas are divided into four grades based on

their malignancy. Grades I–II are low-grade gliomas (LGGs), whereas grades III–IV

are called high-grade gliomas (HGGs) (Özcan et al., 2021). Glioblastomas (GBMs) are

WHO grade IV tumors with a high degree of malignancy and a median overall survival of

approximately 15–26 months (Seliger and Hau, 2018).

Conventional treatment only modestly prolongs survival (Jakola et al., 2018). The

growing demand for effective anticancer drugs has led researchers to search for Food and

Drug Administration (FDA)-approved drugs that can be reused as chemotherapeutic

agents (McMahon et al., 2020). Drug repurposing, also known as drug repositioning, drug
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reprofiling, drug redirecting, drug rediscovery, and others

(Langedijk et al., 2015), is a promising treatment strategy for

reusing drugs with known formulations, pharmacokinetics,

toxicity, clinical trials, and post-marketing surveillance safety

data that offer increased scope for use (Ashburn and Thor, 2004;

Turanli et al., 2021).

Disulfiram (DSF), also known as antabuse, is an FDA-

approved acetaldehyde dehydrogenase inhibitor (Shirley et al.,

2021; Turanli et al., 2021). Figure 1 shows the molecular structure

of DSF. It has been used for treating alcohol dependence for the

past 70 years with good pharmacokinetic properties, safety, and

tolerability owing to the flu-like symptoms that patients

experience when consuming alcohol (Seliger and Hau, 2018;

Shirley et al., 2021). Preclinical and clinical studies have shown

that DSF exhibits broad-spectrum anticancer activity against a

variety of cancer types when administered with copper (Cu)-

containing supplements (McMahon et al., 2020). Therefore, this

review describes the drug repurposing of DSF in gliomas.

2 Chemotherapy for glioma

The standard initial treatment for GBM is extensive

neurosurgical resection, followed by postoperative segmental

radiotherapy, temozolomide (TMZ) chemotherapy, and

combined adjuvant therapy (Jakola et al., 2018; Stylli, 2020).

The therapy using some natural and synthetic anti-glioma agents,

such as medicinal cannabis or cannabinoids, bipolaris setariae

fungi, oncolytic viruses, neurostatin, and fatty acid synthase

(FAS) inhibitors, can also help combat gliomas (Anjum et al.,

2017). Despite comprehensive strategies, residual GBM cells can

develop treatment resistance (TR), resulting in GBM recurrence

within a median time of approximately 7 months (Louis et al.,

2016; Liu C. C. et al., 2021).

TMZ is a chemotherapeutic agent specifically used for brain

cancer and was approved for recurrent mesenchymal

astrocytoma in the United States in 1999 and recurrent

mesenchymal astrocytoma and glioblastoma in Europe in

2000 (Mutter and Stupp, 2006). However, mitozolomide, the

essential compound of TMZ, entered the clinic in 1983

(Newlands et al., 1997) and a phase I trial was completed in

1985 (Newlands et al., 1985), indicating that TMZ was developed

over 16 years. A randomized clinical study conducted by Stupp in

2005 showed that adding TMZ to radiotherapy improved the 2-

year survival rate of patients with GBM from 10.9% to 27.2%with

minimal toxicity (Stupp et al., 2005). Since then, TMZ has been

used as the first-line chemotherapeutic agent for gliomas (Stylli,

2020).

FIGURE 1
Molecular structure of DSF.
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However, it is estimated that at least 50% of patients treated

with TMZ do not respond to it, exhibiting innate or acquired

chemoresistance, which ultimately leads to tumor recurrence

(Lee, 2016). Presumably, during the window of chemotherapy

with TMZ, most tumor cells are vulnerable and killed and may

not have acquired full resistance (Osuka and Van Meir, 2017).

Eventually, tumor cells resistant to multiple therapies persist in

the brain parenchyma surrounding the tumor cavity and become

the basis of tumor regeneration and recurrence (Osuka and Van

Meir, 2017).

Given the slow and costly development of new therapies,

drug repurposing has become an attractive strategy (Stylli, 2020).

For example, a trial on metformin for GBM in 2015 showed that

metformin prolonged the survival of patients with glioblastoma

and diabetes (Adeberg et al., 2015). However, a pooled analysis

questioned this finding and showed that metformin did not

prolong survival in patients with GBM (Seliger et al., 2020).

Similarly, celecoxib, as an adjuvant to TMZ chemotherapy, has

shown good tolerability, but its efficacy in terms of survival

benefits for patients remains uncertain (Stockhammer et al.,

2010). The classical antimalarial drug, chloroquine, has been

found to kill various cancer types, including GBM, through drug

repurposing (Weyerhäuser et al., 2018). However, its

concentration threshold for killing tumor cells under

laboratory conditions is much higher than the clinically

tolerable dose; therefore, its clinical value remains unclear

(Weyerhäuser et al., 2018).

TMZ has shown great therapeutic value; however, the rate of

drug resistance and recurrence of glioma remains reasonably

high. Drug repurposing has contributed to the discovery of new

therapies, but clinical application remains slow. Thus, there is an

urgent need for developing new adjuvant chemotherapeutic

agents.

3 Drug repurposing

3.1 Significance of drug repurposing

Drug repurposing can shorten development times by

5–7 years, reduce research investment costs by accounting for

less than 10% of new compounds, and avoid risks such as a

constant weight of generics (Cha et al., 2018). Moreover, a strict

and burdensome regulatory process for new drugs forces

developers to explore novel therapeutic uses for existing drugs

(Turanli et al., 2021). Drug repurposing provides sufficient

assurance regarding the safety, efficacy, and administration

route of existing drugs (Parvathaneni et al., 2019; Juárez-

López and Schcolnik-Cabrera, 2021; Turanli et al., 2021).

Studies have shown that the cost and time to develop DSF as

an anticancer drug are reduced by over 40% with an estimated

annual cost of approximately $550 with DSF 500 mg per day

(Cvek, 2012).

Drug repurposing facilitates the passage of projects and

improves development efficiency. Only a minority of drug

development projects can obtain FDA approval among newly

developed drugs, compared with over 65% of drug repurposing

projects (Masoudi-Sobhanzadeh et al., 2019). Recently, drug

repurposing projects have accounted for approximately 30%

of all newly approved drugs by the FDA (Parvathaneni et al.,

2019). Additionally, drug repurposing can allow the revaluation

of drugs that failed in the development phase for other uses and

the change of application settings for better use (Masoudi-

Sobhanzadeh et al., 2019).

3.2 Methods of drug repurposing

As high-throughput screening and computational biology

methods advance, accumulated data lay the foundation for new

approaches to rational drug repurposing (Turanli et al., 2021).

Currently, numerous drug repurposing databases are available,

allowing easy access to drug repurposing research, and systematic

analysis is now accessible on platforms or screening systems

dedicated to identifying repurposable drug candidates (Juárez-

López and Schcolnik-Cabrera, 2021).

There are multiple information-gathering methods for drug

repurposing. Electronic drug repurposing involves using various

public databases to gather information from research, clinical

trials, utilization reports, and other published data, and then to

identify drug targets and networks of drug-drug interactions

with the help of bioinformatics tools and artificial intelligence

(Kumar et al., 2019). Text mining methods are used to discover

new information by extracting aggregated new information from

multiple published resources with the help of a computer, and by

obtaining a large amount of data on conceptual relationships in

biology from publications (Kumar et al., 2019). Clustering

methods are applied to display and discover new drug targets

or drug-disease relationships through various modules, groups,

or subnetworks using clustering algorithms (Kumar et al., 2019).

Propagation methods are based on information transmission

from the source node to the network nodes and individual

subnetwork nodes to determine the relationship between

disease genes and target diseases (Emig et al., 2013). Semantic

approaches seek biological entity relationships from medical

databases, build semantic networks based on existing ontology

networks, develop algorithms to discover the relationships, and

extract medical information and image resources for drug reuse

(Xue et al., 2018). Biological approaches include using systems

and network biology to develop various models for drug

reutilization studies that mimic the physiological environment

of the target protein and modulate the outcome of its action,

particularly targeting multifactorial complex diseases (Pujol

et al., 2010). Knowledge-based empirical approaches are

methods based on the knowledge of researchers and

physicians and their ability, experience, and skills to interpret
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observations, with the opportunity for the serendipitous

discovery of new drug utilization pathways (Kumar et al.,

2019). Experimental methods include target screening,

cellular analysis, animal models, and clinical trials (Kumar

et al., 2019). These various methods of drug repurposing have

been developed to evaluate the clinical efficacy for glioma

treatment.

3.3 Database for drug repurposing

Advances in biotechnology, bioinformatics, and

histological techniques (proteomics, genomics, metabolomics,

etc.) have facilitated the development of several databases in

biology, chemistry, medicine, and pharmacology (Kumar et al.,

2019).

Basic databases for drug repurposing, such as DrugBank

(Wishart et al., 2018), DGIdb (Cotto et al., 2018), and KEGG

(Kanehisa et al., 2017), can provide information on drugs, targets,

and pathways (Masoudi-Sobhanzadeh et al., 2019; Turanli et al.,

2021). Recently, the newly developed DrugR + database based on

DrugBank and KEGG provides a new source of information for

the single application and reuse of drugs (Masoudi-Sobhanzadeh

et al., 2019). The DrugR + database supports not only specialist

users with structured query language (SQL) query functions, but

also nonspecialist users with different options for targeted

functions (Masoudi-Sobhanzadeh et al., 2019). The DrugR +

database can also be readjusted to include drug use and provide a

list of potential drugs for certain uses (Masoudi-Sobhanzadeh

et al., 2019). The DrugR + database has several advantages, such

as 1) providing a suitable and simple way to search for and obtain

information about drugs with no technical problems, 2)

providing information on the reusability of drugs, 3) allowing

the selection of different types of research targets to obtain lists of

drugs for diseases, and 4) providing up-to-date information on

new drugs and the latest research (Masoudi-Sobhanzadeh et al.,

2019).

Drug repurposing databases contain news, articles, and

results obtained from drug repurposing studies (Masoudi-

Sobhanzadeh et al., 2019), such as RepoDB (Brown and Patel,

2017b), Excelra (Arora et al., 2017), Drug Repurposing Hub

(DRH) (Corsello et al., 2017), and TTD (Yang et al., 2016).

Databases such as PREDICT (Gottlieb et al., 2011) and

RepurposeDB (Shameer et al., 2018) summarize

similarities between one drug or target and another

(Masoudi-Sobhanzadeh et al., 2019). ChemMapper and

iDrug Target are databases that assess ligand similarity

(Sam and Athri, 2019). Drug target-based databases, such

as DMAP (Huang et al., 2015), DrugSig (Wu et al., 2017),

DDW (Holland, 2016), PDID, and idTarget (Sam and Athri,

2019), summarize drugs and their various targets, based on

which new drug application pathways is proposed (Masoudi-

Sobhanzadeh et al., 2019).

There are other databases such as ConnectivityMap (Lamb

et al., 2006) for drug-induced gene expression studies, LINCS

(Koleti et al., 2018) and GEO (Barrett et al., 2013) for

transcriptomic characterization of tumor tissue from patients

with cancer, CSNAP (Gaulton et al., 2012) and STITCH (Kuhn

et al., 2012) for biological networks, RE:fine drugs (Moosavinasab

et al., 2016) and MeSHDD (Brown and Patel, 2017a) linking

drugs to disease databases, and PubChem (Wang et al., 2017) for

comprehensive chemical and structural information on active

ingredient components.

These databases cover an amount of information on drug

targets, pathways, characteristics, and recent advances, allowing

for exploring potentially efficient drugs.

4 History of drug repurposing of
disulfiram

The urgent need for glioma treatment and the application of

DSF to cancer through drug repurposing has led to a steady

stream of studies in recent years that have shown good results in

treating glioma (Huang J. et al., 2016; Huang et al., 2018; Huang

et al., 2019; Halatsch et al., 2021). Table 1 shows the information

on DSF in the drug repurposing database.

In 1937, factory workers who were regularly exposed to DSF

developed flu-like symptoms when they ingested alcohol

(Triscott et al., 2015). DSF has been used to treat alcohol

dependence since 1947 (Chick, 1999).

In the last 40 years, the anticancer effects of DSF have been

discovered in vitro and in cancer xenografts (Conticello et al.,

2012; Paranjpe et al., 2014). In 2003, Wang et al. suggested the

possible clinical use of DSF in rectal cancer using cellular assays

(Wang et al., 2003). In 2006, Chen et al. demonstrated through

animal testing that DSF promotes selective apoptosis of tumor

cells by inhibiting proteasome activity (Chen et al., 2006). In

2009, Iljin et al. systematically investigated the efficacy of most

drugs and drug-like molecules already on the market against

prostate cancer cells, and ultimately showed that DSF reduced

tumor growth, induced metallothionein expression, and reduced

DNA replication in vivo, indicating its potential as a therapeutic

agent for prostate cancer (Iljin et al., 2009).

In 2009, Richard et al. speculated that DSF should be studied

as an adjuvant to chemotherapy for glioblastoma based on its

effect on acetaldehyde dehydrogenase (ALDH) in glioma (Kast

and Belda-Iniesta, 2009), and since then the value of DSF in

glioma has been focused. In 2012, Joanna et al. used the database

approach for drug repurposing and selected DSF from numerous

drugs that inhibit tumor-initiating cells using the Prestwick

database (Triscott et al., 2012). They found that DSF inhibited

PLK1 expression in GBM cells, suggesting that DSF could be

repurposed for the treatment of refractory GBM (Triscott et al.,

2012). In 2015, high ALDH1A1 expression was found to be

associated with highly aggressive tumor cells and high-grade
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gliomas (Chen et al., 2006). ALDH1A1 promoted glioma

progression, invasion, and proliferation, and led to poor

prognosis (Chen et al., 2006). This finding brought the anti-

glioma effects of DSF as an ALDH inhibitor back into the

spotlight (Chen et al., 2006). In 2016, Huang et al. conducted

the first phase I clinical trial using DSF in combination with TMZ

for GBM treatment (Huang J. et al., 2016). In 2017, Karamanakos

et al. combined DSF with standard treatment modalities to treat a

patient with GBM and ultimately improved his prognosis,

thereby confirming the clinical value of DSF (Karamanakos

et al., 2017). In 2019, DSF was first reported to preferentially

enhance radiosensitivity in GBM cells, particularly in

radioresistant cells (Koh et al., 2019). In 2021, Meier et al.

demonstrated the therapeutic value of DSF as a repurposed

drug for treating gliomas in children (Meier et al., 2021). To

date, relevant clinical trials are ongoing (NCT03363659,

NCT03151772, NCT02715609, etc.).

5 Clinical practice for disulfiram in
glioma

Huang et al. (2016) conducted a phase I clinical trial. Twelve

patients newly diagnosed with supratentorial primary GBMwere

studied using concomitant adjuvant DSF and TMZ

chemotherapy after radiotherapy. Patients were divided into

two groups and received 500 mg/day or 1000 mg/day of DSF

in combination with TMZ chemotherapy. The results showed

that the maximum tolerated dose of DSF was 500 mg/day.

Although some associated adverse effects, such as fatigue,

delirium, ataxia, dizziness, and peripheral motor/sensory

neuropathy, existed, these adverse reactions were self-limiting

and resolved within 30 days after DSF discontinuation (Huang

J. et al., 2016).

In 2018, Huang et al. updated data from a phase I clinical

trial. The study population comprised 18 patients newly

diagnosed with GBM after standard radiotherapy. DSF was

also administered during the chemotherapy phase of TMZ.

Seven patients received DSF at 500 mg/day, five patients

received DSF at 1000 mg/day, and six patients received DSF/

Cu at 500 mg/day. The results showed that a maximum dose of

500 mg/day of DSF was well tolerated with or without combined

Cu, while 1000 mg/day was poorly tolerated. Of the patients

receiving 500 mg DSF with a combination of Cu per day, one

patient suffered from nausea and diarrhea in the first 30 days,

which was relieved after the reduction of DSF to 250 mg per day.

Additionally, without the combination of Cu, one patient

developed delirium after 1.6 months and one developed motor

neuropathy after 2.6 months. All adverse reactions resolved

rapidly after dose reduction or DSF discontinuation. Notably,

a 40-year-old woman in the study who received 500 mg DSF per

day discontinued DSF therapy after 2.6 months of treatment due

to motor neuropathy. At 33 months after DSF treatment, the

patient survived in good health with no signs of tumor recurrence

(Huang et al., 2018).

Based on a previous study, Huang et al. conducted a phase II

clinical trial in 2019. Twenty-three patients with recurrent TMZ-

resistant GBM were enrolled in the study. DSF (80mg) and Cu

gluconate (1.5 mg) were administered orally thrice daily at

approximately 4–8 hourly intervals in conjunction with TMZ

chemotherapy. The results showed that 14% of the patients

achieved clinical benefit over a stabilization period of over

6 months. The most common adverse effects were nausea and

vomiting in 17%of patients, followed bydizziness (Huang et al., 2019).

In 2021, Marc et al. conducted a phase Ib/IIa clinical trial

using a CUSP9 treatment regimen in combination with TMZ.

Ten patients with GBM were included in this study. CUSP9 was

gradually added at increasing doses during uninterrupted TMZ

TABLE 1 The information on DSF in the drug repurposing database.

Drug repurposing
database

Website Id number Disease area Drug repurposing
area

RepoDB http://apps.chiragjpgroup.org/repoDB/ None Alcoholic Intoxication, Chronic (CUI:
C0001973)

GBM/glioma

DRH www.broadinstitute.org/repurposing BRD-
K32744045

Abstinence from alcohol (neurology/
psychiatry)

None

DrugBank www.drugbank.ca DB00822 Chronic Alcoholism GBM/glioma

DGIdb www.dgidb.org NSC-25953 Alcohol Deterrents Cocaine abuse

KEGG http://www.kegg.jp D00131 Management of selected chronic alcohol
patients

Antiparasitic

LINCS http://lincsportal.ccs.miami.edu/ LSM-5467 Alcohol dependence Melanoma

DrugSig http://biotechlab.fudan.edu.cn/database/
drugsig/

BCTD00137 Chronic alcoholism None

PubChem https://pubchem.ncbi.nlm.nih.gov 3117 Alcoholism GBM
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chemotherapy. When all drugs reached the target dose, the drug

was maintained until side effects or tumor progression occurred.

The results showed that the regimen was safe under clinical,

laboratory, and electrocardiographic monitoring and that the

side effects were mild and disappeared after discontinuation

(Halatsch et al., 2021).

Since 2016, there have been updates on clinical trials using

DSF as an adjuvant in the treatment of glioma. Evidence suggests

that DSF has great therapeutic potential but with mild side

effects; however, clinical studies are still inadequate.

6 Pharmacological mechanism of
disulfiram

DSF can act as an anticancer agent through various Cu- and

zinc-dependent processes, including the inhibition of nuclear

factor kappa B (NF-κB), NPL4, and phosphoglycerol

dehydrogenase (Spillier et al., 2019). DSF produces oxidative

stress by inhibiting NF-κB activation and superoxide dismutase

(SOD) and inducing an increased ratio of oxidized glutathione to

its reduced form (Tesson et al., 2017). DSF cytotoxicity is

dependent on Cu (Ye et al., 2011). Cu plays a key role in redox

reactions and triggers the generation of reactive oxygen

species (ROS) in human cells (Liu et al., 2012). Many

cancer types, including GBM, have significantly higher

intracellular Cu levels than normal tissues, and DSF

penetrates and chelates Cu intracellularly (Liu et al., 2012).

As DSF cytotoxicity appears to be Cu-dependent, high Cu

concentrations in cancer cells produce cytotoxicity through

oxidative stress generated by the Fenton reaction (production

of Cu ions and hydroxyl radicals) or through inhibiting

enzymes that bind Cu to peptide bonds, allowing DSF to

specifically target cancer cells and preserve normal tissue (Liu

et al., 2012; Tesson et al., 2017).

Approximately 80–95% of the orally administered DSF is

absorbed and the unabsorbed portion is excreted (Shirley et al.,

2021). In the body, DSF is rapidly metabolized to DTC acid and

then rapidly formed as diethylthiocarbamic acid methyl ester

(diethyldithiomethylcarbamate, MeDTC) or broken down into

carbon disulphide and dimethylamine (Shirley et al., 2021).

MeDTC inhibits ALDH and is a strong metal chelate that can

form complexes with metal ions (Shirley et al., 2021). DSF is also

reduced to DTC in the stomach and forms metal-ion complexes

in the gastrointestinal tract (Shirley et al., 2021). DTC metal

complexes have a relatively long half-life, are widely distributed

throughout the body, and penetrate the blood-brain barrier

(BBM) (Shirley et al., 2021). This pharmacological mechanism

makes it possible for DSF to kill glioma cells specifically. During

DSF treatment, alcohol ingestion leads to acetaldehyde

accumulation due to ALDH inhibition, causing the DSF-

ethanol reaction (Jørgensen et al., 2011). This reaction

manifests as tachypnea, tachycardia, facial flushing, nausea,

vomiting, hypotension, and even cardiovascular collapse

(Jørgensen et al., 2011).

7 Molecular mechanism of disulfiram
against tumor stem cells

7.1 Inhibition of ALDH

DSF has a symmetric structure, and its first metabolic step is

reducing the disulfide bond at the center of the molecule to produce

two diethyldithiocarbamate (DTC) fractions (Lipsky et al., 2001a).

DTC is further converted to its methyl ester and other metabolites

(Lipsky et al., 2001a). DTC is a potent ALDH inhibitor, which forms a

mixed disulfide bond with the key cysteine near the active site (Lipsky

et al., 2001a). DSF significantly alters alcohol metabolism and treats

chronic alcohol dependence by irreversibly inhibiting ALDH and

causing acetaldehyde accumulation (Jørgensen et al., 2011). ALDH

belongs to a family ofmetabolic enzymes that catalyze the oxidation of

aldehydes, a toxic alcohol metabolism product (Lipsky et al., 2001b).

ALDH promotes cell survival by protecting DNA from genotoxic

damage and providing resistance to a wide range of anticancer drugs

(Hothi et al., 2012). Therefore, ALDH inhibition is an effective way to

sensitize resistant cell populations to the cytotoxic effects of

chemotherapeutic drugs (Hothi et al., 2012). The strong expression

of ALDH is a prominent feature of normal and cancer stem cells,

including the stem cell subpopulation of glioblastoma (Kast and

Belda-Iniesta, 2009). In GBM and other cancers, increased ALDH

expression is observed in a small subpopulation of tumor cells with

stem cell properties (Rappa et al., 2013). ALDH expression is

associated with the anti-apoptotic capacity of glioma stem cells

(GSCs) and the protection of DNA against damage by ROS and

aldehydes (Kast and Belda-Iniesta, 2009). DSF and its metabolites

form mixed disulfide bonds with key cysteines (Cys302) near the

active site of ALDH to inactivate it (Paranjpe et al., 2014).WithALDH

inhibition, the division of stem cells into non-stem daughter cells is

blocked (Kast and Belda-Iniesta, 2009). However, such inhibitory

effect of DSF on ALDH does not affect normal neural stem cells or

fibroblasts (Choi et al., 2015).

7.2 Induced degradation of mixed lineage
leukemia

MLL1 and MLL2 are human homologs of the Drosophila

epigenetic regulator Trithorax (Trx) (Schuettengruber et al.,

2017). MLL1 promotes tumor stem cell characteristics, cell

growth, and tumorigenicity in adult glioblastomas (Meier

et al., 2021). MLL2 mutations are found in 14% of patients

with medulloblastoma (Parsons et al., 2011). Studies have shown

that DSF can effectively kill both childhood glioma stem cells at

low concentrations and glioma cell lines at slightly higher

concentrations by inducingMLL degradation (Meier et al., 2021).
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7.3 Mediation of increased intracellular
ROS production

DSF-mediated cytotoxicity is partially due to

increased ROS production. Elevated ROS levels are the

major mode of DSF-mediated cell death (Kast et al.,

2014). DSF/Cu induces ROS in GBM cell lines, which

activates the JNK and p38 pathways, and inhibits NF-κB
activity (Liu et al., 2012). DSF/Cu eliminates stem cell-

like cell populations in GBM cell lines by modulating the

Bcl2 family to trigger the intrinsic apoptotic pathway

(Liu et al., 2012). DSF rapidly inhibits superoxide

dismutase 1 (SOD1) in murine microglia to induce

neurotoxic microglia activation (Dimayuga et al.,

2007). ROS production by activated microglia directs

redox-sensitive inflammatory signaling and initiates

neurotoxic inflammation (Dimayuga et al., 2007). The

inhibition of activated microglia might lower the

neurological side effects of DSF during the treatment.

8 Molecular mechanism of disulfiram
against glioma cells

8.1 Inhibition of MGMT activity

O6-methylguanine-DNA methyltransferase (MGMT) is a

DNA repair protein and chemotherapeutic target that is

highly expressed in approximately 80% of brain tumors and

other cancers (Gerson, 2002). MGMT, as an anti-mutagenic

DNA repair protein, can remove mutagenic O6-alkyl groups

from guanine and interfere with the cytotoxic effects of

alkylating agents to make tumors resistant (Gerson, 2002).

The survival of patients with GBM depends on the MGMT

promoter methylation status (Koh et al., 2019). Those with

methylated MGMT promoter (MGMT meth) had a higher

survival rate than those with the wild-type (MGMT wt)

(Paranjpe et al., 2014; Koh et al., 2019). Thus, MGMT has

become a central determinant of tumor resistance to

alkylating agents (Paranjpe et al., 2014). DSF causes

MGMT degradation (Srivenugopal et al., 2016) and

synergistically inhibits the growth and renewal of TMZ-

resistant GBM cells (Triscott et al., 2012). Compared to

normal astrocytes, DSF induces a preferential increase in

radiosensitivity in GBM cells, causing increased apoptosis

and delayed DNA damage repair (Koh et al., 2019). DSF-

induced radiosensitization is more pronounced in

radioresistant cells, especially drug-resistant GBM cells with

wild-type non-methylated MGMT promoters (Koh et al.,

2019). In brain tumor cell lines, DSF reduced MGMT

activity in a rapid and dose-dependent manner (Paranjpe

et al., 2014). Of these, DSF/Cu was approximately five times

more potent than DSF in inhibiting MGMT activity in cultured

brain tumor cells (Paranjpe et al., 2014). There are no reports

about adverse effects on normal neuronal cells caused by this

mechanism.

FIGURE 2
Molecular mechanisms of DSF.
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8.2 Inhibition of NF-κB

NF-κB promotes disease progression by increasing tumor cell

proliferation, inducing the transcription of anti-apoptotic genes

and genes involved in the DNA damage response, and promoting

angiogenesis (Voorhees and Orlowski, 2006). NF-κB activation is

associated with radioresistance, particularly through inducing

anti-apoptotic and antioxidant gene expression (Tesson et al.,

2017). DSF is an NF-κB inhibitor, which interferes with TGF-β-
induced epithelial-mesenchymal transition in cancer (Han et al.,

2015). The blockade of NF-κB activation by DSF reduces tumor

volume and cell invasion (Westhoff et al., 2013). The

aggressiveness of GBM is associated with the secretion and

processing of fibronectin by GBM cells via fibrinogen and

matrix metallopeptidases (Mettang et al., 2018). GBM causes

reduced intercellular interactions by creating this new

extracellular matrix (ECM)-based microenvironment, and

generating a stress response that triggers NF-κB activation

and enhances cell-matrix adhesion of GBM (Mettang et al.,

2018). DSF blockade of NF-κB activation inhibits cell-matrix

adhesion between GBM and the brain tissue microenvironment,

and reduces tumor volume and cell invasion (Mettang et al.,

2018). Other drugs that modulate fibrinogen, metallopeptidases,

and fibronectin in the microenvironment of glioma cells might

synergistically enhance the anti-invasive effects of DSF.

8.3 Inhibition of proteasome activation

Proteasome activity promotes tumorigenesis by enhancing

tumor cell proliferation, down-regulating apoptosis, and

promoting angiogenesis (Voorhees and Orlowski, 2006).

Therefore, the ubiquitin-proteasome pathway is an important

target for cancer therapy (Voorhees and Orlowski, 2006). DSF

inhibits proteasome activation (Voorhees and Orlowski, 2006),

leading to the accumulation of misfolded proteins and potentially

toxic protein aggregates (Hothi et al., 2012), subsequently

inducing tumor cell death (Hothi et al., 2012). The DSF

activity depends on the presence of Cu ions, and Cu

thiocarbamate complexes act as proteasome inhibitors (Hothi

et al., 2012). As a potent proteasome inhibitor, DSF/Cu can

functionally impair the DNA repair pathways and enhance the

effects of DNA alkylating agents and radiation (Lun et al., 2016).

DSF/Cu inhibits the chymotrypsin-like proteasome activity in

cultured glioma stem cells (GSC), consistent with the inactivation

of the ubiquitin-proteasome pathway and subsequent tumor cell

death induction (Hothi et al., 2012).

8.4 Downregulation of PLK1 expression

Polo-like kinase 1 (PLK1), which is highly expressed in tumor

cells, is a key serine/threonine kinase involved in many important

cell cycle functions such as mitotic entry, centrosome maturation,

cell cycle progression, and cytoplasmic division (Triscott et al.,

2012). As GBM tumors with higher levels of PLK1 expression have

a higher incidence and poorer prognosis, PLK1 could be a

promising therapeutic target for brain tumors (Triscott et al.,

2012). DSF leads to downregulation of cell cycle kinase

PLK1 in GBM cells (Triscott et al., 2012).

DSF is involved in the regulation of complicated molecular

mechanisms. These molecular mechanisms of DSF are shown in

Figure 2.

9 DSF delivery route

The standard dosage following FDA-approved indications

for managing chronic alcohol use is 250 mg/day orally, with a

maximum dose of 500 mg/day (Ekinci et al., 2019). Additionally,

the nasal-brain pathway is considered a safe and effective

alternative for direct drug delivery to the CNS (Landis et al.,

2012). Administration via the nasal cavity to the CNS bypasses

the blood-brain barrier and avoids hepatic first-pass effects (Qu

et al., 2021). The clinical application of DSF as an anticancer drug

is limited by its poor oral bioavailability and rapid metabolism in

vivo (Shergill et al., 2016). It has been shown that DSF

encapsulation in hydroxypropyl-β-cyclodextrin (HP-β-CD)
produces a DSF complex with enhanced solubility (Qu et al.,

2021). In vitro anti-GBM activity and safety (DSF/HP-β-CD/Cu)
can increase the aqueous solubility of DSF by approximately

2,450-fold and may be a promising intranasal agent to treat (Qu

et al., 2021). Animal studies have shown that DSF/HP-β-CD/Cu
significantly inhibited tumor growth and migration, promoted

tumor apoptosis, and prolonged the median survival time in

male glioma rats in the intranasal administration group

(Qu et al., 2021). Besides oral and nasal-brain access, 1,2-

distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol

liposomes to prepare DSF as an injectable Cu(DDC)2
formulation are also therapeutically active (Wehbe et al.,

2017).

10 Combination therapy of disulfiram

Combinations of two or more drugs with different

mechanisms of action, also referred to as combination

therapy, is an alternative strategy for improving the success of

drug repurposing (Masoudi-Sobhanzadeh et al., 2019).

Compared with single-drug therapy, it reduces the incidence/

emergence of resistance mechanisms, doses of drugs, and adverse

effects, and improves the synergistic effects and success of

treatment modalities (Masoudi-Sobhanzadeh et al., 2019).

Combination therapy allows simultaneous targeting of

multiple therapeutic genes, and is currently the most effective

treatment for aggressive tumors, such as GBM (Ghosh et al.,
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2018). Combination therapy of DSF with other modalities holds

great promise.

10.1 Disulfiram in combination with metal
supplements

Preclinical and clinical studies have shown that DSF has

broad-spectrum anticancer activity against a variety of cancer

types when combined with Cu-containing supplements, such as

Cu gluconate (McMahon et al., 2020). The combination

regimen comprised 500 mg of DSF daily plus 50 mg of zinc

gluconate or 2 mg of Cu gluconate three times daily (Ekinci

et al., 2019). It has been shown that DSF/Cu sulphide (CuS)

nanocomplexes (Tf-DSF/CuS) modified with transferrin (Tf)

exhibit high cytotoxic effects in vitro (Lan et al., 2021). The CuS

nanoparticles enable them to accumulate specifically and within

tumor tissue by enhancing the permeability and retention

(EPR) effect of the tumor tissue (Lan et al., 2021). The

metallic nature of the nanoparticles enhanced the drug-

loading capacity by forming Cu complexes on the CuS

surface (Lan et al., 2021). Additionally, the use of a long-

wavelength laser in the near-infrared (700–1000 nm) region

activated the photothermal effect of the nanoparticles, resulting

in minimal damage to normal tissue from tumor ablation (Lan

et al., 2021). Besides Cu, DSF can act through zinc chelation to

inhibit the activities of MMP-2 andMMP-9 (Kast and Halatsch,

2012).

TABLE 2 The candidate chemicals used in combination with DSF for anticancer therapy.

Combination of drugs Tumor type Evidence type Year and References

Temozolomide (TMZ) Glioblastoma (GBM) Clinical trials Huang et al. (2019)

Glioblastoma stem cells (GSCs) Cells Zirjacks et al. (2021)

Cisplatin Ovarian Cancer Animals Bai et al. (2021)

Head and neck squamous cell carcinoma (HNSCC) Cells Yao et al. (2021)

Mammary cancer Cells Yang et al. (2019)

Prostate adenocarcinoma Cells O’Brien et al. (2012)

Atypical teratoid/rhabdoid tumor (AT/RT) Animals Jangra et al. (2020)

Bladder cancer Cells Kita et al. (2019)

Testicular germ cell tumors Animals Schmidtova et al. (2019)

Esophageal squamous cell carcinoma Animals Jivan et al. (2018)

Metastatic non-small cell lung cancer Clinical trials Nechushtan et al. (2015)

Nasopharyngeal carcinoma (NPC) Animals Li et al. (2020)

Auranofin Pediatric glioma Cells Meier et al. (2021)

Hepatoma Cells/Animals Huang et al. (2016a)

Ovarian cancer Cells Papaioannou et al. (2014)

Gemcitabine (dFdC) Glioblastoma (GBM) Cells Tesson et al. (2017)

Mammary cancer Animals Liu et al. (2021a)

Pancreatic ductal adenocarcinoma (PDAC) Cells/Animals Kim et al. (2013)

Colon cancer Cells Guo et al. (2010)

Regorafenib Glioblastoma (GBM) Animals Zhao et al. (2018)

Carbenoxolone Glioblastoma (GBM) Animals Mettang et al. (2018)

CUSP9/ Temozolomide (TMZ) Glioblastoma stem cells (GSCs) Cells Skaga et al. (2019)

Paclitaxel Mammary cancer Cells Liu et al. (2013)

Lung adenocarcinoma Animals Mohammad et al. (2019)

Docetaxel Mammary cancer Cells Swetha et al. (2020)

Doxorubicin Osteosarcoma Cells Mandell et al. (2022)

Mammary cancer Cells Rolle et al. (2020)

Acute myeloid leukemia (AML) Cells Xu et al. (2011)

5-Fluorouracil (5-Fu) Cervical carcinoma Cells Abidin et al. (2020)

Pancreatic ductal Adenocarcinoma (PDAC) Animals Cong et al. (2017)

Colorectal cancer (CRC) Cells Wang et al. (2003)

Arsenic trioxide (ATO) Pancreatic cancer Animals Dinnen et al. (2013)

All references listed in the table are the latest research progress.
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10.2 Disulfiram in combination with
standard chemotherapy drugs

In vitro cytotoxicity is enhanced by the addition of DSF to

standard chemotherapeutic agents (Rappa et al., 2013) such as

cisplatin (O’Brien et al., 2012), TMZ (Triscott et al., 2012),

paclitaxel (Yip et al., 2011), gemcitabine (Cunningham and

Chaiton, 2018), doxorubicin (Budman and Calabro, 2002),

cyclophosphamide (Moreb et al., 2012), 5-fluorouracil (Wang

et al., 2003), and adriamycin (Xu et al., 2011). The combination

regimens for DSF against gliomas are described below.

10.2.1 Disulfiram in combination with
temozolomide

The 5-year survival rate of patients with GBM treated with

radiation alone was 1.9%, and TMZ, in conjunction with

radiation therapy, only increased the rate to 9.8% (Triscott

et al., 2015). Additionally, TMZ toxicity is often not well

tolerated by patients, and other modalities of TMZ resistance,

such as MGMT expression, make it complicated (Triscott et al.,

2015).

DSF is highly effective in cases where cells develop TMZ

resistance (Triscott et al., 2012). DSF has synergistic activity

when combined with TMZ, which is highly effective against

TMZ-resistant cells (Lun et al., 2016). In the presence of low Cu

doses, DSF significantly enhanced TMZ activity in vitro (Lun

et al., 2016). In vivo studies have confirmed that DSF and Cu have

synergistic effects with TMZ and improve survival in mice with

in situ GBM tumors (Lun et al., 2016).

DSF can be safely used in combination with TMZ, although it

causes reversible neurotoxicity (Huang J. et al., 2016). At a

maximum tolerated dose (MTD) of 500 mg/day of DSF with

TMZ without concomitant Cu administration, slight

proteasomal inhibition of peripheral blood cells was observed

after 4 weeks, with an average reduction of approximately 5%

(Huang J. et al., 2016). A dose-response trend appeared with

doubling proteasome inhibition at a dose of 1000 mg/day (Huang

J. et al., 2016). The results of a phase II clinical study in

23 patients showed that adding DSF/Cu to TMZ was safe and

well tolerated in TMZ-resistant IDH wild-type GBM (Huang

et al., 2019).

10.2.2 Disulfiram in combination with cisplatin
DSF enhances cisplatin-induced cytotoxicity by directly

damaging DNA (O’Brien et al., 2012). Activating transcription

factor 3 (ATF3) exerts a pro-apoptotic effect in response to

cisplatin by directly binding to and activating vascular

endothelial cells (O’Brien et al., 2012). It has been shown that

the combination of cisplatin and DSF plays a synergistic role in

inducing ATF3 protein expression and promoting tumor cell

death (O’Brien et al., 2012). Adding DSF to the combination

regimen of cisplatin and vincristine is well tolerated in antitumor

therapy (Nechushtan et al., 2015). A dose of 40 mg DSF, with a

half-life of approximately 7 hours, can be administered three

times daily to improve its therapeutic effect with minimal side

effects (Nechushtan et al., 2015). Significant neurotoxicity has

not been reported with this combination therapy, besides fatigue

(Nechushtan et al., 2015).

DSF may assist cisplatin in enhancing cytotoxic effects. This

strategy appears to be safe, but the in vivo efficacy in glioma

patients remains unclear.

10.2.3 Disulfiram in combination with auranofin
A study of glioma stem cells in children found that DSF

killed glioma stem cells at low concentrations and killed cell

lines at slightly higher concentrations (Meier et al., 2021). The

addition of auranofin increased DSF efficiency, and the

synergistic effect was more pronounced in differentiated cells

than in undifferentiated cells (Meier et al., 2021). Auranofin was

also used in combination with DSF in the CUSP9 treatment

program (Skaga et al., 2019).

10.2.4 Combination with coordinated
undermining of survival paths

DSF with aprepitant, auranofin, captopril, celecoxib,

itraconazole, minocycline, quetiapine, and sertraline

constituted a CUSP9 regimen that was used in combination

with TMZ to synergistically disrupt the active survival pathway in

GBM, block multiple signaling pathways, and make GBM

vulnerable to the cytotoxic effects of TMZ (Skaga et al., 2019).

A study of patient-derived glioblastoma stem cell (GSC)

cultures from 15 patients with GBM showed that

combining CUSP9 with TMZ produced a synergistic effect

compared to the single drug (Skaga et al., 2019). CUSP9,

combined with TMZ, was more effective than TMZ

monotherapy in terms of the clinical plasma concentrations

(Skaga et al., 2019). The CUSP9* regimen was generated based

on the CUSP9 regimen, comprising DSF in combination with

aprepitant, artesunate, auranofin, captopril, celecoxib,

itraconazole, sertraline, and ritonavir (Kast et al., 2014). All

nine drugs in the CUSP9* regimen were FDA-approved, each

inhibiting one or more of the important GBM growth

pathways (Kast et al., 2014).

DSF and auranofin have synergistic effect even without the

other components of a CUSP9 regimen. All these might be the

powerful adjuncts to TMZ chemotherapy. However, the side

effects of CUSP9 or CUSP9* regimens combined with multiple

agents deserve further clinical study.

10.2.5 Disulfiram in combination with
gemcitabine

Gemcitabine (2,2′-difluorodeoxycytidine, dFdC) is a

deoxyribonucleic acid analogue that can be used as a single

agent or combined with other anticancer drugs (Metro et al.,

2010). Gemcitabine is active against a wide range of hematological

and solid cancers. It is one of the few classical anticancer drugs that
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can pass through the BBB, penetrate the tumor mass, and be

effectively converted to its active form in GBM tissue (Metro

et al., 2010). However, its use in GBM chemotherapy is

limited by the high resistance of GBM cells to dFdCs (Liu

et al., 2012). Therefore, it is currently used mainly in

combination with radiotherapy as a radiosensitizer for

GBM treatment (Liu et al., 2012). DSF can synergistically

enhance gemcitabine cytotoxicity and reverse gemcitabine

resistance in cancer cell lines through ROS induction and

inhibition of the ALDH and NF-κB pathways (Liu et al., 2012;

O’Brien et al., 2012). In preclinical studies, DSF and its

derivative pyrrolidine dithiocarbamate have been

successfully used to enhance gemcitabine efficacy,

particularly through NF-κB inhibition and oxidative stress

generation (Iljin et al., 2009; Tesson et al., 2017). Increased

oxidative stress due to DSF/Cu interactions with glutathione

sensitizes cancer cells to gemcitabine treatment (Iljin et al.,

2009; Tesson et al., 2017).

10.2.6 Disulfiram in combination with
carbenoxolone

Carbenoxolone is mainly used to treat gastric ulcers and other

types of inflammation (Connors, 2012) and can play a role in

inhibiting tumor cell growth by interfering with intracellular

signaling through inhibiting ligand proteins (Zhang et al.,

2003). DSF and carbenoxolone inhibit distinct interactions

of GBM with the brain tissue microenvironment and stress-

induced GBM cell-matrix adhesion with gap junction-

mediated intercellular communication (Mettang et al., 2018).

Animal experiments have shown that the combined use of DSF,

carbenoxolone, and TMZ reduces tumor size in an in situ

mouse model (Mettang et al., 2018). Tumor-initiating and

adherent differentiated cells form gap junctions, and

carbenoxolone can block adherent differentiated cells and

affect intercellular communication (Mettang et al., 2018).

Adherent differentiated cells are more sensitive to DSF

treatment, and DSF interferes with cell-matrix adhesion by

modulating NF-κB signaling (Mettang et al., 2018).

Table 2 shows the candidate chemicals used in combination

with DSF for cancer treatment.

10.3 Disulfiram in combination with
radiotherapy

DSF has a radiosensitizing effect on GBM cells (Koh et al.,

2019) and enhances the radiosensitivity of AT/RT cell lines by

increasing DNA damage, apoptosis, and autophagy (Lee et al.,

2017). Combining DSF and Cu enhanced radiosensitivity by

inducing cell death or interfering with DNA repair (Liu C. C.

et al., 2021).

Thus, the efficacy of both chemotherapy and radiotherapy

might be enhanced by DSF.

11 Adverse effects of disulfiram

DSF is a safe and well-tolerated drug, with mild side effects

(Shirley et al., 2021). With chronic lymphocytic leukemia and

normal lymphocytes (Wickström et al., 2007), invasive cancer and

normal endothelial cells (Shian et al., 2003), and glioblastoma and

normal astrocytes (Hothi et al., 2012), DSF is selectively toxic and

kills human cancer cells (Paranjpe et al., 2014). The ability of

different organs to resist endogenous and environmentally derived

alkylating agents may be compromised, and this unrepaired DNA

damage, particularly in regulatory oncogenes, may manifest as

deleterious mutations and promote genomic instability (Paranjpe

et al., 2014). DSF combined with Cu has an enhanced role in killing

cancer cells; however, Cu-mediated cytotoxicity is also significantly

increased in normal cells (Choi et al., 2015). The combined use of

Cu and Zn in therapy is potentially dangerous because they are

teratogenic and may lead to developmental defects (Choi et al.,

2015). High DSF doses are hepatotoxic (Triscott et al., 2015), and

rare cases of severe atopic hepatitis may occur, along with a risk of

neuropathy; however, these symptoms are reversible after

discontinuation (Huang J. et al., 2016). The mechanisms of

neurological side effects of DSF remain unclear and may

involve free acid radicals, inhibition of certain enzymes,

calcium-induced neuronal toxicity, synergistic activity of

neurotoxic drugs/chemicals, and other mechanisms (Kulkarni

et al., 2013). If ethanol is ingested during DSF treatment, the

large amounts of acetaldehyde produced from ethanol can cause

severe nausea, headache, vomiting, flushing, and physical

discomfort (Kast and Belda-Iniesta, 2009).

DSF is considered a relatively safe treatment since most of its

adverse effects resolve after discontinuation. The mechanism of

neuropathy caused by DSF still requires further research.

12 Conclusion

Malignant gliomas have a poor prognosis and high recurrence

rate, posing a major threat to global public health. Current

conventional treatment modalities hardly eradicate gliomas;

therefore, new therapeutic approaches are urgently needed. Drug

repurposing approaches have provided new research ideas for

glioma treatment. This can help the pharmaceutical industry and

researchers identify new uses for existing drugs. The expanding

research on gliomas through drug repurposing approaches has

made DSF a potential adjuvant for glioma treatment. DSF has a

good safety profile and is an economical drug that is expected to play

a broader role in the future treatment of gliomas. Further

epidemiological studies should be performed to investigate the

relationship between DSF and the risk to or survival of patients

with gliomas. More clinical trials are needed to further refine

treatment options for DSF. However, drug repurposing may not

yet reach its full potential in the field of glioma, and new therapeutic

agents through drug repurposing deserve further exploration.
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