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Brain network analysis has been widely applied in neuroimaging studies. A

hyper-network construction method was previously proposed to characterize the

high-order relationships among multiple brain regions, where every edge is connected to

more than two brain regions and can be represented by a hyper-graph. A brain functional

hyper-network is constructed by a sparse linear regression model using resting-state

functional magnetic resonance imaging (fMRI) time series, which in previous studies has

been solved by the lasso method. Despite its successful application in many studies,

the lasso method has some limitations, including an inability to explain the grouping

effect. That is, using the lasso method may cause relevant brain regions be missed

in selecting related regions. Ideally, a hyper-edge construction method should be able

to select interacting brain regions as accurately as possible. To solve this problem,

we took into account the grouping effect among brain regions and proposed two

methods to improve the construction of the hyper-network: the elastic net and the group

lasso. The three methods were applied to the construction of functional hyper-networks

in depressed patients and normal controls. The results showed structural differences

among the hyper-networks constructed by the three methods. The hyper-network

structure obtained by the lasso was similar to that obtained by the elastic net method but

very different from that obtained by the group lasso. The classification results indicated

that the elastic net method achieved better classification results than the lasso method

with the two proposed methods of hyper-network construction. The elastic net method

can effectively solve the grouping effect and achieve better classification performance.

Keywords: depression, hyper-network, elastic net, group lasso, classification

INTRODUCTION

Evidence from numerous anatomical and physiological studies suggests that cognitive processing
depends on the interaction among distributed brain regions (Sporns, 2014). A brain functional
network is a simplified representation of brain interactions and has been widely applied in studies of
mental disorders, including epilepsy (Zhang et al., 2012), major depressive disorder (MDD) (Kaiser
et al., 2016), Alzheimer’s disease (Pievani et al., 2011), and schizophrenia (Lynall et al., 2010). The

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00025
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00025&domain=pdf&date_stamp=2018-05-15
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:feiyu_guo@sina.com
https://doi.org/10.3389/fninf.2018.00025
https://www.frontiersin.org/articles/10.3389/fninf.2018.00025/full
http://loop.frontiersin.org/people/308399/overview
http://loop.frontiersin.org/people/533583/overview
http://loop.frontiersin.org/people/393401/overview
http://loop.frontiersin.org/people/400589/overview


Guo et al. Classification Method for Brain Functional Network

rapid development of neuroimaging technology provides a good
foundation for research on brain functional networks. In recent
years, the use of resting-state functional magnetic resonance
imaging (fMRI) for mapping neural functional networks has
attracted increasing attention. A low frequency blood oxygen
level-dependent (BOLD) signal is associated with spontaneous
neuronal activity in the brain (Zeng et al., 2012), and the
interaction among brain regions in a resting state can be
represented by the functional network constructed by the BOLD
signal.

Various analytical methods have been proposed for modeling
brain functional connectivity from fMRI data, including
correlation (Bullmore and Sporns, 2009; Sporns, 2011; Wee
et al., 2012; Jie et al., 2014), graphical modeling (Bullmore
et al., 2000; Chen and Herskovits, 2007), partial correlation
(Salvador et al., 2005; Marrelec et al., 2006, 2007), and sparse
representation methods (Lee et al., 2011; Wee et al., 2014).
The correlation method is the most common and has been
successfully applied to the classification of patients and normal
controls (Zeng et al., 2012; Ye et al., 2015). However, one
of its main limitations is that it can only capture pairwise
information and therefore cannot fully reflect the interactions
among multiple brain regions (Huang et al., 2010). Moreover,
a network based on correlations may include a number of false
connections due to the arbitrary selection of thresholds (Wee
et al., 2014). The other methods also have their shortcomings.
When used to study brain connections, graphical models lack
prior knowledge (Huang et al., 2010), such as which brain
regions should be involved and how they are connected. Partial
correlation estimation is usually achieved using the maximum
likelihood estimation (MLE) of the inverse covariance matrix.
However, a limitation of this method is that the data sample
size required for a reliable estimate is much larger than the
number of modeled brain regions (Huang et al., 2010). Sparse
inverse covariance estimation (Zhou et al., 2014; Fu et al., 2015)
resolves the deficiencies of MLE to some extent, but there are still
problems with this approach. Although it is effective for learning
sparse connection networks, it is not suitable for evaluating the
connections due to shrinkage effects (Smith et al., 2011). Sparse
representation can filter out false or insignificant connections by
applying regularization parameters to produce sparse networks.
However, apart from sparse structures, brain functional networks
usually include other types, such as small world, scale-free
topology, hierarchical, and modular structures (Sporns, 2010).
Wee et al. (2014) adopted the group lasso method using l2,1
regularization for functional connectivity modeling to estimate
networks with the same topology but different connection
strengths, while ignoring the network topology patterns of
specific groups.

The traditional methods describe the relationship between
two regions. However, later studies indicate that interactions take
place not only between two regions, but among multiple regions.
Recent neuroscience studies have identified significant higher-
order interactions in neuronal spiking, local field potentials, and
cortical activities (Montani et al., 2009; Ohiorhenuan et al., 2010;
Yu et al., 2011). In particular, studies suggest that one brain
region predominantly interacts directly with a few other brain

regions in neurological processes (Huang et al., 2010). Functional
networks based on pairwise relationships can thus only reflect
the second-order relationships between brain regions, ignoring
the high-order relationships that may be crucial for studies of
underlying pathology.

The hyper-network (Jie et al., 2016) method was proposed to
address this issue. Hyper-networks (Jie et al., 2016) are based
on hyper-graph theory. Each node represents a brain region
and each hyper-edge includes many nodes that represent the
interactions among multiple brain regions. The existing method
of constructing brain functional hyper-network is to use sparse
regression model. According to the model, the sparse solution
could be produced, and the nonzero elements in sparse solution
represent correlation. Using the sparse linear regression model,
a region can be represented as a linear combination of other
regions and its interactions with a few other regions can be
obtained. Insignificant and false interactions are forced to zero.
In hyper-network construction, the process of obtaining sparse
solution is solved by the least absolute shrinkage and selection
operator (lasso) method (Jie et al., 2016). However, the limitation
of using the lasso method to solve the sparse linear regression
model is that when constructing the hyper-edges of a designated
brain region, if the pairwise correlations among other brain
regions are very high, then the lasso tends to select only one
region from the group with a grouping effect (Zou and Trevor,
2005). As this may mean that some related areas cannot be
selected, the method lacks the ability to explain the grouping
information.

To solve the problem of the grouping effect among brain
regions, we propose two alternative methods to improve the
construction of a hyper-network: (1) the elastic net (De Mol
et al., 2008; Furqan and Siyal, 2016; Teipel et al., 2017)
and (2) the group lasso method (Friedman et al., 2010a; Yu
et al., 2015; Souly and Shah, 2016). Then we extracted features
using the different clustering coefficients defined by hyper-
network to depict the functional brain network topology and
performed non-parametric test to select those features with
significant difference. Finally, we applied a multi-kernel support
vector machine (SVM) technique on the selected features for
classification. Besides, we analyzed network topology based
on three methods using hyper-edges and average clustering
coefficients. Furthermore, the comparative analysis of depressed
patients was performed via using the classification features
with significant differences between groups. The classification
results showed that the elastic net method achieved better
classification results than the lasso method. In addition, we
further analyzed the influence of the model parameters and the
classifier parameters.

MATERIALS AND METHODS

The hyper-network method of brain network classification
involves data acquisition and preprocessing, construction of
the hyper-network, feature extraction, feature selection and
classification. In this section, we describe each of these steps in
detail. Figure 1 illustrates the whole process.

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2018 | Volume 12 | Article 25

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Guo et al. Classification Method for Brain Functional Network

FIGURE 1 | Framework of brain network classification method based on hyper-network.

Data Acquisition and Preprocessing
Before starting the study, written agreement was obtained from
each participant in accordance with the recommendations of the
Shanxi Medical Ethics Committee (reference number: 2012013).
All of the participants signed written informed consent according
to the Helsinki Declaration. Seventy subjects were recruited: 38
first-episode, drug-naive patients with MDD (15 male; mean
age 28.4 ± 9.68 years, range 17–49) and 28 healthy right-
handed volunteers (13 male; mean age 26.6 ± 9.4 years, range
17–51). Data from four participants were discarded due to
problems with the data. Resting-state fMRI was performed on
all subjects using a 3T magnetic resonance scanner (Siemens
Trio 3-Tesla scanner, Siemens, Erlangen, Germany). The detailed
demographics and Clinical Characteristics of the Subjects were
illustrated by Table 1.

Data acquisition was completed at the First Hospital of Shanxi
Medical University. All scans were performed by radiologists
familiar with magnetic resonance imaging. During the scan,
subjects were asked to stay awake, and to relax and close their
eyes while not thinking about anything in particular. Each scan
consisted of 248 contiguous EPI functional volumes with the scan
parameters set as follows: axial slices = 33, repetition time =

2,000ms, echo time = 30ms, thickness/skip = 4/0mm, field of
view = 192 × 192mm, matrix = 64 × 64mm, flip angle = 90◦.
Due to the instability of the initial magnetic resonance signal and
the adaptability of the subjects to the environment, the time series
of the first 10 functional volumes were discarded. The detailed
scanning parameters are provided in the Supplemental Text S1.

TABLE 1 | Demographics and Clinical Characteristics of the Subjects.

CON MDD P-value

Age(years) 17–51 (26.6 ± 9.4) 17–49 (28.4 ± 9.68) 0.44a

Sex (male/female) 13/15 15/23 0.57b

Handedness (R/L) 28/0 38/0 –

HAMD N/A 15–42 (22.8 ± 13.3) –

Data are presented as the range of minimum to maximum (mean ± SD). HAMD, Hamilton

Depression Rating Scale; MDD, major depressive disorder; NA, nonapplicable; CON,

normal controls.
aThe P-values were obtained by two-sample two-tailed t-test.
bThe P-value were obtained by two-tailed Pearsons χ 2-test.

Functional data preprocessing was performed using the
statistical parametric mapping (SPM8) software package (http://
www.fil.ion.ucl.ac.uk/spm). First, the datasets were corrected for
slice timing and head motion. Two samples from depressed
patients and two from controls that exhibited more than
3.0mm of translation and 3 degrees of rotation were discarded,
and thus were not included in the 66 samples for data
analysis. The corrected images were optimized using 12-
dimensional affine transformation and spatially normalized
to 3 × 3 × 3mm voxels in the Montreal Neurological
Institute standard space. Finally, linear detrending and band-
pass filtering (0.01–0.10Hz) were performed to reduce the
effects of low-frequency drift and high-frequency physiological
noise.
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Hyper-Graph Theory
As a branch of mathematics, graph theory has been widely
applied to analyze the functional interaction between brain
regions, mainly by unambiguously discretizing the brain into
distinct nodes and their interconnecting edges (Fornito et al.,
2013). A traditional graph only characterizes two correlated
nodes but ignores the high-order information, which can be
represented by a hyper-graph. The biggest difference between a
hyper-graph and a traditional graph is that one hyper-edge of
the hyper-graph can connect to more than two nodes. Compared
with the traditional graph, the hyper-graph pays more attention
to the relationships than to the nodes. In short, the hyper-edge
contains an unfixed number of points, which means it is a
kind of intuitive mathematical expression reflecting multivariate
relational data. Hyper-graph s are widely applied in many fields
of computer science (Mäkinen, 1990), especially the Internet of
Things, social networks, large-scale integrated design, relational
databases, biomedicine, and many other applications where
there are complex associations among large numbers of non-
independent data points. Researchers are increasingly finding
that multivariate relationships can more naturally express the
internal relations and patterns hiding in information. In previous
similar studies, hyper-graph s have been successfully applied to
image classification (Yu et al., 2012), protein function prediction
(Gallagher and Goldberg, 2013), and pattern recognition (Ren
et al., 2011). Figure 2 illustrates an example of a hyper-graph.

The mathematical expression of a hyper-graph can be
represented by H = (V,E) (Kaufmann et al., 2009), where V
represents a set of nodes and E represents a set of hyper-edges,
and hyper-edge e ∈ E is a subset of V. If any two hyper-edges of
a hyper-graph are not contained in each other, then the hyper-
graph is called an irreducible or simple hyper-graph (Berge,
1989). We can use a |V| × |E| incidence matrix to represent H:

H(v, e) =

{

1, if v ∈ e
0, if v /∈ e

(1)

FIGURE 2 | Hyper-graph. A hyper-graph in which each hyper-edge can

connect more than two nodes. Here, the hyper-graph contains 7 nodes and 4

edges. V = {v1,v2,v3,v4,v5,v6,v7}, E = {e1,e2,e3,e4}, e1 = {v1,v2}, e2 =

{v3,v4,v6}, e3 = {v5,v6},e4 = {v5,v6,v7}.

H(v, e) represents the corresponding element in the incidence
matrix, v ∈ V represents the node, and e ∈ E represents the
hyper-edge. Nodes are the column elements of the incidence
matrix and hyper-edges are the row elements. If node v belongs
to the hyper-edge e, H(v, e) = 1, and if it does not, H(v, e) = 0.

Based on H, the node degree of each vertex v is represented as

d(v) =
∑

e∈E

H(v, e) (2)

The edge degree of hyper-edge e is represented as

δ(e) =
∑

v∈V

H(v, e) (3)

Dv and De denote the diagonal matrices of node degrees d(v) and
hyper-edge degrees δ(e), respectively. The adjacency matrix A of
the hyper-graph is defined as

A = HHT − Dv (4)

HT is the transpose of H. A(i,j) represents the number of hyper-
edges containing the nodes vi and vj.

Hyper-Network Construction
According to the anatomical automatic labeling (Tzourio-
Mazoyer et al., 2002) template, the brain can be parcellated into
90 anatomical regions of interest (ROIs; 45 in each hemisphere),
with each ROI representing a node of the functional brain
network. Each regional mean time series was regressed against
the average cerebral spinal fluid and white matter signals as
well as the six parameters from motion correction. According to
the sparse linear regression method, the residuals were used to
construct the hyper-network (Jie et al., 2016). Using the sparse
linear regression model, a region can be represented as a linear
combination of other regions, and its interactions with a few
other regions can be obtained. Insignificant and false interactions
are forced to zero.

The sparse linear regression model is represented as follows:

xm = Amαm + τm (5)

xm denotes the average time series of the designated m-th ROI.
Am = [x1, . . . , xm−1, 0, xm+1, . . . , xM] denotes the data matrix
that includes the mean time series of the ROIs, except for the
m-th ROI, which is set to 0. αm denotes the weight vector of
the degree of influence on other ROIs to the m-th ROI, and τm
denotes a noise term. The corresponding ROIs of the nonzero
element in αm are the ROIs that interact with the designated brain
region. The zero element indicates that the corresponding ROI is
meaningless for accurately estimating the time series of the m-th
ROI.

Solving the Sparse Linear Regression Model Based

on the Lasso Method
In the literature, the brain functional hyper-network is
constructed using a sparse linear regression model, which
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is commonly solved by the lasso method. The optimization
objective function is

min
αm

‖xm − Amαm‖2 + λ‖αm‖1 (6)

This solves the l1 norm, and xm, Am, and αm have the same
meaning as in Equation (5). ‖ . ‖2 denotes the l2 norm, and
‖ . ‖1 denotes the l1 norm. λ is the regularization parameter
that controls the sparsity of the model, and different λ values
correspond to different sparse solutions. The larger the value of
λ, the sparser the model; that is, there are more zeros in the αm.
The smaller the value of λ, the more dense the model; that is,
there are more non-zeros in the αm. Therefore, the value of λ had
a range. However, different experimental data will have different
λ ranges and previous research standardized the range of λ from
0 to 1 based on λmin and λmax that made λ comparable (Liu et al.,
2011). Thus, in current studies, the value of λ was set from 0.1
to 0.9 in increment of 0.1. The SLEP package (Liu et al., 2011)
was adopted to solve the optimization problem. For each subject,
a hyper-network was constructed by using sparse representation
based on lasso method. A node was a brain region and a hyper-
edge em included a centroid ROI (i.e., m-th ROI) and a few of
other brain regions with the corresponding non-zero elements in
the weight vector αm computed in Formula (6). As mentioned
above, a centroid ROI should generate a corresponding weight
vector αm, which generated a corresponding hyper-edge. But to
reflect the multi-level interactions among brain regions, for each
ROI, a group of hyper-edges was generated by varying the value
of λ in a range from 0.1 to 0.9. Thereby, for each subject, a 90 ∗

810 matrix was generated as a subject included 90 ROIs, which
represented a hyper-network is constructed by lasso method.

Solving the Sparse Linear Regression Model Based

on the Elastic Net Method
Although the lasso method has been successfully applied in many
studies, it also has limitations. The lasso is not robust when
the variables are high correlations and will select one randomly
and neglect the others (Friedman et al., 2010b). Obviously, the
lasso method cannot solve the grouping effect, and could cause
some relevant brain areas to be missed in the process of selecting
related areas within a designated region. If there is a group of
brain regions among which the pairwise correlations are very
high, then the lasso tends to select only one region from the
group and does not care which one is selected (Zou and Trevor,
2005).The ideal hyper-edge construction method should be able
to select the interacting brain regions as accurately as possible.
To solve the problem of the grouping effect among brain regions,
we propose two methods to improve the construction of a hyper-
network: the elastic net method and the group lasso method.

The elastic net is an extension of the lasso that is robust
to extreme correlations among the predictors (Friedman et al.,
2010b). Similar to the lasso, the elastic net can also solve the
problem of sparse representation. The difference is that the elastic
net can overcome the limitation of the lasso to select related
variables in a group when solving the linear regression model to
construct the hyper-edges, thus addressing the grouping effect.
The elastic net uses the mixed penalty term of l1 norm(lasso)

and l2 norm(ridge regression), which can be represented as the
following regularized objective function optimization problem:

min
αm

‖xm − Amαm‖2 + λ1‖αm‖1 + λ2 ‖αm‖
2
2 (7)

xm, Am, and αm have the same meaning as in Equation (5). λ1 is
the l1-norm regularization parameter, and λ2 is the regularization
parameter for the squared l2-norm. Despite elastic net has
one more parameter (l2-norm) than lasso, it greatly effects
the calculation result and works well in solving the grouping
effect (Furqan and Siyal, 2016). Because l2-norm (Hoerl and
Kennard, 2000) performs well withmany variables that are highly
correlated and can effectively adjust the high correlation between
independent variables so that themodel can automatically choose
related features in a group with grouping effect (Friedman et al.,
2010b). Therefore, with l1 being for automatic variable selection
and l2 encouraging grouped selection (Ogutu et al., 2012), the
integration of l1 and l2 should greatly improve the construction
of hyper-network. Similar to the lasso, we constructed a hyper-
network for each subject, in which ROIs were the nodes and the
hyper-edge em included a centroid ROI (i.e., m-th ROI) and the
corresponding ROIs of the nonzero elements in αm computed in
formula (7). Like the lasso method, a centroid ROI corresponded
to a hyper-edge. For each ROI, with the value of λ2 fixed, a group
of hyper-edges was generated by varying the value of λ1 in a range
from 0.1 to 0.9 in increments of 0.1. In the experiment, the value
of λ2 was chosen as 0.2 because this was found to provide the
highest classification accuracy (see the Methodology section for a
detailed description of the analysis).

Solving the Sparse Linear Regression Model Based

on the Group Lasso Method
The clustering method was used to group the strongly correlated
brain regions, then the group lasso method was adopted to
construct the hyper-edges, which can also help to solve the
grouping effect among brain regions. The lasso and elastic net
methods are used to select single variables (Yuan and Lin, 2006),
whereas the group lasso can select groups of variables based on
predefined variable groups (Meier et al., 2008). We first clustered
the 90 brain regions according to the average time series of
ROIs when constructing the hyper-network. Here, the k-medoids
(Park and Jun, 2009) algorithm was adopted. First, the pairwise
similarity values among brain regions were calculated: higher
values indicate greater similarity between the two samples. The
clustering classified the brain areas into k groups, each of which
represented a class of objects, under two conditions: (1) each
group must contain at least one object and (2) each object must
belong to a group. To stabilize the clustering as much as possible,
k-means [Arthur and Vassilvitskii, 2007] was used to select the
k initial cluster centers. A point was randomly selected as the
first initial cluster center, and each subsequent center was chosen
randomly from the remaining data points with a probability
proportional to its distance from the point closest to the existing
cluster center. We repeated the clustering 10 times to select the
best clustering result. The k-value used in the experiment can
affect the network structure and classification performance. The
highest classification accuracy was obtained when k was equal
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to 48 (see the Methodology section). Then, the group lasso was
adopted to select the brain areas for the construction of the
hyper-edge, with the following optimization objective function:

min
αm

‖xm − Amαm‖2 + β

k
∑

i=1

‖αmGi‖2,1 (8)

β is the l2,1-norm regularization parameter, which is regarded as
an intermediate between the l1- norm and l2-norm penalty, with
different values corresponding to different degrees of sparsity.
The greater the value of β , the sparser the model, and the fewer
the number of groups selected. It can perform variable selection
effectively in the group level (Yuan and Lin, 2006). That is, if there
is a group of brain regions in which the pairwise correlations are
relatively high, the group lasso considers this group as a whole
and determines whether it is important to the problem. The αm

is divided into k non-overlapping groups by clustering, and αmGi

represents the i-th group. Similarly, we constructed the hyper-
network with ROIs as the nodes, the hyper-edge including the
m-th ROI and the corresponding ROIs of the nonzero elements
in αm computed in Formula (8). A hyper-edge was generated
by a centroid ROI. For each ROI, a group of hyper-edges was
generated by varying the value of β in a range from 0.1 to 0.9
in increments of 0.1.

Feature Extraction
The feature extraction was carried out on the three hyper-
networks constructed by the three methods. The clustering
coefficient is widely applied as a metric to measure the local
characteristics of a network. However, the clustering coefficient
in a hyper-network is not always defined in exactly the same way.
Here, the feature extraction selected three different definitions
of the clustering coefficient (Gallagher and Goldberg, 2013),
reflecting different angles. The first type of clustering coefficient,
HCC1, computes the number of adjacent nodes that have
connections not facilitated by node v. The second type, HCC2,
calculates the number of adjacent nodes that have connections
facilitated by node v. The third type,HCC3, calculates the amount
of overlap amongst adjacent hyper-edges of node v. The formula
is as follows:

HCC1(v) =
2
∑

u,t∈N(v) I(u, t,¬v)
∣

∣N(v)
∣

∣

(
∣

∣N(v)− 1
∣

∣

) (9)

HCC1(v) represents the first type of clustering coefficient, and
u,t,v represent the nodes.N(v) = {u ∈ V : ∃e ∈ E, u, v ∈ e}, where
V represents a set of nodes, E represents a set of hyper-edges, e
represents a hyper-edge, and N(v) represents the set of nodes of
other hyper-edges containing node v. If ∃ei ∈ E, such as u, t ∈ ei,
but v /∈ ei, then I(u, t,¬v) = 1; otherwise, I(u, t,¬v) = 0.

HCC2(v) =
2
∑

u,t∈N(v) I
′(u, t, v)

∣

∣N(v)
∣

∣

(
∣

∣N(v)
∣

∣ − 1
) (10)

HCC2(v) represents the second type of clustering coefficient. u,t,v
and N(v) have the same meaning as in Equation (9). If ∃ei ∈ E,

such as u, t, v ∈ ei, then I′(u, t, v) = 1; otherwise, I′(u, t, v) = 0.

HCC3(v) =
2
∑

e∈S(v) (|e| − 1) −
∣

∣N(v)
∣

∣

∣

∣N(v)
∣

∣

(
∣

∣S(v)
∣

∣ − 1
) (11)

HCC3(v) represents the third type of clustering coefficient. |e|

represents the number of nodes in a hyper-edge. v and N(v) have
the same meaning as in Equation (9). S(v) = {ei ∈ E : v ∈ ei},
where v represents a node, ei represents a hyper-edge, and S(v)
represents the set of hyper-edges containing node v.

The three clustering coefficients reflect the local clustering
properties of the hyper-network from different perspectives.
The definition of each clustering coefficient was extracted
from the hyper-network as features. Multiple linear regression
analyses were applied to evaluate the confounding effects of age,
gender, and educational attainment for each network property.
Because the three clustering coefficients define local properties,
for simplicity, we calculated the average clustering coefficient
(average HCC1, HCC2, and HCC3) for each subject (using the
average metric values for 90 brain areas), and added it to the
multiple linear regression as the independent variable. The results
showed that no significant correlations were found between the
network properties and the potential confounding variables. (The
results are presented in detail in Supplemental Text S2).

Feature Selection and Classification
Some of the features extracted from the hyper-network may
be irrelevant or redundant. To select the key features for
classification, the most discriminative features were chosen
according to the statistical difference analysis. Specifically,
Kolmogorov and Smirnov’s nonparametric permutation test
(Fasano and Franceschini, 1987) was performed to compare 270
node properties between the MDD group and the control group,
corrected using Benjamini and Hochberg’s false-discovery rate
(FDR) method (q = 0.05) (Benjamini and Hochberg, 1995).The
local properties with significant between-group differences
according to the nonparametric permutation test were used as
the classification features to construct the classification model.

Classifier training was performed using the libsvm
classification package (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/). The radial basis function (RBF) kernel was adopted for
the classification, and leave-one-out cross-validation was used
to evaluate the performance. Suppose there are N features, with
each feature taking a turn as the testing set, and the remaining
N−1 features as the training set. The parameter optimizations of
c and g were carried out by the K-fold cross-validation method
using the training set (Hsu et al., 2003). The optimal parameters
of c and g which can achieve the highest training validation
classification accuracy were chosen to establish N different
models. The classification test was performed and the average
classification accuracy of the N models was selected. The mean
and standard deviation of the classification features needed to
be calculated for standardization. Because the random selection
of the initial seed point in the group lasso method affects the
classification result, the mean of 50 experiments was calculated
as the final classification result. In addition, the Relief algorithm
(Kira and Rendell, 1992) was selected to compare the importance
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of the chosen features (i.e., the extent of their contribution to
the classification) of the three methods in section Classification
Performance.

EXPERIMENTS AND RESULTS

Comparison of Network Structure Based
on Three Methods
We performed the following analyses to determine whether
there were significant differences among the hyper-networks
constructed by the three methods.

Hyper-networks were constructed for subjects in the control
and MDD groups and the hyper-edges were analyzed. The edge
degrees of the hyper-edges constructed by the three methods
were computed and their distribution is shown in Figure 3.

The results indicated that for both the MDD and the control
group, the edge degrees of hyper-edges constructed by lasso
and elastic net methods most lied in Equations (2)–(7), and the
distributions were also close. The hyper-edges constructed by

the group lasso method were different, with a broader range of
edge degrees than the other two methods and a relatively discrete
distribution.

For each brain region, the mean value of each group (CON
or MDD) was computed for each type of clustering coefficient,
and the acquired data were standardized. The brain regions were
sorted according to the size of the standardized metric value for
the lasso method, and according to the sequence of comparison
for the other two methods. A regression analysis was performed
to verify the associations between the network metrics obtained
by the two proposed methods and the original method. The
results showed that the lasso method was strongly related to the
elastic net method and weakly related to the group lasso method
(Figures 4, 5).

The average clustering coefficients (average HCC1, HCC2, and
HCC3) of each subject (using the average metric values for 90
brain areas) were calculated. Nonparametric permutation tests
were used to compare the differences in the average HCC1,
HCC2, and HCC3 among the hyper-networks constructed by the
three methods in the depression group and the normal control

FIGURE 3 | The distribution of the edge degree of hyper-edge obtained by three methods. Orange indicate the distribution of the edge degree of hyper-edge based

on lasso method. Green indicate the distribution of the edge degree of hyper-edge based on elastic net method. Blue indicate the distribution of the edge degree of

hyper-edge based on group lasso method. Error bars show standard deviation. (A) CON group. (B) MDD group. CON, normal control; MDD, major depressive

disorder.
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FIGURE 4 | Comparison and correlation analysis about the standardized metric values in CON Group. (A) Comparison that the brain regions were sorted according

to the size of the standardized metric value in the lasso method, and according to the corresponding sequence about the other two methods for comparison in CON

group. (B) Correlation analysis. Correlation analysis was performed to verify the associations between the network metrics obtained by the two proposed methods

and the original method. HCC1 indicate the first type of clustering coefficient; HCC2 indicate the second type of clustering coefficient; HCC3 indicate the third type of

clustering coefficient. P indicate the significance of correlation analysis. Adj.Rsqr, adjusted R square.

group, respectively, and the result was corrected using the FDR
method. Figure 6 shows the average clustering coefficients of
the hyper-networks for the two groups; the results suggest that
the hyper-networks obtained by the three methods contained
structural differences.

Brain Regions With Significant Differences
After constructing the hyper-network and extracting the features
based on the three methods, for each feature we carried out
a nonparametric permutation test to evaluate the difference
between the MDD and control groups for all subjects, corrected
using the FDR method. Table 2 and Figure 7 illustrate the brain
regions that showed significant between-group differences in the
three hyper-network construction methods.

Comparison of the regions obtained by the elastic net and
lasso methods indicated that there were more overlapping than
non-overlapping regions, including partial frontal areas [left
superior frontal gyrus (medial), right middle frontal gyrus, right
paracentral lobule], the bilateral rolandic operculums, partial
limbic lobe (right parahippocampal gyrus), partial subcortical
gray nucleus (left putamen), and partial occipital area (left lingual
gyrus). The hyper-networks produced by the lasso and elastic net
methods were similar, so there were more overlapping than non-
overlapping regions between the lasso and elastic net methods.

The group lasso result was much different from that of the lasso
method; there were more non-overlapping than overlapping
regions, including the left inferior frontal gyrus (triangular part),
left inferior frontal gyrus (orbital part), left paracentral lobule, left
median cingulate and paracingulate gyri, right median cingulate
and paracingulate gyri, right posterior cingulate gyrus, right
hippocampus, right angular gyrus, left precuneus, and right
lingual gyrus. These brain regions are mainly concentrated in the
frontal lobe and limbic system.

Classification Performance
We assessed the classification performance by measuring the
accuracy (the proportion of subjects correctly identified), the
sensitivity (the proportion of patients correctly identified), the
specificity (the proportion of controls correctly identified), and
balanced accuracy. Balanced accuracy is defined as the arithmetic
mean of sensitivity and specificity, and can avoid inflated
performance on imbalanced datasets (Velez et al., 2007).

We evaluated the classification performance of the three brain
network classificationmethods based on the lasso, elastic net, and
group lasso, and compared them with the traditional network
classificationmethod (denoted as TCN). The traditional network,
based on Pearson’s correlations, was constructed with sparsity set
from 5 to 40%. Three local properties were calculated: degree,
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FIGURE 5 | Comparison and correlation analysis about the standardized metric values in MDD Group. (A) Comparison that the brain regions were sorted according

to the size of the standardized metric value in the lasso method, and according to the corresponding sequence about the other two methods for comparison in MDD

group. (B) Correlation analysis. Correlation analysis was performed to verify the associations between the network metrics obtained by the two proposed methods

and the original method. HCC1 HCC1 indicate the first type of clustering coefficient; HCC2 indicate the second type of clustering coefficient; HCC3 indicate the third

type of clustering coefficient. P indicate the significance of correlation analysis. Adj.Rsqr, adjusted R square.

centrality degree, and node efficiency. To characterize the overall
characteristics of the metrics in the selected threshold space, the
AUC value of each property was calculated. We selected the
AUC values of the local properties that showed a significant
between-group difference in the KS nonparametric permutation
test as the classification features. The classification results of the
comparison methods are summarized in Table 3.

To compare the importance of the chosen features (i.e.,
the extent of their contribution to the classification) of the
three methods, the brain areas with significant between-group
differences based on the lasso method were compared with the
results obtained by the other two methods. We combined the
brain areas with no overlap between the two methods (the lasso
and the elastic net, and the lasso and the group lasso). The Relief
algorithm (Kira and Rendell, 1992) was adopted to calculate the
weights of the corresponding features of these brain areas. The
results in Figure 8 indicate that the classification weight of the
elastic net method was higher than that of the lasso method and
that of the group lasso was lower.

For all four methods, the best classification accuracy was
obtained using the hyper-network construction method based
on elastic net, so we analyzed the differences in the connection
patterns between the MDD and control groups with the elastic
net method. The average hyper-edges of the MDD and control
groups were calculated based on the brain areas with significant

between-group differences in the elastic net method. First, for
each group of subjects, we constructed the hyper-edges according
to the fixed value of λ1 and Equation (7), computing the number
of occurrences of each brain area in each group of hyper-edges.
Then, the average of edge degrees of the hyper-edges for all
subjects was calculated, denoted as d. If it was not an integer,
then d was rounded to the nearest integer (greater than or equal
to). Finally, the number of occurrences of the brain area in each
group of hyper-edges was sorted from high to low, and the first d
brain areas were chosen to construct the corresponding average
hyper-edges. Figure 9 illustrates the average hyper-edges based
on the 12 ROIs listed in Table 2 (elastic net) with λ1 = 0.3. The
left side of each subgraph in Figure 9 shows the average hyper-
edges of the control group and the right side shows those of the
depression group. The green nodes in each subgraph represent
the brain areas with significant between-group differences.

Figure 9 shows that the hyper-edges of the MDD and control
groups were discrepant. For example, Figure 9D shows that in
the MDD group, the right rolandic operculum (ROL.R) mainly
interacted with the right paracentral lobule (PCL.R), left cuneus
(CUN.L), left heschl gyrus (HES.L), right heschl gyrus (HES.R),
left calcarine fissure and surrounding cortex (CAL.L), and the left
superior temporal gyrus (STG.L); however, in the control group,
the right rolandic operculum (ROL.R) mainly interacted with
the right postcentral gyrus (POCG.R), right supramarginal gyrus
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FIGURE 6 | Comparison among three hyper-networks about three kinds of average clustering coefficients. Error bars show standard deviation. Asterisks indicate a

significant difference. *p < 0.05, **p < 0.01. CON, normal control; MDD, major depressive disorder. HCC1 indicate the first type of clustering coefficient; HCC2

indicate the second type of clustering coefficient; HCC3 indicate the third type of clustering coefficient.

(SMG.R), left superior temporal gyrus (STG.L), left heschl gyrus
(HES.L), and right heschl gyrus (HES.R).

DISCUSSION

The accuracy of brain network classification based on a hyper-
network is strongly dependent on the network construction.

A new method of hyper-network construction was recently
proposed; however, the method was unable to obtain some
relevant brain regions when establishing the hyper-edges because
of the grouping effect among regions. To solve this problem,
we proposed two new methods for constructing a hyper-
network based on the elastic net and the group lasso. In
the lasso method proposed by Jie et al. (2016), the optimal
objective function for solving the sparse linear regression model
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TABLE 2 | Abnormal brain regions and significance.

ROIs P-value

Clustering Clustering Clustering

coefficient coefficient coefficient

LASSO

Left supramarginal gyrus 0.048 0.214 0.118

Left rolandic operculum 0.118 0.118 0.007

Right rolandic operculum 0.303 0.094 0.045

Left superior frontal gyrus,

medial

0.207 0.055 0.007

Right parahippocampal gyrus 0.638 0.015 0.005

Left thalamus 0.294 0.049 0.252

Left putamen 0.214 0.122 0.047

Right middle frontal gyrus 0.019 0.157 0.169

Left lingual gyrus 0.017 0.260 0.109

Right inferior occipital gyrus 0.060 0.039 0.045

Right fusiform gyrus 0.792 0.047 0.612

Right Paracentral lobule 0.393 0.049 0.090

Left middle temporal gyrus 0.804 0.037 0.181

ELASTIC NET

Right middle frontal gyrus 0.009 0.066 0.573

Left inferior frontal gyrus, orbital

part

0.043 0.043 0.303

Left rolandic operculum 0.040 0.087 0.038

Right rolandic operculum 0.045 0.045 0.053

Right supplementary motor

area

0.024 0.091 0.049

Left superior frontal gyrus,

medial

0.332 0.286 0.047

Left median cingulate and

paracingulate gyri

0.850 0.040 0.021

Right parahippocampal gyrus 0.313 0.019 0.080

Left lingual gyrus 0.090 0.098 0.008

Right Paracentral lobule 0.612 0.229 0.017

Left putamen 0.047 0.011 0.041

Left inferior temporal gyrus 0.665 0.008 0.994

GROUP LASSO

Left inferior frontal gyrus,

triangular part

0.007 0.968 0.063

Left inferior frontal gyrus, orbital

part

0.017 0.817 0.007

Right rolandic operculum 0.265 0.991 0.003

Left median cingulate and

paracingulate gyri

0.038 0.461 0.005

Right median cingulate and

paracingulate gyri

0.012 0.201 0.001

Right posterior cingulate gyrus 0.303 0.341 0.001

Right hippocampus 0.001 0.058 0.017

Right parahippocampal gyrus 0.006 0.586 0.016

Right lingual gyrus 0.351 0.006 0.665

Right angular gyrus 0.004 0.045 0.080

Left precuneus 0.252 0.322 0.005

left paracentral lobule 0.094 0.147 0.009

Right paracentral lobule 0.252 0.586 0.002

Left thalamus 0.087 0.002 0.404

Bold indicates significance p < 0.05.

includes the loss function and the l1 norm penalty term. The
penalty term makes it possible to continuously compress and
select variables automatically and simultaneously. The optimal
objective function of elastic net method adds an l2 norm penalty
term to the lasso. Recent studies (Zou and Trevor, 2005; De
Mol et al., 2008) have shown that the l2 norm can effectively
adjust the high correlations among the independent variables
so that the model can automatically select the relevant variables
in a group with a grouping effect. The group lasso method
introduces the penalty function for the variable grouping factor
to select variables using the l2,1 norm, based on predefined
variable groups.

There were differences among the hyper-networks
constructed by the three methods. The MDD and control
groups had similar distributions according to the analysis of the
hyper-edge degrees. The lasso and elastic net methods produced
very similar results for the range of edge degrees and the number
of hyper-edges within each range. However, the results for the
group lasso method were quite different. The range of edge
degrees was 2–55, indicating the looseness of the constraint, and
there were some hyper-edges with more nodes. We conclude
that the structure of the hyper-network obtained by the lasso
was similar to that obtained by the elastic net, but very different
from that obtained by the group lasso. This conclusion was
confirmed by the comparison of metrics. When constructing
the hyper-edge using the lasso method, only one brain region
was selected from a group because of the grouping effect. The
elastic net method helped to select the related brain regions
by adding the l2 norm, which can select some brain regions
from that group. When the group lasso method selected a brain
region from the group, all of the brain regions in the group
were considered relevant. Therefore, the lasso method was the
strictest, the group lasso method was the loosest, and the elastic
net method was moderate.

We obtained a similar conclusion from the correlation
analysis of the metrics. The metrics of all subjects in each group
were averaged across brain regions, which were sorted after
standardization. Linear regression analyses were performed on
the metrics obtained by the lasso and the other two methods.
The standardized metric values based on brain regions showed
significant associations between the elastic net and the lasso
methods (CON group: adj_Rsqr = 0.96, MDD group: adj_Rsqr

= 0.97), but significant differences between the group lasso and
the lasso methods (CON group: Adj_Rsqr = 0.32, MDD group:
Adj_Rsqr = 0.28).

Furthermore, analysis of the average clustering coefficients
(averageHCC1,HCC2, andHCC3) showed significant differences
in the average HCC1 and average HCC2 among the three hyper-
networks for both the MDD and control groups. The average
HCC3 showed significant differences between the group lasso and
the other two methods. No significant difference (p > 0.05 FDR
corrected, q = 0.05) was found between the lasso and elastic
net methods. These results indicated that there were structural
differences among the hyper-networks constructed by the three
methods. The lasso and elastic net produced similar hyper-
network structures, but the structure produced by the lasso was
very different from that produced by the group lasso. In terms
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FIGURE 7 | Abnormal brain regions were mapped onto the cortical surfaces using BrainNet viewer software.

TABLE 3 | The classification performance of the four methods.

Methods Accuracy Sencitivity (%) Specificity (%) BAC (%)

TCN 71 79 64 71.5

Lasso 83.33 84.21 82.14 83.175

Group lasso 80.30 84.21 75 79.60

Elastic net 86.36 92.10 81.57 86.83

TCN, traditional connectivity network method; lasso, hyper-network method based on

lasso; elastic net, hyper-network method based on elastic net; group lasso, hyper-network

method based on group lasso; BAC, balanced accuracy.

of network construction constraints, the lasso was the strictest,
the group lasso was the loosest, and the elastic net method
was in-between. We believe that these results are attributable
to differences in the different methods’ ability to resolve the
grouping effect.

The areas with statistically significant between-group
differences were not identical among the three methods. The
lasso and elastic net methods had more overlapping than
non-overlapping regions, while the group lasso and lasso
methods showed the opposite result. This result also verified the
conclusion we obtained from the other analyses.

The best classification accuracy was obtained based on the
elastic net method, so we used the hyper-network based on
this method to analyze the abnormal brain regions. Statistical
analysis of this hyper-network identified 12 abnormal regions:
some partial frontal areas (right middle frontal gyrus, left
inferior frontal gyrus (orbital part), right supplementary motor
area, left superior frontal gyrus (medial), right paracentral
lobule), bilateral rolandic operculums, partial limbic lobes (left
median cingulate and paracingulate gyri, right parahippocampal
gyrus), partial subcortical gray nucleus (left putamen), partial
temporal lobe (left inferior temporal gyrus), and partial occipital
area (left lingual gyrus). These regions are consistent with
previous results reported in the literature (Table 4). The value

of brain network research is in identifying changes in the
brain network. Analysis of the connection patterns among
the brain regions with between-group differences identified
by the elastic net method and the other regions revealed
different interaction patterns between the MDD and control
groups.

Three methods of hyper-network construction and a
correlation method were used to classify 38 patients with
depression and 28 control subjects. The results suggest
that hyper-network methods can improve brain network
classification performance. The classification accuracy of our
two proposed methods exceeded 80%. The elastic net hyper-
network construction method outperformed the others, and the
accuracy reached 86.36% when the value of λ2 was set to 0.2.
The classification result obtained by the group lasso method
was not as good as the original method. The underlying reasons
are that the k-medoids clustering method introduces uncertain
parameters, and it easily falls into a local optimum. Although
we used the idea of k-means++ to optimize the selection of
the initial points, the random selection of the first initial cluster
center still led to unstable results. Moreover, the group lasso
cannot choose variables flexibly within a group.

Based on the lasso and elastic net methods, we obtained two
groups of brain regions with between-group differences, and
then calculated the classification weight of the corresponding
features of the non-overlapping brain regions between two group
regions. The Relief algorithm is used to weight features according
to the correlation between a feature and a category. Features
with stronger weights have better classification ability (Kira and
Rendell, 1992). The weights of the features obtained by the elastic
net method were significantly larger than those obtained by
the lasso method, which in turn were significantly greater than
those obtained by the group lasso method. The results imply
that a moderate connection constraint (elastic net) can acquire
classification featuresmore effectively than a constraint that is too
strict (lasso) or too loose (group lasso).
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FIGURE 8 | Classification weight of different discriminative regions between lasso method and the other two methods (elastic net and group lasso methods)

corresponding features. Error bars show standard deviation. Asterisks indicate a significant difference. *p < 0.05, **p < 0.01.

METHODOLOGY

The construction of hyper-network is based on sparse regression
model with penalties. By using linear sparse regression model,
a brain region can be characterized by a linear combination
of a few other brain regions, which may be obtained with
pairwise correlation from the view of math method. However,
by introducing the penalties control, one brain region can
be interacted with a few other brain regions while forcing
insignificant interactions to zero, and regard these brain
regions as a hyper-edge to construct the hyper-network, which
was a multivariate expression that described the multiple
interactions of brain regions to interpret the hyper-network
topology. For more precisely diagnosis of brain diseases, we
proposed elastic net and group lasso sparse regression methods
to construct the hyper-network taking into the grouping
effect.

The performances of the proposed classification methods
depend on the selection of certain parameters, such as the cluster
number k, the hyper-network construction model parameters λ1
and λ2, the SVM model parameters c and g. We compared brain
network classification methods based on the group lasso and
elastic net methods to explore this problem.

Effect of Cluster Number k
Parameter k is the number of clusters in the group lasso method,
and varying the value of k produces different network structures
and classification results. To assess the effect on classification
performance, the range of k was set at (6, 90) with a step size
of 6. Because the random selection of the first initial seed point
can affect the results, 50 experiments were performed for each k
value, and themean accuracy was chosen as the final classification
result. Figure 10 shows that the highest accuracy of 80.30% was
obtained when k equaled 48.

Effect of Regularization Parameters λ1 and
λ2
It has been shown in previous studies that the parameter λ has
a significant impact to hyper-network topology. The parameter
λ determined the sparsity and scale of the network. When λ

was too small, the network would be too coarse and involve
much noise. When λ was too large, the network would be too
sparse (Lv et al., 2015). Moreover, the reliability of the network
topology, especially the modularity, was sensitive to the sparsity
controlled by the parameter λ (Li and Wang, 2015). Besides,
the parameter λ had an effect on the classification performance.
The classification model parameter, especially λ, was sensitive to
classification accuracy. Since the selection of λ was not specified
formulation, the proper choice of the parameter λ is very
important for constructing hyper-networks and for classification.
There were also some methods to choose λ to optimize the
network topology reliability and classification performance in
previous studies (Braun et al., 2012; Li and Wang, 2015; Qiao
et al., 2016). However, there are the same limitations that it had
low reliable network topology. This research showed that only
when λ is 0.01 (indicating that all the nodes on the network
are on a hyper-edge), the network had a high reliability (Li and
Wang, 2015). Thus, multi-level λ setting method was proposed
(Jie et al., 2016). Different from single λ setting, multi-level
λ can combine several λ to provide more network topology
information. And the multi-level λ setting can avoid random
selection leading to single λ setting and reduce the impact of
low reliability caused by a single network topology. In current
studies, λ1 is the regularization parameter of the l1 norm, which
is biased to control the model sparsity. Multi-level λ1 setting was
introduced and the interval was set 0.1. λ2 was the regularization
parameter of the l2 norm, which encouraged the influence of
grouping. As different values of λ2 had different grouping effects
and lead different classification performance, the interval was set
0.1. Different values of λ1 and λ2 produce different solutions.
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FIGURE 9 | Connected patterns of abnormal brain regions in hyper-network constructed by elastic net method; The average hyper-edges for CON(left) and

MDD(right) groups based on 12 ROIs (the green node) listed in Table 2 (elastic net) with λ1 = 0.3. Here, each sub-figure denotes a hyper-edge constructed by the

corresponding ROI, and the green nodes in each subgraph represent the brain areas with significant differences between-group. L, left; R, right; CON, normal control.

MDD, major depressive disorder.
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TABLE 4 | ROIs selected from the other literature about depression.

ROI References

Right middle frontal gyrus Guo et al., 2012

Left inferior frontal gyrus, orbital part Jin et al., 2011; Guo et al., 2012;

Lord et al., 2012

Rolandic operculum Zhu et al., 2016

Right supplementary motor area Liu et al., 2012

Left superior frontal gyrus, medial Jin et al., 2011

Left median cingulate and

paracingulate gyri

Guo et al., 2012; Zhu et al., 2016

Right parahippocampal gyrus Qiu et al., 2014

Left lingual gyrus Lord et al., 2012; Qiu et al., 2014

Right paracentral lobule Qiu et al., 2014

Left putamen Lord et al., 2012; Gong et al., 2014

Left inferior temporal gyrus Gong et al., 2014

In the multi-level λ setting, it is important that how to get
the optimizing combination of λ. If Enumeration method was
adopted, the computation consumption was too huge. Thus, in
current studies, λ1 used a series of ascending order combination,
which is {0.1}, {0.1, 0.2}, {0.1, 0.2, 0.3}, . . . . . . , {0.1, 0.2, . . . . . . ,
0.9}, while λ2 are adopted, which is 0.1, 0.2,...,0.9. For λ2 value,
nine sets of λ1 were used to construct the hyper-edges, {0.1},
{0.1, 0.2}, {0.1, 0.2, 0.3}, . . . . . . , {0.1, 0.2, . . . . . . , 0.9}, which
formed the hyper-network. Keep the small λ values in the
combinations as more as possible, which indicated that more
nodes are connected in the constructed hyper-edges. It was
thought that the hyper-edges with many nodes could depict the
underlying relationship among several brain regions. Then, the
features were extracted for classification. The classification results
in Figure 11 indicated that the highest accuracy of 86.36% was
obtained when λ2 = 0.2 and λ1 = {0.1,0.2,. . . , 0.9}. When λ1=

{0.1}, the classification accuracies were <60% because when λ1
used only one value, some nodes were contained in only one
hyper-edge. The denominator ofHCC3 is then zero, whichmakes
it impossible to create an effective model for classification.

Effect of SVM Classification Parameters c
and g
SVM classification is widely applied in various fields. It is the
key to selecting the kernel function in the classification. The
RBF kernel function was chosen in this experiment. The two
parameters of the SVMmodel, the penalty factor c and the kernel
parameter g, strongly influence the classification, and thus it is
important to finding the optimal values. The penalty factor c is
used to control the compromise between the model complexity
and the approximation error. If c is too large, the data fitting and
the complexity of the learning machine will be too high. There
is an necessary process to avoid overfitting when designing the
classifier. on the contrary, if c is too small, the punishment for
the empirical error will be small, the learning complexity of the
machine and the data fitting will be low. When the overfitting or
underfitting occurs, the generalization ability of the classifier will
be reduced to influence the classification performance. The value

FIGURE 10 | Classification accuracy of different k values. The results were

obtained by 50 experiments at each k-value. Error bars show standard

deviation.

of g of the RBF kernel function is also important to directly affect
the classification accuracy of the model.

For given values of c and g, the K-fold cross-validation
method was used to acquire the training set validation accuracy.
The values of c and g that generated the highest validation
classification accuracy were chosen as the optimum parameters.
The parameters of c and g were set at [2−8, 28], with
a step of 1. Figure 12 displays the result when using the
classification features as a training set to conduct the parameter
optimization of c, g, which indicates that the highest training set
validation accuracy of 90.90% was achieved when c = 256 and
g = 0.0078.

Limitations
The current study had three major limitations. First, the
parameters of the hyper-network model in the experiment
were a proportion of the corresponding parameters for
the sparsest solution. The precise values were difficult to
determine due to technical limitations. Furthermore, in the
group lasso method, the random selection of the initial
seed points and differences in the number of clusters k can
change the network structure and the classification result.
The construction of stable hyper-edges is expected to further
improve the hyper-network. In addition, excessive analysis
was not performed for comparing the current metrics (HCC1
2 3) and other clustering metrics in the experiment. The
selection of better clustering metrics can be tried in follow-up
research.

CONCLUSION

The original method of hyper-network construction used the

lasso to solve the sparse linear regression model. The method
was limited because some related regions could not be chosen
because of the grouping effect among brain regions in the process
of establishing hyper-edges. To solve this problem, elastic net
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FIGURE 11 | Classification accuracy of different network construction parameters (λ1,λ2).

FIGURE 12 | Training classification accuracy of different SVM parameters (c, g).

and group lasso methods were used to construct the hyper-
networks. Analyses of the hyper-edges, brain area metrics, and
average metrics implied that there were structural differences
among the hyper-networks constructed by the three methods.
The hyper-network obtained by the lasso was similar to that
obtained by the elastic net but very different from that obtained
by the group lasso. The lasso imposed a strict constraint on the
network construction, the group lasso a loose constraint, and

the elastic net a moderate constraint. Considering the potential
reasons, we concluded that the existence of the grouping effect
and differences in the methods’ ability to resolve it led to these
consequences. Different constraint conditions resulted in varying
classification accuracies. The elastic net method outperformed
the others, and the group lasso method was not as good as the
original method. Meanwhile, the elastic net method had a higher
classification weight than the lasso method, and the group lasso
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method had a lower classification weight. The results implied
that a moderate connection constraint (elastic net) produced
the most effective classification features, whereas stricter (lasso)
and looser (group lasso) construction strategies were unable to
achieve promising outcomes.
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