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Abstract

A large number of studies have shown that the variation and disorder of miRNAs are impor-

tant causes of diseases. The recognition of disease-related miRNAs has become an impor-

tant topic in the field of biological research. However, the identification of disease-related

miRNAs by biological experiments is expensive and time consuming. Thus, computational

prediction models that predict disease-related miRNAs must be developed. A novel network

projection-based dual random walk with restart (NPRWR) was used to predict potential dis-

ease-related miRNAs. The NPRWR model aims to estimate and accurately predict miRNA–

disease associations by using dual random walk with restart and network projection technol-

ogy, respectively. The leave-one-out cross validation (LOOCV) was adopted to evaluate the

prediction performance of NPRWR. The results show that the area under the receiver oper-

ating characteristic curve(AUC) of NPRWR was 0.9029, which is superior to that of other

advanced miRNA–disease associated prediction methods. In addition, lung and kidney neo-

plasms were selected to present a case study. Among the first 50 miRNAs predicted, 50

and 49 miRNAs have been proven by in databases or relevant literature. Moreover,

NPRWR can be used to predict isolated diseases and new miRNAs. LOOCV and the case

study achieved good prediction results. Thus, NPRWR will become an effective and accu-

rate disease–miRNA association prediction model.

1. Introduction

MiRNAs are a kind of single-stranded, non-coding RNA with a length of about 20–25 nucleo-

tides. miRNAs combine with 30untranslated regions and inhibit the translation of target

mRNAs, showing a significant influence on the expression of genes after transcription [1–3].

miRNAs are also involved in the physiological and pathological processes of mammals [4]; the

development, differentiation, growth, and metabolism of cells are closely related to miRNAs

[5]. In addition, studies have shown that miRNAs play an important role in the pathogenesis

of human diseases. The transfection of miRNA-101 can affect the induction and expression of

ubiquitin ligase HECTH9 in acute myeloid leukemia cells [6]; miRNA-21, an exosome derived
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from hepatocellular carcinoma, promotes tumor progression by transforming hepatic stellate

cells into cancer-associated fibroblasts [7]. Therefore, revealing the potential relationship

between miRNAs and human diseases can help in the diagnosis, treatment, prognosis, and

prevention of diseases. However, determining the association between miRNAs and diseases

by biological experiments is time-consuming and laborious. Therefore, computational models

should be used to predict potential miRNA–disease associations to offer guidance in biological

experiments, thus saving cost and time. As a result, our understanding of life processes at the

RNA level can be accelerated.

With the constant accumulation of miRNA, disease, and miRNA–disease association data,

numerous computational methods have emerged and been used to predict miRNA–disease

associations. Jiang et al. [8] computed the functional similarity of miRNAs by using miRNA

target genes and ranked disease-associated miRNAs through hypergeometric distribution. Li

et al. [9] predicted miRNA–disease associations by using the information on the miRNA and

disease targets. Xu et al. [10] ranked disease-associated miRNAs on a miRNA-target dysregu-

lated network by using support vector machine (SVM). Shi et al. [11] predicted miRNA–dis-

ease associations on a protein–protein interaction network by using the information on

miRNA target genes. These methods have attained certain prediction results. However, all the

above methods use target gene information. Therefore, a high false-positive defect is possible

with their use.

Based on the hypothesis that functionally similar miRNAs are often associated with similar

diseases, and vice versa, several scholars successfully implemented random walk with restart

on their own heterogeneous networks to predict potential miRNA–disease associations [12–

14]. Chen et al. [15] predicted miRNA–disease associations by using random walk with restart.

This procedure is a globally applied method. Afterward, numerous improved random walk

algorithms have been used in the prediction of miRNA–disease associations. Xuan et al. [16]

proposed an improved random walk model(MIDP). MIDP can predict new diseases without

any association information.

Most scholars predict miRNA–disease associations by using the graph theory [17]. You

et al. [18] used depth-first search algorithm on a miRNA–disease heterogeneous graph to

acquire path information for the prediction of potential miRNA–disease associations. Chen

et al. [19] predicted miRNA–disease associations through calculating within-scores and

between-scores of miRNA–disease groups. Chen et al. [20] identified miRNA–disease associa-

tions through acquiring iteration information on a heterogeneous graph. Chen et al. [21] pre-

dicted miRNA–disease associations by using Jaccard similarity and hubness-aware regression

on a bipartite graph; Chen et al. [22] predicted miRNA–disease associations by using common

neighbor information from a bipartite graph. Chen et al. [23] and Zhang et al. [24,25] pre-

dicted miRNA–disease associations by using network projection on a bipartite graph. Chen

et al. [26] and Li et al. [27] predicted miRNA–disease associations by using label propagation

algorithm in heterogeneous networks. Li et al. [28] predicted miRNA–disease associations by

using DeepWalk on heterogeneous networks. Zhang et al. [29] constructed a multiple meta-

path fusion graph embedding model through integrating nodes and edge information to pre-

dict miRNA–disease associations. Lv et al. [30] predicted disease-associated miRNAs through

solving a meta-path in a heterogeneous network composed of miRNA similarity, diseases simi-

larity, and miRNA–disease associations. However, this method failed to solve the problems on

parameter selection. If the machine learning method is used to solve the optimal parameters,

then the prediction performance will be improved.

Numerous scholars have used machine learning to predict miRNA–disease associations.

Zou et al. [31] deduced potential miRNA–disease associations by introducing two prediction

models, namely, KATZ and CATAPULT. Chen et al. [32] first proposed a prediction model
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for miRNA–disease association, that is, EGBMMDA, based on a decision tree model. Then,

Chen et al. [33] proposed a new prediction model for miRNA–disease associations, called

EDTMDA, based on a decision tree ensemble. Zhao et al. [34] proposed an adaptive enhanced

miRNA–disease association prediction model. This method is used to first cluster unknown

samples by k-means clustering to obtain negative samples and then predict associations by

using a decision tree. Chen et al. [35] predicted disease-associated miRNAs by means of ran-

dom forest. Chen et al. [36] put forward a computational method based on K-nearest neighbor

(KNN), that is, RKNNMDA. In this method, a support vector mechanism is used in re-ranking

to acquire the prediction scores. Thereafter, Wang et al. [37] designed an efficient negative-

sample extraction strategy and used a SVM to make predictions. Wu et al. [38] constructed a

hypergraph using KNN and K-means algorithm to make predictions. However, the prediction

accuracy of this method for new miRNAs is low.

The issue on miRNA–disease association can be regarded as a binary classification problem

given the lack of negative samples. On this basis, scholars have proposed various semi-super-

vised machine learning methods. Chen et al. [39] proposed a prediction model based on regu-

larized least squares algorithm: RLSMDA. RLSMDA can be used for prediction without using

any negative sample. However, this model is highly dependent on parameters. For further

improvement, Chen et al. [40] proposed a graph regression prediction model based on singu-

lar value decomposition and partial least squares regression. Chen et al. [41] predicted

miRNA–disease associations based on Laplacian regularized sparse subspace learning. Luo

et al. [42] proposed KRLSM, a miRNA–disease association prediction model based on Kro-

necker regularized least squares. However, this model highly depends on weight coefficients of

different similarity measures. Li et al. [43] predicted miRNA–disease associations by using

Kronecker kernel matrix dimension reduction. Pasquier and Gardes performed dimension

reduction for multiple miRNA-related association networks by using singular value decompo-

sition and predicted miRNA–disease associations through calculating cosine similarity.

Against the insufficiency of miRNA similarity data, the rare relationship between known

miRNA and diseases, and almost zero negative sample [44], Zeng et al. [45] proposed a

miRNA–disease association prediction method based on a matrix completion algorithm. This

method provides a new idea to solve the problem of insufficient miRNA–disease association

data, and it can be used in the prediction of novel diseases and pathogenic miRNA. Chen et al.

[46] treated redundant information for miRNA–disease neighbor matrix by using matrix fac-

torization to predict disease-associated miRNAs. Li et al. [47] proposed MCMDA, a miRNA–

disease association prediction model based on matrix completion. This model requires no neg-

ative association. Chen et al. [48] proposed IMCMDA, an inductive matrix completion inte-

grating miRNA functional similarity and semantic similarity of diseases. Xuan et al. [49]

proposed two kinds of non-negative matrix factorizations to predict disease-associated miR-

NAs. Zhao et al. [50] developed the associated prediction model SNMFMDA by combining

Kronecker regularized least square with symmetric non-negative matrix factorization.

Xiao et al. [51] proposed GRNMF, a miRNA-disease association prediction algorithm

based on graph regularized nonnegative matrix factorization. However, the prediction result

of this method highly depends on selected parameters. Xu et al. [52] designed PMFMDA, a

prediction method based on the probability matrix factorization prediction method.

PMFMDA can integrate the similarity of miRNAs and diseases and construct a probability

matrix factorization algorithm by using known an association matrix and integrating a similar-

ity matrix to deduce new miRNA–disease associations. Wang et al. [53] integrated the neural

network matrix factorization and multi-layer perception into the deep collaborative filtering

framework to predict miRNA–disease associations. However, this method shows no enhance-

ment in dealing with the problem on negative sample selection.
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Scholars have applied deep learning to the prediction of miRNA–disease association. Xuan

et al. [54] first proposed a method based on double convolution neural network (CNNDMP)

to predict miRNA–disease associations. Then, they put forward a prediction method based on

network representation learning and convolutional neural network (CNNMDA) [55]. Ding

et al. [56] developed a deep learning model based on variational graph auto-encoder. However,

this model covers two deep learning networks. Thus, the complexity of the algorithm is high.

Chen et al. [57] predicted miRNA–disease associations with RBMMMDA method by using

a restricted Mansman machine. Compared with previous methods, RBMMMDA can not only

predict miRNA–disease associations but also acquire the type of association. However,

RBMMMDA only uses known miRNA–disease association information, which prevents it

from achieving an excellent performance. Zhang et al. [58] predicted the information type of

miRNA–disease associations by using label propagation. However, the correlation between

association types is ignored with this method. Huang et al. [59] expressed miRNA-disease-

type triplets as a tensor and solved the prediction task by using the tensor decomposition

method. However, this method remains limited by defects with few known associations, result-

ing in a low prediction accuracy.

In conclusion, although various prediction methods for miRNA–disease associations have

emerged, several limitations still exist. First, most methods cannot predict isolated diseases

and novel miRNAs. Second, a number of methods require negative samples for miRNA–dis-

ease associations, but negative sample selection presents difficulty.

In addition, several lncRNA–disease association prediction methods [60–64], drug–disease

association prediction method [65], and several related computational methods [66–69] can

provide help in the prediction of miRNA–disease associations. In this paper, a new method,

network projection-based dual random walk with restart (NPRWR), which integrates dual

random walk with restart and network projection technology, is proposed to predict potential

miRNA–disease associations. First, NPRWR was used to acquire the miRNA–disease associa-

tion prediction matrix based on dual random walk with restart to compensate for the lack of

known miRNA–disease association data. Then, the network projection method was imple-

mented to acquire the final association prediction matrix. The experimental results show that

NPRWR has a better prediction effect compared with other algorithms with excellent

performance.

2. Materials and methods

2.1. Method overview

NPRWR mainly includes three steps. Fig 1 shows the algorithm flow chart. (1) Data prepara-

tion. Disease similarity integrated is constructed by using disease semantic similarity and Gauss-

ian interaction profile kernel similarity of diseases, and integrated miRNA similarity is

constructed by using miRNA functional similarity and Gaussian interaction profile kernel simi-

larity of miRNA. (2) miRNA–disease association prediction. Dual random walk with restart is

implemented in the integrated miRNA network and integrated disease network, and two stable

distribution vectors are obtained. Then, the two distribution vectors are integrated to obtain the

miRNA–disease association prediction score. (3) Refined prediction. The miRNA–disease asso-

ciation prediction scores are projected in miRNA and disease spaces, and the two projection

scores are integrated as the final miRNA–disease association prediction score.

2.2. Data source

2.2.1. MiRNA–disease association. To study the association between miRNA and human

diseases, Li et al. [70] established a HMDD database to record miRNA–human disease
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associations. The associations between 383 human diseases and 495 miRNAs were extracted

from this database. A total of 5430 miRNA–disease associations were confirmed experimen-

tally, as represented by matrix MDnm�nd . If an association was verified experimentally between

the miRNA node dj,MD(i,j) and disease node dj,MD(i,j), the value was set to 1; otherwise, the

value was set to 0.

2.2.2. Disease semantic similarity. Wang et al. [71] proposed a disease semantic similar-

ity measurement method based on the disease classification information described by MeSH.

Each disease is described as a directed acyclic graph (DAG) with the hierarchical structure in

MeSH. According to the DAGs of two diseases described by MeSH, the semantic similarity

between the diseases can be measured. This method is used to express the semantic similarity

between two diseases, as represented by matrix DDnd�nd .

2.2.3. MiRNA functional similarity. Based on the hypothesis that miRNAs with similar

functions are associated with diseases with similar phenotypes, and vice versa, Wang et al. [71]

proposed a method to calculate the functional similarity between miRNAs. This method was

successfully applied to the prediction of disease-associated miRNAs. Thus, this method was

adopted to calculate the functional similarity between miRNAs, and matrix MMnm�nm was used

to represent the functional similarity between miRNAs.

2.2.4. Gaussian interaction profile kernel similarity of diseases. When disease semantic

similarity is adopted to measure the similarity between diseases, given the missing data, the

semantic similarity between various diseases is 0. The concept of Gaussian interaction profile

kernel similarity between diseases is introduced to solve this problem.

GDði; jÞ ¼ expð� gdkMDð:; iÞ � MDð:; jÞk2
Þ ð1Þ

where GD(i,j) refers to the Gaussian interaction profile kernel similarity between diseases di
and dj; MD(:,i) refers to column i of matrix MDnm�nd ; parameter γ1 is used to control the kernel

Fig 1. Flowchart of the whole modeling procedure.

https://doi.org/10.1371/journal.pone.0252971.g001

PLOS ONE A novel miRNA-disease association prediction model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252971 June 17, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0252971.g001
https://doi.org/10.1371/journal.pone.0252971


bandwidth of Gaussian interaction profile kernel similarity, and it can be calculated by the

using Formula (2):

gd ¼
g0d

1

nd

Pnd
i¼1
kMDð:; iÞk2

ð2Þ

where g0d is set to 1.

Similarly, the Gaussian interaction profile kernel similarity between miRNAs is calculated

as below:

GMði; jÞ ¼ expð� g1kMDði; :Þ � MDðj; :Þk2
Þ ð3Þ

where GM(i,j) refers to Gaussian interaction profile kernel similarity between miRNAs mi and

mj; MD(i,:) refers to row i of matrix MDnm�nd ; parameter γ1 is used to control the kernel band-

width of Gaussian interaction profile kernel similarity, and it can be calculated by using For-

mula (4):

g1 ¼
g0

1

1

nm

Pnm
i¼1
kMDði; :Þk2

ð4Þ

where g0
1

is set to 1.

2.2.5. Disease (miRNA) integrated similarity. Finally, the disease similarity is obtained

through integrating disease semantic similarity with disease Gaussian interaction profile ker-

nel similarity, and miRNA similarity is obtained through integrating the functional similarity

of miRNA with miRNA Gaussian interaction profile kernel similarity. The formula is as

below:

DDfsði; jÞ ¼
DDði; jÞ; DDði; jÞ 6¼ 0

GDði; jÞ; DDði; jÞ ¼ 0
ð5Þ

(

MMfsði; jÞ ¼
MMði; jÞ; MMði; jÞ 6¼ 0

GMði; jÞ; MMði; jÞ ¼ 0
ð6Þ

(

2.3. miRNA–disease association pre estimation

To solve the sparsity problem of a known miRNA–disease association network, we first walked

in the miRNA similarity network by using random walk with restart and then captured the sta-

ble information distribution to represent the association degree between the miRNA and dis-

ease nodes. The formula is as below:

ðMDrmð:; jÞÞtþ1
¼ ð1 � gÞ �MMfs � ðMDrmð:; jÞÞt þ g�MDð:; jÞ ð7Þ

where MDð:; jÞ refers to the information in column j after matrix MD is normalized in the

column. The vector in this column refers to the seed sequence of the association between dis-

ease dj in the disease node and all miRNA nodes; MMfs refers to the column normalization

matrix of MMfs integrating miRNA functional similarity; γ refers to restart probability;

(MDrm(:,j))t vector refers to the information distribution after t times of iteration. After several

iterations, if the probability space reaches the stable state, ðMDrmð:; jÞÞ
/
ðjðMDrmð:; jÞÞtþ1

�

ðMDrmð:; jÞÞtj < 10� 6Þ, then the iteration is stopped. In the stable state, the values of this vector

refer to the scores of associations between disease dj and all miRNAs. The pre-estimated score
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of miRNA–disease association by random walk algorithm based on miRNA similarity network

is represented by matrix MDrm.

Similarly, the random walk with restart was adopted to walk in the disease similarity net-

work, and the association pre-estimated value by random walk with restart based on disease

network was obtained. The formula is as below:

ðMDrdð:; iÞÞtþ1
¼ ð1 � ŋÞ � DDfs � ðMDrdð:; iÞÞt þ ŋ�MDTð: iÞ ð8Þ

where MDT refers to the transpose matrix of MD; MDTð: iÞ refers to the information in col-

umn i after matrix MDT is normalized in the column. This vector denotes the seed sequence of

the association between miRNA node mi and all disease nodes; DDfs corresponds to the col-

umn normalization matrix of DDfs integrating miRNA functional similarity; ŋ indicates restart

probability; (MDrd(:,i))t+1 vector represents the information distribution after t times of itera-

tion. After several iterations, if the probability space reaches the stable state,

ðMDrdð:; iÞÞ
/
ðjðMDrmð:; iÞÞtþ1

� ðMDrmð:; iÞÞtj < 10� 0Þ, then the iteration is stopped. The val-

ues of this vector in the stable state are the scores of associations between miRNA node mi and

all disease nodes. The pre-estimated score of miRNA-disease association by random walk algo-

rithm based on disease similarity network is represented by MDrd.

Then, the miRNA-disease prediction score based on random walk algorithm was obtained

by integrating the prediction score by miRNA network-based random walk algorithm and the

prediction score by disease network-based random walk algorithm.

MDr ¼
MDrm þ ðMDrdÞ

T

2
ð9Þ

2.4. Refined prediction of miRNA–disease association

Given that the random walk algorithm was adopted to obtain miRNA–disease prediction

score, the network projection was used to obtain the final prediction score.

First, the miRNA similarity network was used to project on the miRNA–disease prediction

score network, and the projection score based on the miRNA similarity network was obtained:

MDpm ¼
MMfsði; :Þ �MDrð:; jÞ

jMDrð:; jÞj
ð10Þ

Then, disease similarity network was used to project on the miRNA–disease prediction

score network, and the projection score based on the disease similarity network was obtained:

MDpd ¼
DDfsði; :Þ � ðMDrÞ

T
ð:; jÞ

jðMDrÞ
T
ð:; jÞj

ð11Þ

Finally, the final prediction score was obtained through integrating the projection score

based on miRNA similarity network and the projection score based on disease similarity net-

work:

MDp ¼
MDpm þMDpd

2
ð12Þ

3. Results

3.1. Evaluation method

LOOCV was adopted to evaluate the performance of NPRWR. Specifically, each pair of

miRNA–disease association was used as a test sample, and the remaining associations were
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used as training samples for model training. Each pair of miRNA–disease association was

tested once as a test sample. The receiver operating characteristic (ROC) curve and AUC val-

ues were used to evaluate the performance indicators of the prediction model. The ROC curve,

also called the working characteristic curve or sensitivity curve of the subjects, is a comprehen-

sive index reflecting sensitivity and specificity. If the ROC curve is convex and close to the

upper left corner, the AUC value is large, and an excellent prediction performance is obtained.

3.2. Parameter selection

In this section, we mainly aim to discuss the effect of restart parameters γ and ŋ on the predic-

tion performance of NPRWR. In this paper, for simplicity, two restart parameters were set to

have the same size. To show the effect of parameters on the prediction performance of

NPRWR, we increased the restart parameter from 0.1 to 0.9 with the step length of 0.1 to calcu-

late its AUC value.

Fig 2 describes the changes in the AUC value of NPRWR under different parameter values.

The figure also shows that when the restart parameter increased from 0.1 to 0.9, the AUC

value increased from 0.3548 to 0.9029. Therefore, 0.9 was considered the final value of the

parameter.

3.3. Comparison with other prediction models

MDHGI [46], NSEMDA [37], RFMDA [35], and SNMFMDA [50] are disease–miRNA predic-

tion models with excellent performance. MDHGI makes prediction by using matrix decompo-

sition and heterogeneous graph inference; NSEMDA proposes a novel negative-sample

extraction strategy and makes predictions by using SVM. The RFMDA makes predictions by

using random forest; SNMFMDA first fill the similarity matrix symmetrically during negative

matrix factorization and then solves the association probability by using Kronecker product

regularized least square method to make predictions. These methods, similar to NPRWR, aim

to combine the miRNA functional similarity, disease semantic similarity, and Gaussian

Fig 2. Influence of parameter variations on prediction accuracy.

https://doi.org/10.1371/journal.pone.0252971.g002
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interaction profile kernel similarity for diseases and miRNAs by using known miRNA–disease

association information to make predictions. A comparative experiment was carried out in this

study. Against NPRWR, MDHGI, NSEMDA, RFMDA, and SNMFMDA methods, LOOCV

was deployed on the data set to evaluate their prediction performance. The optimal parameters

of MDHGI, NSEMDA, RFMDA, and SNMFMDA were set in accordance with the description

of authors in relevant literature. Fig 3 shows the ROC curves and AUC values in LOOCV by

these methods. The AUC value of NPRWR was 0.9029, whereas those of MDHGI, NSEMDA,

RFMDA, and SNMFMDA were 0.8945, 0.8899, 0.8891, and 0.9007, respectively. The compari-

son showed that NPRWR achieved the best prediction effect. Moreover, compared with

Fig 3. ROC curves and AUC values of NPRWR and other five methods.

https://doi.org/10.1371/journal.pone.0252971.g003

Fig 4. Predictions of new miRNAs and isolated diseases.

https://doi.org/10.1371/journal.pone.0252971.g004
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MDHGI, NSEMDA, RFMDA, and SNMFMDA, NPRWR is simple and does not require nega-

tive samples. Therefore, NPRWR is considered to perform better than the other models.

3.4. Isolated diseases and new miRNA prediction

Isolated diseases refer to diseases in which the miRNA-associated information is completely

unknown. The known association between the disease to be queried and all miRNAs was

removed to simulate isolated diseases. In the cross verification, a disease was simulated as an

isolated disease. Then, the remaining known information was used as basis to implement

NPRWR for prediction. This step was repeated until each disease was predicted once as a test

sample. The prediction result was evaluated by the ROC curve and AUC value. Fig 4 shows the

prediction results. The AUC value was 0.7774, indicating that the method proposed here is

effective in the prediction of isolated disease–miRNA relationship.

In recent years, more miRNAs have been discovered. However, their relation to dis-

eases is mostly unknown, thus posing a great challenge to the prediction algorithm. The

existing prediction methods cannot solve these problems. All predicted miRNA–disease

association information should be removed to verify the effectiveness of the method pro-

posed in this paper in the prediction of new miRNA–disease associations. NPRWR was

implemented for prediction. As shown in Fig 4, the AUC value reached 0.8041 in the pre-

diction of new miRNAs, indicating that our method has good performance in the predic-

tion of new miRNA–disease associations.

Table 1. The top 50 lung neoplasm–related miRNAs.

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-1254 dbDEMC 26 hsa-mir-372 HMDD,dbDEMC

2 hsa-mir-3940 dbDEMC 27 hsa-mir-10a HMDD,dbDEMC

3 hsa-mir-106b dbDEMC 28 hsa-mir-449a HMDD,dbDEMC

4 hsa-mir-16 HMDD,dbDEMC 29 hsa-mir-302c dbDEMC

5 hsa-mir-708 dbDEMC 30 hsa-mir-151b dbDEMC

6 hsa-mir-15b dbDEMC 31 hsa-mir-328 HMDD,dbDEMC

7 hsa-mir-487a dbDEMC 32 hsa-mir-195 HMDD,dbDEMC

8 hsa-mir-1258 HMDD,dbDEMC 33 hsa-mir-144 HMDD,dbDEMC

9 hsa-mir-204 dbDEMC 34 hsa-mir-302a dbDEMC

10 hsa-mir-193b dbDEMC 35 hsa-mir-141 HMDD,dbDEMC

11 hsa-mir-130a HMDD,dbDEMC 36 hsa-mir-337 dbDEMC

12 hsa-mir-424 dbDEMC 37 hsa-mir-520c dbDEMC

13 hsa-mir-373 HMDD,dbDEMC 38 hsa-mir-28 dbDEMC

14 hsa-mir-302b dbDEMC 39 hsa-mir-485 HMDD,dbDEMC

15 hsa-mir-20b dbDEMC 40 hsa-mir-374a HMDD,dbDEMC

16 hsa-mir-378a dbDEMC 41 hsa-mir-668 dbDEMC

17 hsa-mir-451b [73] 42 hsa-mir-153 HMDD,dbDEMC

18 hsa-mir-15a HMDD,dbDEMC 43 hsa-mir-23b dbDEMC

19 hsa-mir-429 dbDEMC 44 hsa-mir-361 HMDD,dbDEMC

20 hsa-mir-451a HMDD,dbDEMC 45 hsa-mir-345 dbDEMC

21 hsa-mir-92b dbDEMC 46 hsa-mir-449b dbDEMC

22 hsa-mir-625 dbDEMC 47 hsa-mir-520a dbDEMC

23 hsa-mir-151a dbDEMC 48 hsa-mir-302d dbDEMC

24 hsa-mir-149 HMDD,dbDEMC 49 hsa-mir-152 HMDD,dbDEMC

25 hsa-mir-99a HMDD,dbDEMC 50 hsa-mir-520b HMDD,dbDEMC

https://doi.org/10.1371/journal.pone.0252971.t001
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3.5. Case study

Mutations and disorders of miRNA play an important role in the development of human dis-

eases. The research on disease-related miRNAs aids in the diagnosis and treatment of diseases.

Lung neoplasm and kidney neoplasm were selected to conduct a case analysis to further evalu-

ate the prediction effect of NPRWR on potential miRNA–disease associations.

In the last 30 years, the number of newly discovered lung neoplasm has significantly

increased. Early diagnosis of lung neoplasm is helpful for the treatment of tumors [72]. In our

data, 132 miRNAs are associated with the occurrence and development of lung neoplasm. In

this paper, NPRWR was adopted to perform lung neoplasm experiment based on these known

data. Among the first 50 miRNAs associated with lung neoplasm predicted by our method, the

supporting evidence can be found from the HMDD 3.0 and dbDEMC data sets for 49 miR-

NAs. The two data sets contained no evidence for hsa-mir-451b. However, Natarelli [73] dis-

covered that hsa-miR-451b can inhibit the lung metastasis of osteosarcoma(see Table 1).

For kidney neoplasm, among the first 50 miRNAs associated with lung neoplasm, support-

ing evidence can be found from the HMDD 3.0 and dbDEMC data sets for 49 miRNAs. No

evidence can be found for hsa-mir-1(see Table 2).

The known miRNAs associated with the diseases being verified were deleted to evaluate the

performance of NPRWR in the prediction of isolated diseases. This operation can ensure that

we only used the similarity information between the disease being verified and other diseases

and the miRNA information associated with other diseases. For lung neoplasm, 132 known

Table 2. The top 50 kidney neoplasm–related miRNAs.

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-155 HMDD,dbDEMC 26 hsa-mir-134 dbDEMC

2 hsa-mir-146a dbDEMC 27 hsa-mir-7 dbDEMC

3 hsa-mir-122 HMDD,dbDEMC 28 hsa-mir-17 HMDD,dbDEMC

4 hsa-mir-34a HMDD,dbDEMC 29 hsa-mir-142 dbDEMC

5 hsa-mir-221 dbDEMC 30 hsa-mir-708 HMDD

6 hsa-mir-125b dbDEMC 31 hsa-mir-9 HMDD,dbDEMC

7 hsa-mir-16 dbDEMC 32 hsa-mir-184 dbDEMC

8 hsa-mir-29a dbDEMC 33 hsa-mir-106b dbDEMC

9 hsa-mir-210 HMDD,dbDEMC 34 hsa-mir-148a dbDEMC

10 hsa-mir-31 dbDEMC 35 hsa-mir-19a dbDEMC

11 hsa-mir-29b dbDEMC 36 hsa-mir-27a HMDD,dbDEMC

12 hsa-mir-199a HMDD,dbDEMC 37 hsa-mir-1207 dbDEMC

13 hsa-mir-26a dbDEMC 38 hsa-mir-19b dbDEMC

14 hsa-mir-145 dbDEMC 39 hsa-mir-373 dbDEMC

15 hsa-mir-133a dbDEMC 40 hsa-let-7b dbDEMC

16 hsa-mir-222 dbDEMC 41 hsa-mir-200a HMDD,dbDEMC

17 hsa-mir-196a dbDEMC 42 hsa-mir-126 HMDD,dbDEMC

18 hsa-mir-206 dbDEMC 43 hsa-mir-137 dbDEMC

19 hsa-mir-20a dbDEMC 44 hsa-mir-30b dbDEMC

20 hsa-mir-1 Unconfirmed 45 hsa-mir-34c dbDEMC

21 hsa-mir-200b dbDEMC 46 hsa-mir-212 dbDEMC

22 hsa-mir-15b dbDEMC 47 hsa-let-7a dbDEMC

23 hsa-mir-218 dbDEMC 48 hsa-mir-92a dbDEMC

24 hsa-mir-29c dbDEMC 49 hsa-mir-124 dbDEMC

25 hsa-mir-223 dbDEMC 50 hsa-mir-204 dbDEMC

https://doi.org/10.1371/journal.pone.0252971.t002
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lung neoplasm–miRNA associations were deleted. NPRWR was used to predict the potential

miRNA–lung neoplasm association. The first 50 miRNAs that were predicted can be found in

HMDD and dbDEMC databases (see Table 3). For kidney neoplasm, seven known associa-

tions were deleted to make prediction by implementing NPRWR. In the prediction results, of

the first 50 prediction associations, 48 had evidence stored in HMDD and dbDEMC databases.

The two databases contained no evidence for hsa-mir-1 and hsa-mir-9(see Table 4). In the pre-

diction of common diseases, hsa-mir-1 is associated with kidney neoplasm. In the future, sci-

entists can find evidence for hsa-mir-1 and hsa-mir-9 association with kidney neoplasm.

4. Discussion

In this paper, a NPRWR model based on dual random walk with restart and network projec-

tion was proposed to predict potential miRNA–disease associations. NPRWR not only exhibits

high performance in the prediction of unknown miRNA–disease interactions but can also

effectively predict isolated diseases and new miRNA.

To fairly evaluate the performance of the NPRWR model, we compared NPRWR with the

most advanced models (MDHGI, NSEMDA, RFMDA, and SNMFMDA). The prediction

scores of NPRWR, MDHGI, NSEMDA, RFMDA, and SNMFMDA were 0.9029, 0.8945,

0.8899, 0.8891, and 0.9007, respectively. NPRWR yielded the best prediction results compared

with the other methods.

Table 3. The top 50 lung neoplasms–related miRNAs candidates predicted by NPRWR with removed all known lung neoplasms–miRNAs associations and the con-

firmation of these associations.

Rank miRNA name evidences Rank miRNA name evidences

1 has-mir-21 HMDD,dbDEMC 26 has-mir-106b dbDEMC

2 has-mir-155 HMDD,dbDEMC 27 has-mir-7 HMDD,dbDEMC

3 has-mir-146a HMDD,dbDEMC 28 has-mir-223 HMDD,dbDEMC

4 has-mir-122 HMDD,dbDEMC 29 has-mir-137 HMDD,dbDEMC

5 has-mir-34a HMDD,dbDEMC 30 has-mir-218 HMDD,dbDEMC

6 has-mir-221 HMDD,dbDEMC 31 has-mir-148a HMDD,dbDEMC

7 has-mir-16 HMDD,dbDEMC 32 has-mir-200b HMDD,dbDEMC

8 has-mir-125b HMDD,dbDEMC 33 has-mir-212 HMDD,dbDEMC

9 has-mir-31 HMDD,dbDEMC 34 has-mir-29c HMDD,dbDEMC

10 has-mir-29a HMDD,dbDEMC 35 has-mir-142 HMDD,dbDEMC

11 has-mir-26a HMDD,dbDEMC 36 has-mir-17 HMDD,dbDEMC

12 has-mir-210 HMDD,dbDEMC 37 has-mir-27a HMDD,dbDEMC

13 has-mir-133a HMDD,dbDEMC 38 has-mir-373 HMDD,dbDEMC

14 has-mir-134 HMDD,dbDEMC 39 has-mir-34c HMDD,dbDEMC

15 has-mir-29b HMDD,dbDEMC 40 has-let-7b HMDD,dbDEMC

16 has-mir-199a HMDD,dbDEMC 41 has-mir-9 HMDD,dbDEMC

17 has-mir-222 HMDD,dbDEMC 42 has-mir-19a HMDD,dbDEMC

18 has-mir-196a HMDD,dbDEMC 43 has-mir-132 HMDD,dbDEMC

19 has-mir-206 HMDD,dbDEMC 44 has-mir-30b HMDD,dbDEMC

20 has-mir-1 HMDD,dbDEMC 45 has-mir-19b HMDD,dbDEMC

21 has-mir-145 HMDD,dbDEMC 46 has-mir-1207 dbDEMC

22 has-mir-15a HMDD,dbDEMC 47 has-mir-34b HMDD,dbDEMC

23 has-mir-20a HMDD,dbDEMC 48 has-mir-451a HMDD,dbDEMC

24 has-mir-15b HMDD,dbDEMC 49 has-mir-124 HMDD,dbDEMC

25 has-mir-184 HMDD,dbDEMC 50 has-mir-93 HMDD,dbDEMC

https://doi.org/10.1371/journal.pone.0252971.t003
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Each disease (miRNA) was simulated as an isolated disease (new miRNA) to evaluate the

performance of NPRWR in the prediction of isolated diseases and new miRNAs. Then, cross

verification was carried out for each disease (miRNA). The AUC values were 0.7774 and

0.8041, indicating that our method has good prediction effect on the prediction of relation-

ships between isolated diseases and miRNA.

In addition, lung neoplasm and kidney neoplasm were selected to conduct a case analysis to

further verify the reliability of the NPRWR model in the prediction of potential relationships

between miRNA and diseases. In the prediction of common diseases, of the first 50 miRNAs

obtained in the prediction of the two diseases, 49 had evidence stored in HMDD or dbDEMC

databases. For the prediction of isolated diseases, in the first 50 miRNAs associated with lung

neoplasm obtained by NPRWR prediction, supporting evidence can be found from known

databases. For the 48 of the first 50 miRNAs associated with kidney neoplasm, supporting evi-

dence can be found from HMDD or dbDEMC databases. No evidence can be found for hsa-

mir-1 and hsa-mir-9.

In conclusion, NPRWR is simple to use and can be applied to the prediction of isolated dis-

eases and new miRNAs, showing strong interpretability and requiring several parameters. The

model can also be used to make prediction by using limited resources. Therefore, the calcula-

tion method we proposed can be used as a powerful auxiliary tool for biological experiments.

However, NPRWR has defects. First, the construction of disease similarity network and

miRNA similarity network lacks scientificity. The accuracy of common neighbor link

Table 4. The top 50 kidney neoplasms–related miRNAs candidates predicted by NPRWR with removed all known kidney neoplasms–miRNAs associations and the

confirmation of these associations.

Rank miRNA name evidences Rank miRNA name evidences

1 hsa-mir-21 HMDD,dbDEMC 26 hsa-mir-184 dbDEMC

2 hsa-mir-155 HMDD,dbDEMC 27 hsa-mir-218 dbDEMC

3 hsa-mir-146a dbDEMC 28 hsa-mir-7 dbDEMC

4 hsa-mir-122 dbDEMC 29 hsa-mir-200b dbDEMC

5 hsa-mir-34a HMDD,dbDEMC 30 hsa-mir-223 dbDEMC

6 hsa-mir-221 dbDEMC 31 hsa-mir-29c dbDEMC

7 hsa-mir-125b dbDEMC 32 hsa-mir-142 dbDEMC

8 hsa-mir-16 dbDEMC 33 hsa-mir-137 dbDEMC

9 hsa-mir-29a dbDEMC 34 hsa-mir-148a dbDEMC

10 hsa-mir-31 dbDEMC 35 hsa-mir-17 HMDD,dbDEMC

11 hsa-mir-210 HMDD,dbDEMC 36 hsa-mir-212 dbDEMC

12 hsa-mir-29b dbDEMC 37 hsa-mir-106b dbDEMC

13 hsa-mir-26a HMDD,dbDEMC 38 hsa-mir-27a HMDD,dbDEMC

14 hsa-mir-199a HMDD,dbDEMC 39 hsa-mir-373 dbDEMC

15 hsa-mir-133a dbDEMC 40 hsa-mir-708 dbDEMC

16 hsa-mir-196a dbDEMC 41 hsa-mir-9 Unconfirmed

17 hsa-mir-222 dbDEMC 42 hsa-let-7b dbDEMC

18 hsa-mir-206 dbDEMC 43 hsa-mir-19a dbDEMC

19 hsa-mir-134 dbDEMC 44 hsa-mir-19b dbDEMC

20 hsa-mir-145 dbDEMC 45 hsa-mir-132 dbDEMC

21 hsa-mir-1 Unconfirmed 46 hsa-mir-30b dbDEMC

22 hsa-mir-20a dbDEMC 47 hsa-mir-34c dbDEMC

23 hsa-mir-15a HMDD,dbDEMC 48 hsa-mir-451a dbDEMC

24 hsa-mir-15b dbDEMC 49 hsa-mir-124 dbDEMC

25 hsa-mir-1207 dbDEMC 50 hsa-mir-93 HMDD,dbDEMC

https://doi.org/10.1371/journal.pone.0252971.t004
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prediction algorithm based on disease functional similarity declines. Second, in consideration

that the associations between available miRNAs verified experimentally and diseases are still

relatively limited, and miRNA similarity is calculated based on such associations, NPRWR

may generate biased predictions.
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