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Abstract: An estimated 15% of animals are venomous, with representatives spread across the majority
of animal lineages. Animals use venoms for various purposes, such as prey capture and predator
deterrence. Humans have always been fascinated by venomous animals in a Janus-faced way. On the
one hand, humans have a deeply rooted fear of venomous animals. This is boosted by their largely
negative image in public media and the fact that snakes alone cause an annual global death toll in
the hundreds of thousands, with even more people being left disabled or disfigured. Consequently,
snake envenomation has recently been reclassified by the World Health Organization as a neglected
tropical disease. On the other hand, there has been a growth in recent decades in the global scene
of enthusiasts keeping venomous snakes, spiders, scorpions, and centipedes in captivity as pets.
Recent scientific research has focussed on utilising animal venoms and toxins for the benefit of
humanity in the form of molecular research tools, novel diagnostics and therapeutics, biopesticides,
or anti-parasitic treatments. Continued research into developing efficient and safe antivenoms and
promising discoveries of beneficial effects of animal toxins is further tipping the scales in favour of
the “cure” rather than the “curse” prospect of venoms.

Keywords: venom; toxin; toxicity; lethality; envenomation; antivenom; venoms to drugs; therapeu-
tics; biopesticide; anti-parasitic

1. Introduction to Venomous Animals and Their Venoms

With an estimated 220,000 species or 15% of the global animal biodiversity being
venomous [1], the majority of all animal lineages (57.5%) actually contain venomous rep-
resentatives (Figure 1). Venom usage has convergently evolved in many animal lineages,
and a recent estimate for arthropods, which are by far the most speciose venomous ani-
mals, suggested that venom systems have independently evolved in at least 19 lineages
or even 29 times, if secretions that facilitate hemolymph or blood-feeding parasitism are
also accounted for [2–4]. In comparison, flight (which, like venom, is also a trait that can
endow animals with an evolutionary advantage but that comes at a high energetic cost)
has convergently evolved only four times in the animal kingdom (i.e., in birds, bats, insects,
and pterosaurs) [5]. Thus, with the exceptional abundance of independent evolutionary
origins of animal venoms comes a vast diversity of venom system anatomies and venom
application strategies. Direct injection into prey or predators has been realised via modified
fang-like extremities (spiders, centipedes, crustaceans), antennae (beetles), pincers (pseu-
doscorpions), modified teeth (snakes), beaks (octopuses), stingers (scorpions), modified
ovipositors (hymenopterans), proboscis (flies and bugs), barbs (fish), spurs (monotremes),
hairs (caterpillars), harpoons (cone snails), and nematocysts (jellyfish, sea anemones). Even
external application by spraying (snakes, scorpions, ants) [6–8] or release of toxins into the
surrounding aqueous environment (cone snails) have also been reported [9]. Poisonous
(i.e., lacking a morphological structure for direct venom delivery) amphibians have glands
for the secretion of their toxins in order to deter predators when being ingested [10]. How-
ever, while the delivery strategies might differ between poisonous and venomous animals,
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the main purpose of animal poisons and venoms is to cause physiological changes that
incapacitate or deter the targeted victim, primarily for predatory or defensive reasons.
These physiological changes can affect a variety of molecular targets and form the basis
of both the detrimental as well as beneficial aspects of these toxic secretions. For this
reason, this Editorial and the related Special Issue of Biomedicines cover both perspectives
in relation to animal poisons, venoms, and toxins.
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2. History of Human Interactions with Venomous Animals

Humans have always been fascinated by venomous and poisonous animals, with
their toxic secretions being exploited for traditional medicine for thousands of years. The
usage of honeybee venom for a variety of therapeutic applications [11] dates back to at
least the second century BC in Eastern Asia [12,13]. Leeches have also been used by many
ancient cultures (e.g., Egyptian, Indian, Greek, and Arabian), mainly for bloodletting, but
also for the treatment of diseases such as inflammation, skin diseases, rheumatic pain, or
reproductive problems [14]. Various Amazonian tribes are known to utilise painful ant
stings for their puberty rituals [15]. Another interesting example is poison dart frogs from
the family Dendrobatidae, which have been employed by several South American tribes as
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a source of poison to cover their arrow tips used for hunting [16]. It is a remarkable twist
that poison dart frogs do not even produce their toxic alkaloids themselves, but sequester
them (in the majority of cases in an unmodified form) from their mostly arthropod diet
(e.g., ants and millipedes) [17]. Thus, the human usage of poison dart frog alkaloids can
be considered a sequential recycling of toxic compounds originating from arthropods.
Furthermore, this example might also blur the separation between venoms and poisons, if
venom components are recycled into a poisonous secretion. Some venomous animals such
as honeybees have even been domesticated, with records of beekeeping dating back at
least 4500 years to Egypt [18] or 3000 years to Israel [19]. In modern agriculture, honeybees
are indispensable as production animals for the pollination of a wide variety of crops to
ensure the survival of billions of people, with the yield of honey and other bee products
merely being an added economic benefit. In the last few decades, a number of other
venomous animals have even made the status of human “pets”, with a growing global
scene of enthusiasts mainly in developed countries keeping venomous snakes, spiders,
scorpions, insects, and centipedes in their homes [20].

3. The “Curse”: Detrimental Effects of Animal Venoms

In its infancy, venom research was incited by an urgent need for antivenoms to combat
human fatalities caused by envenomations from snakes, spiders, and scorpions [21,22].
The most common strategy for developing antivenoms comprises injecting small and
then increasing doses of venoms into mammals (e.g., horses, sheep, or rabbits) and then
isolating the antibodies produced in their blood as antivenom for treating envenomated
humans. The production of heterologous antivenoms was pioneered by Albert Calmette in
1895 to raise cobra antivenom [22] and has since been successfully adapted to a range of
other venomous animals. Nowadays, antivenoms are available against a wide range of
venomous animals including spiders (Phoneutria, Loxosceles, Atrax, Latrodectus), scorpions
(only from the family Buthidae, e.g., the genera Androctonus, Buthus, Centruroides, Leiurus,
Parabuthus, and Tityus), ticks (Ixodes holocyclus = “paralysis tick”), caterpillars (Lonomia
obliqua), box jellyfish (Chironex fleckeri), stonefish (Synanceia), and many species of snake
(belonging to the families Elapidae and Viperidae). Modern molecular techniques have
also started to tackle a major disadvantage of heterologously produced antivenoms, which
is their potential incompatibility with the human immune system. A recent study, for
example, showed that oligoclonal mixtures of recombinant human immunoglobulin G can
be successfully and cost-efficiently used for neutralising snake venoms [23].

The majority of commercially available antivenoms are already targeted against snakes.
Nevertheless, a large deficit still remains in developing effective antivenoms for treating
snake envenomations. The reason that snakes have to be considered as the most dangerous
venomous animals from a human perspective is not only their large venom amounts but
also the fact that most snakes have evolved their venoms to overcome vertebrate prey
and therefore many of their toxins also exhibit activity in humans. Another reason is
that some snake antivenoms lack cross-reactivity and are therefore only effective to treat
envenomations from the particular (or closely related) snake species against which they
were raised [24]. Thus, even the use of polyvalent (i.e., raised against several species)
antivenoms will be limited to certain geographical areas and cannot simply be applied
on a larger or even global scale [24]. Unfortunately, the countries that are most affected
by snake envenomations are usually those that are most economically disadvantaged and
therefore lack the funding and expertise required for the development of snake antiven-
oms specific to their region [25]. This became particularly obvious when the commercial
production of Fav-Afrique was discontinued in 2014 for economic reasons, which is esti-
mated to have resulted in an additional 10,000 annual deaths in Africa [26]. Due to the
global scale of 1.8–5 million annual snake envenomations, the resulting 81,000–138,000 fa-
talities, and the even larger number of permanent disfigurements and disabilities, snake
envenomations have been reclassified as a neglected tropical disease by the World Health
Organisation [24–26]. Additionally, due to poor record keeping and many unreported
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cases in developing countries affected by snake envenomations, these staggering numbers
might even be a gross underestimate of the real numbers [24]. While a range of other
venomous organisms, including arachnids, hymenopterans, cone snails, and jellyfish, have
also been reported to cause human fatalities [27–30], their resulting global fatality numbers
are dwarfed by the number of snakebite fatalities. Nevertheless, some of these animals,
such as scorpions, can be responsible for a large number of fatalities in those geographical
regions where they occur in high population densities [27,31–33].

4. The “Cure”: Beneficial Effects of Animal Venoms

In recent decades, the majority of toxinologists have shifted their attention towards
potential benefits of toxins from animal venoms for humanity, with various applications,
including diagnostics [34], therapeutics [35–42], molecular tools in basic research for study-
ing physiological processes [43–47], and treatments against pests and parasites [48,49].
Most of these applications involve peptide toxins and rely on their exquisite potency
and selectivity against their respective molecular targets [50], but also their stability [51]
and economical means of production at a large scale [52]. In cases where a molecular
target of an animal toxin is also involved in the pathophysiology of a disease, this can
then be exploited to develop novel therapeutics [39]. So far, six venom-derived drugs
have made it to the market, including an antidiabetic peptide from a lizard, an analgesic
peptide and a monomeric insulin from cone snails, a sea anemone peptide for treatment
of autoimmune disease, a scorpion peptide for imaging brain tumours during surgery,
and a spider peptide bioinsecticide (for further details, see [36]). Moreover, many more
animal toxins or toxin-derived drugs are still in the pipeline for a wide variety of potential
applications [35,38,40,42]. Importantly, the presence of promising toxin candidates as novel
therapeutics or biopesticides is not correlated with their harmful effects on humans. Thus,
even venomous species that are completely harmless to humans (which are, by far, the
majority of all venomous organisms) might contain potentially interesting toxins in their
venoms that could benefit humanity. In addition, the rapid technical advancement of
modern -omics techniques has increased not only the speed of venom research but also
the depth and quality of generated data and enabled a deeper understanding of various
aspects relating to venom evolution and biochemistry. Furthermore, improvements in
the sensitivity of modern research equipment have enabled access to venoms from much
smaller specimens, such as tiny pseudoscorpions of only a few millimetres in length [53,54].
With the vast majority of venomous animals being less than 1 cm in size, a continuous
improvement in the sensitivity of equipment and assays will further increase the quantity
and diversity of venomous animals that are accessible to future research. The diversity of
venom components is further increased by some animals producing specific venoms for
different purposes [55–57] and the potential of microorganisms living inside the venom
glands, which also contribute to the chemical complexity of animal venoms [58].

5. Contributions to This Special Issue

This Special Issue of Biomedicines comprises 12 research and four review articles about
a wide range of venomous or poisonous invertebrates and vertebrates, including sea
anemone, cone snails, leeches, spiders, scorpions, ants, caterpillars, frogs, and snakes. The
breadth of these contributions covers not only their taxonomic diversity but also both the
detrimental and beneficial aspects of animal toxins from a human perspective, which is
reflected in the title of this Special Issue: “Animal Venoms—Curse or Cure?”. The “curse”
aspect of venoms is covered in a number of contributions. For example, the review arti-
cles by Ahmadi et al. [59] and Seldeslachts et al. [60] discuss the dangers that venomous
scorpions and caterpillars pose to humans, but they also provide insights into current
and future treatment options, such as the next-generation recombinant antivenoms [59].
Two contributions from Jeroen Kool’s group examine the usefulness of the small-molecule
PLA2 inhibitor Varespladib as a potential drug for the treatment of snake bites. In these
studies, cutting-edge nanofractionation analytics are employed to determine the effects
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of Varespladib and other small molecules on the coagulopathic effects of various crotalid
and viperid snake venoms [61,62]. The Hodgson lab examined the neutralising abilities
of different antivenoms against the effects of venom from the Chinese cobra by using the
chick biventer nerve muscle preparation [63]. Another study on Australian snake venoms
by Isbister et al. found that phospholipase A2 levels in human snakebite victims could be
used as an early indicator of envenomation by Australian elapids (with exception of brown
snakes) [64]. The contribution by Nixon et al. reveals that the dimeric ant peptide Mp1a is
responsible for a broad range of activities, including the extremely painful symptoms expe-
rienced by humans that are stung by jack jumper ants [65]. Potential biosecurity concerns
of conotoxins are discussed and largely rejected by Bjorn-Yoshimoto et al. [66], with the
benefits of peptides from cone snails by far outweighing their potential negative impacts.
Nevertheless, this review article nicely exemplifies how scientifically unsubstantiated
political red tape can negatively impact the progress of toxinological research.

Several other contributions to this Special Issue cover the “cure” aspect of animal
venoms, which is their potential usage for the benefit of humans. The review by Lemke and
Vilcinskas, for example, highlights the resurging interest in leeches, which have been used
in traditional medicine for thousands of years [14]. Today’s research focusses on a variety of
bioactive leech peptides and proteins affecting blood coagulation and inflammation. Spider
venom peptides, on the other hand, might be promising candidates for novel analgesics by
targeting particular subtypes of voltage-gated sodium (NaV) channels. Yin et al. [67] not
only provide the first characterisation of a toxin from the theraphosid genus Poecilotheria.
They also demonstrate that, by simply introducing one additional residue, the toxin is
converted from a NaV1.7 activator into an inhibitor, which can be crucial for designing
effective analgesic leads. Novel toxins with potential anti-inflammatory activity are further
reported from the venom of a sea anemone [68]. In addition to their proposed medical
applications, venom components are also useful tools for research. The structural diversity
of peptide toxins from venoms, for example, provides an excellent source of novel mod-
ulators for studying the pharmacological properties of ion channels and receptors. The
article from Wilson et al. [69] describes the new α-conotoxin Pl168 from Conus planorbis,
belonging to the well-known A superfamily of conus toxins. However, unlike other mem-
bers of the A superfamily, Pl168 shows no activity on a range of nAChRs or Ca2+ and Na+

channels. Pl168 also comprises a new structural type within the A superfamily, with a pre-
sumed novel pharmacological target. Even more potential pharmacological probes could
be hidden among the peptides [70] and small molecules [71] found in scorpion venoms.
Another study adds to the list of venom compounds with interesting pharmacology by
employing a combined transcriptomic and proteomic approach to uncover not only some
new bradykinin potentiating peptides but also the first evidence of three-finger toxins from
a viperid snake venom [72]. On the other hand, a bradykinin-antagonising peptide was
identified from a Chinese frog species and characterised by Zhou et al. [73].

6. Conclusions

I trust that the audience of this Special Issue of Biomedicines will enjoy reading the
excellent contributions from many of the leading researchers in the field. I further hope that
they will inspire the next generation of scientists to turn their attention towards studying the
fascinating world of animal venoms and toxins. Despite the horrible and yet too often fatal
consequences that venomous animals (in particular, snakes) can have on humans, I believe
that their potential benefits for basic research and towards health and food production for
billions of people by far outweigh their negative effects. Continuous progress in antivenom
development will help in making antivenoms more efficient, cheaper to produce, and more
tolerable by reducing unwanted side effects. Thus, continued toxinological research will
help in further reducing the negative effects of animal venoms, thereby tipping the scales
even more in favour of their beneficial effects for humanity.
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