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Growth rate and feeding efficiency are the most important economic traits for meat 
animals. Pekin duck is one of the major global breeds of meat-type duck. This study 
aims to identify QTL for duck growth and feeding efficiency traits in order to assist artificial 
selection. In this study, the growth and feeding related phenotypes of 639 Pekin ducks 
were recorded, and each individual genotype was evaluated using a genotyping-by-
sequencing (GBS) protocol. The genetic parameters for growth and feeding efficiency 
related traits were estimated. Genome-wide association analysis (GWAS) was then 
performed for these traits. In total, 15 non-overlapping QTLs for the measured traits 
and 12 significant SNPs for feed efficiency traits were discovered using a mixed linear 
model. The most significant loci of feed intake (FI) is located in a 182Mb region on Chr1, 
which is downstream of gene RNF17, and can explain 2.3% of the phenotypic variation. 
This locus is also significantly associated with residual feed intake (RFI), and can explain 
3% of this phenotypic variation. Among 12 SNPs associated with the feed conversion 
ratio (FCR), the most significant SNP (P-value = 1.65E-06), which was located in the 
region between the 3rd and 4th exon of the SORCS1 gene on Chr6, explained 3% of 
the phenotypic variance. Using gene-set analysis, a total of two significant genes were 
detected be associated with RFI on Chr1. This study is the first GWAS for growth and 
feeding efficiency related traits in ducks. Our results provide a list of candidate genes 
for marker assisted selection for growth and feeding efficiency, and also help to better 
understand the genetic mechanisms of feed efficiency and growth in ducks.

Keywords: Pekin ducks, feed efficiency, growth, GBS, GWAS

INTRODUCTION

One of the biggest global challenges is how to ensure that an increasingly large population has 
enough food to meet nutritional needs in the near future. It is expected that the population of the 
entire planet will reach around 10 billion in 2050 (Mullan and Haqq-Misra, 2019). Food availability 
is a limited global resource. So it is particularly important to increase the production efficiency 
of food products. Meat accounts for more than 30% of the total food consumption in the world 
(Godfray et al., 2018). Animal husbandry produces animal protein that meets nutritional needs 
through consumption of feed. A 10% improvement in feeding efficiency can save a hundred million 
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tons of livestock feed in the world. Therefore, reducing feed costs 
is essential to meet the challenges posed by meat consumption.

The growth and feeding efficiency of animals are affected 
by a variety of genetic factors. Previous studies discovered a 
considerable number of QTL, some of which have been used 
in animal breeding. In the AnimalQTLdb (Hu et al., 2016), 
13,385 QTL relate to animal growth and 2,567 QTL relate to 
feeding efficiency. Recent studies have mainly used genome-wide 
association analysis (GWAS) to target QTL in various animals. 
As DNA-chips are available for pig, chicken, cattle and sheep, 
different investigations have been performed in these species 
for association studies. A large number of QTL for feeding 
efficiency and growth rate in livestock have been located using 
genome scanning. In studies in beef cattle, several genes affecting 
the residual intake of beef cattle were discovered (Santana et al., 
2014; Santana et al., 2016). Studies on pigs have also reported 
that multiple genes and biological pathways are associated 
with feeding efficiency and growth traits in growing pigs (Do 
et al., 2014a; Do  et al., 2014b). In addition to pigs and cattle, 
similar studies have been conducted in poultry. Early studies 
on broilers reported that the presence of QTL on GGA1 (Gallus 
gallus chromosome 1) and GGA2 affected feed intake and body 
weight at 23–48 days in chickens (van Kaam et al., 1999). Reyer 
et al. (2015) found seven different QTL regions influencing 
broiler feeding and growth traits. Currently, there are 813 feed 
efficiency related QTL that have been curated in chicken. This 
QTL information not only facilitates the study of molecular 
genetic mechanisms, but also improves the accuracy of genomic 
selection for feeding efficiency (Wientjes et al., 2015).

Domestic ducks are important poultry and have a huge 
global consumer, especially in Asia. More than 35 million Pekin 
ducks are reared in Asia per annum. However, few QTL-related 
studies have been reported in ducks due to the non-availability of 
genotyping arrays. We firstly applied genotyping-by-sequencing 
(GBS) in ducks (Zhu et al., 2016), and used this strategy to detect 
the QTL related to carcass traits (Deng et al., 2019). 

Based on our recent genotyping results in the same 
flock (Deng et al., 2019), this study aims to estimate genetic 
parameters and discover the growth and feed efficiency related 
QTL, and provides potential candidate genes for use in selective 
breeding program.

MATERIALS AND METHODS

Phenotype Collection
In total, 639 42-day-old fat strain Pekin ducks with full 
phenotypic records (314 males and 325 females) were provided 
by Golden Star Duck Co., Ltd. and were randomly divided into 
five batches. The interval between each batch was 5 days. At 42 
days, the valid phenotype records of the five batches equated to 
120, 114, 116, 135 and 154 ducks, respectively. All ducks were 
raised to 6 weeks of age and had ad libitum access to feed and 
water. Feed was commercial duck feed as detailed in our previous 
studies (Lin et al., 2018; Deng et al., 2019). Measurements were 
recorded using the Feed Intake Recording Equipment, which 
was developed and applied in our previous study (Zhu et al., 

2017), and included measurement of live body-weight (BW), 
feed intake (FI) etc. Body weight and feed intake is recorded in 
real time by the electronic balance of the recorder. Average daily 
gain (ADG) during the observation period was calculated using 
total body weight gain divided by days of observation. The RFI 
was calculated as the residual of the linear regression of the feed 
intake during the observation period (Bezerra et al., 2013). Feed 
conversion rate (FCR) was the ratio of total feed intake during 
the observation period divided by total weight gain during the 
observation period.

Genotyping and SNP Calling 
The same flock has been genotyped and described in our recent 
publication (Deng et al., 2019). All ducks were genotyped using 
the GBS strategy. Briefly, genomic DNA was digested with 
restriction endonuclease MseI. Fragments ranging from 550 
to 580bp, including adapter sequences, were sequenced using 
an Illumina HiSeq2500 instrument. Raw reads with sequence 
quality score Q < 20 were removed, and barcode sequences 
were clipped. The data were deposited in the NCBI sequence 
read archive (SRP068685 and SRP172425). The clean reads were 
aligned to the duck reference genome using Burrows-Wheeler 
Aligner (BWA) with the default parameters. In this study, the 
BGI1.0 duck genome was reassembled based on the radiation 
hybrid (RH) map using ALLMAP (Rao et al., 2012; Tang et al., 
2015) and was released in BIG Data Center (http://bigd.big.
ac.cn/) (Zhou et al., 2018).

Variant calling was performed using the GATK HaploCaller 
(McKenna et al., 2010) with the minimum phred-scaled 
confidence threshold -stand_call_conf 30, to reduce the amount 
of false positives. The imputations were performed with Beagle 
software (Browning and Browning, 2016) with allelic R2 > 0.9 as 
the lowest standard. We identified a subset tagging SNPs which 
matched the following conditions: minor allele frequency MAF > 
0.1%, sample call rate ≥ 95%, SNP call rate ≥ 95%, and Hardy–
Weinberg equilibrium test P > 10E-6 using PLINK (v 1.90) 
(Chang et al., 2015).

Statistical Analysis
Normality test was performed using the Shapiro–Wilk test to 
check the distribution of the studied traits. If the traits are skewed 
from the normal test, the phenotypic data were normalized by 
the rank-transformation method for application of mixed linear 
model analysis (Beasley et al., 2009). The phenotypic values 
were transformed to ranks and then converting these ranks to 
follow a standard normal distribution with a mean of 0 and a 
standard deviation of 1. Principal component analysis (PCA) was 
performed to assess the population structure using EIGENSOFT 
(Price et al., 2006). The 35,445 independent SNP set was used 
via the PLINK command (--indep-pairwise 25 5 0.2) for PCA 
analysis. The top 10 eigenvectors were used in related analysis 
only when the genomic inflation factor is greater than 1.05, to 
account for the effect of population stratification. The effects of 
covariates, such as sex and batch, on quantitative phenotypes 
were assessed with analysis of variance (ANOVA) using R 
software (https://www.r-project.org/), and covariates explaining 
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more than 1% of the variance at P < 0.05 were included in a 
mixed linear regression model as the fixed effects. The results of 
ANOVA are shown in Table S1.

The mixed linear model association analyses were performed 
using GEMMA (Zhou and Stephens, 2014). Association analyses 
were carried out using a mixed linear model, which treats the 
genotype as the fixed factor and the additive polygenic effect as 
the random effect. The full model was:

y W u e= + + +α βx

where y is an n × 1 vector of the normalized phenotype for n 
individuals; W is an n × i matrix of fixed effects (sex, batch and 
top 10 PCs), including a column vector of 1. The α is a c × 1 vector 
of corresponding coefficients including the intercept, x is an 
n × 1 vector of marker genotypes at the locus tested and β is the 
corresponding effect size of the marker. All effects are reported 
for the minor allele in each marker. The u is an n × 1 vector of 
random polygenic effects and u N(0, G σe

2 ) , where G is the 
genomic relationship matrix (GRM) calculated using genotypes 
and σ u

2  is the polygenic additive variance, estimated based on 
the null model. The e is a vector of random residual effects with 
e N(0, I σ u

2 ), where I is an n × n identity matrix and σe
2  is the 

residual variance. The best linear unbiased estimate (BLUE) 
of β and the corresponding sampling variance are obtained by 
solving the mixed linear model equation based on estimating the 
polygenic additive variances and residual variances.

The SNP-based heritability was estimated using the GREML-
LDMS method (Yang et al., 2015). The mixed linear model was:

y Xb Gg e= + +

where y is an n × 1 vector of phenotypic values for n individuals, 
b is a vector of fixed effects with its incidence matrix X, Gg is 
a vector of aggregate effects of all SNPs, and the variance of 
Gg, Var(Gg) = Rg gσ 2  with Rg being the SNP-derived genomic 
relationship matrix (covariances between individuals based 
on observed similarity at the genomic level) and σ g

2  being 
the additive genetic variance, e is a random residual term with 
e N(0, I σe

2 ) , where σe
2  represents the residual variance and I 

represents an identity matrix. The SNP effects were calculated as 
(2pqβ^2/σ^2), in which p and q are the allele frequencies, β is the 
estimated SNP effect, and σ^2 is the phenotypic variance.

Bonferroni correction was performed to establish proper 
thresholds for genome-wide suggestive and significant 
associations. The independent locus number was calculated 
to reduce the confounding effect of LD structure by the 
simpleM method (Gao et al., 2010). Thus, the 5% genome-wide 
significance level was 3.48E−05 and the suggestive significance 
level was 1.74E−06. The genetic correlations were calculated by 
the mixed linear model as used in association analysis. A core 
QTL region was defined by extending the position of the most 
significant SNP (top SNP) on either side until all SNPs within 
that region had a −log10 (P-value) higher than the −log10 
(P-value) of the top SNP minus 3 units. If there was another 
significant SNP within 1kb of the core QTL region, this SNP was 
also merged into the core QTL region. The extended QTL region 

did not consider the presence or absence of non-significant sites 
within the QTL region.

The MAGMA Top model was used in gene-set analysis (de 
Leeuw et al., 2015). Gene-set analysis in MAGMA is based on 
a multiple linear principal components regression model, using 
an F-test to compute the gene P-value. The association level for 
each gene is the weighted sum of the associated statistics for SNP 
sites in the region. The linkage of the genome and the regulatory 
patterns of the genes were taken into account when conducting 
association analysis. The influence range of a single gene was 
extended to 0.1 MB upstream and downstream, which can 
increase the sensitivity of associated gene detection.

The functional annotation of candidate genes was completed 
using the online tool KOBAS (Xie et al., 2011). Due to the lack of 
a duck QTL database, the information on QTL corresponding to 
candidate genes was extracted from the AnimalQTLdb (Hu et al., 
2016) using chicken orthologs.

RESULTS

Phenotype and Genotype
In this study, 639 Pekin ducks (314 males and 325 females) aged 
42 days were used for GWAS. The descriptive statistics of all traits 
are shown in Table 1. The variance analysis for fixed factors (sex 
and batch) is shown in Table S1. The results showed that ducks 
had an average initial body weight of 1.3 kg with a standard 
deviation of 0.15, and an average daily gain of 0.09 kg. During 
3 weeks’ rearing period, ducks consumed an average of 5.38 kg of 
feed and the average FCR was 3.01.

After quality control, 62,067 SNPs were kept for further 
analysis. The distribution of SNPs is illustrated in Figure S1. 
The number of independent loci identified by simpleM method 
was 28,707. Therefore, the significance threshold at the 0.05 
level in the multiple test was 1.741735e-06 (0.05/28707) and the 
suggestive significance threshold was 3.48347E-05 (1/28707). 
Principal components analysis is shown in Figure S2, and 
the top 10 principal components (lamba > 1.05) are used for 
stratified population correction.

Estimation of Genetic Parameters
The heritability and genetic correlation (Table 2) was estimated 
based on the genomic relationship matrix. The genomic 
relationship matrix was calculated from standardized genotypes, 

TABLE 1 | Phenotypic means of feeding efficiency traits.

Traits Mean S.D.

Body weight BW21(kg) 1.3 0.15
BW42(kg) 3.1 0.3
ADG(kg) 0.09 0.01

Feeding FI(kg) 5.38 0.6
FCR 3.01 0.3

RFI(kg) 0 0.5

ADG, average daily gain during the test; BW21, body weight at 21-days; FI, feed 
intake; FCR, feed conversion ratio; RFI, residual feed intake.
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in order to evaluate the genetic variance. The results showed that 
the weight-related heritability of Pekin ducks was estimated to be 
0.53 (BW21) and 0.15 (ADG). The heritability of feeding related 
traits ranged from 0.21 (RFI) to 0.37 (FI). There is a strong genetic 
correlation between BW21 and BW42 (0.79) (Table 2). The 
genetic correlation between FI and RFI was 0.39, and between 
FCR and RFI was 0.66, but the genetic correlation between FI 
and FCR was very low (Rg = −0.03).

Association Analysis for Growth 
and Feeding Efficiency Traits
The results of the association analysis are shown in Figure 1. In 
total, we obtained a total of 15 non-overlapping QTLs through 
generalized mixed linear model of association analysis, including 
19 significant loci (P < 3.48347E-05) for five different traits. 
Information on the most significant QTL is shown in Table 3.

For body weight traits, a total of 4 suggestive significant 
QTLs were identified (Table 3). The QTL (P value = 1.90E-05) 
of the highest genetic additive effect can explain 3.3% of the 
phenotypic variation of BW21, which is located upstream of 
SLC39A10 on Chr7. The only suggestive significant locus for 
ADG was identified at 41.26 MB on Chr1, but no candidate gene 
was observed.

In total, 12 QTL were significantly associated with feeding 
traits (Table 3). The SNP located at position 182Mb on Chr1 was 
associated with traits FI and RFI, and was in the downstream 
region of RNF17, explaining 2.3% and 3% phenotypic variation 
in FI and RFI, respectively (Figure 2A). The most significant 
FCR-associated QTL was the SNP at position 25Mb on Chr6, 
with a significance of 1.65E-06 (Figure 2B). This SNP is located 

TABLE 2 | Genomic heritability and genetic correlation of feeding traits.

BW21 BW42 ADG FI FCR RFI

BW21 0.53 0.57 −0.04 0.31 0.38 <0.01
BW42 0.79 0.64 0.80 0.64 −0.13 <0.01
ADG −0.09 0.68 0.15 0.55 −0.43 <0.01
FI 0.79 0.94 0.70 0.37 0.50 0.77
FCR 0.27 −0.11 − −0.03 0.35 0.81
RFI −0.05 0.03 0.27 0.39 0.66 0.21

ADG, average daily gain during the test; BW21, body weight at 21 days; BW42, body 
weight at 42 days; FI, feed intake; FCR, feed conversion ratio; RFI, residual feed 
intake. Heritabilities (diagonal), genetic correlations (below diagonal) and phenotypic 
correlations (above diagonal) for all traits ‘−’ denotes a failed estimation.

FIGURE 1 | Associations of SNPs for all traits. In Manhattan plots, SNPs are plotted on the x-axis according to their position on each chromosome, against 
association with these traits on the y-axis (shown as −log10P-value). Dashed line indicates suggestive significance association level (P = 3.48E−05), and solid line 
shows genome-wide significance with a P-value threshold of 1.74E−06. The colour of points with suggestive significance are green while points of genome-wide 
significance are red. The heatmap represents density of SNPs in 1 Mb windows. The estimated genomic inflation factor λ ranged from 1.03 to 1.05.
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between exon 3 and exon 4 of the SORCS1 gene, explaining 
3% phenotypic variation. The result from the gene-set analysis 
showed that PARP4 and CENPJ are suggested to be associated 
with RFI (P = 9.93E-06).

Functional Annotation
In total, 14 potential candidate genes were annotated within all 
detected QTL, with the results shown in Table 4. Among these 14 
genes, 5 genes have related QTL information in the chicken QTL 
database (Table 4). These genes are related to QTL for chicken body 
weight and body fat weight. The two genes associated with BW21 
are SLC39A10 and DNAJC19, which correspond to the average daily 
gain QTL in chicken. The results of full GO and KEGG annotations 
are listed in Table S2. Enrichment analysis found that 3 genes 
are associated with metabolic processes, but there is no known 
interaction network information for these putative candidate genes.

DISCUSSION

Estimation of Genetic Parameters 
We used a genomic relationship matrix constructed from 
genomic SNP information to estimate the genetic parameters of 
growth and feeding efficiency related traits in Pekin ducks from 
the age of 4 to 6 weeks. As animal breeding is a complex, multistep 
process and pedigree errors are common in commercial breeding 
practices, the accuracy of genetic parameter estimates is reduced, 
thus affecting genetic gain from traditional pedigree records. 
The relationship matrix derived from high density genotypes 
can, therefore, efficiently correct errors (Goddard et al., 2011; 
Munoz et al., 2014). We estimated the heritability of FI (0.37), 
FCR (0.35) and RFI (0.21) in Pekin ducks from the 4th to 6th 
week of age. Basso et al. (2012) estimated that the heritability of 
FI and RFI from 41 to 48 week-old Pekin ducks was 0.34 and 
0.24, respectively. Zhang et al. (2017) estimated heritability of 
BW42, FI, FCR, and RFI using the semi-sibling model and found 

that the heritabilities were 0.39, 0.33, 0.38, and 0.41, respectively. 
Our estimated parameters are similar to Zhang’s results. Genetic 
correlations between RFI and FCR, FI and RFI were 0.66 and 
0.39, respectively. We also found a considerable negative genetic 
correlation between BW21 and FCR, and a positive genetic 
correlation with RFI, which is similar to what has been found 
in laying ducks and broilers (Cai et al., 2012; Zeng et al., 2018). 

The BW21 has both moderate and/or high phenotypic and 
genetic correlations with FI and FCR (Table 2). However, BW42 
has a negative phenotypic and genetic correlation with FCR. Higher 
body weight is associated with higher feeding efficiency at 6 weeks 
of age. These results suggest that even though BW21 has a relatively 
strong genetic correlation with BW42, BW21 still cannot be used 
in a selection program if we aim to select duck body weight and 
feeding efficiency at 6 weeks. The heritability between BW21 and 
ADG/ RFI was also very weak (Table 2). However, high heritability 
was observed between BW21, BW42 and FI, as was a very weak 
genetic and phenotypic correlation between BW42 and RFI. These 
results suggest that body weight has very small effects on RFI, and 
should be better than FCR in a practical breeding program in ducks. 

Candidate Genes Associated With Body 
Weight
Growth traits are complex traits which are controlled by 
multiple functional genes. Two potential candidate genes (Solute 
carrier family 10 member 2, SLC10A2; Solute carrier family 
39 member 10, SLC39A10) for growth traits were found to be 
involved in metabolism. Solute carrier proteins are a family of 
transmembrane transporters that play an important role in 
the exchange of physiological molecules. SLC39A10 is a key 
transporter for the maintenance of hematopoietic homeostasis 
and is abundantly expressed during blood cell development and 
zinc metabolism (Ryu et al., 2008). SLC10A2 is primarily encoded 
to produce an ileal nano-dependent bile acid transporter, 
which plays an important role in intestinal reabsorption of bile. 
Missense mutations in this gene are known to cause reabsorption 

TABLE 3 | Significant loci determined from the association analysis.

Traits Chr Pos AF Beta P-value Candidate gene Var

BW21
1 144669723 0.401 −2.60E-01 2.07E-06 SLC10A2 3.2%
7 1934505 0.497 2.56E-01 1.90E-05 SLC39A10 3.3%
9 18257856 0.417 2.22E-01 2.75E-05 DNAJC19 2.4%

ADG 1 41265192 0.011 9.99E-03 4.60E-06 Intergenic 2.2%

FI

28 3372077 0.024 −7.24E-01 1.48E-05 LOC101803004 2.5%
14 9011487 0.064 4.54E-01 2.03E-05 LOC101797452 2.5%
1 85234035 0.455 −2.47E-01 2.35E-05 LOC101789880 3%
1 182200072 0.444 2.16E-01 2.52E-05 RNF17 2.3%

FCR

6 25158157 0.304 2.67E-01 1.65E-06 SORCS1 3%
1 193602840 0.476 −2.56E-01 1.29E-05 LOC101790948 3.3%
1 114359947 0.371 2.31E-01 1.72E-05 IL1RAPL1 2.5%
1 151821915 0.294 −2.33E-01 2.34E-05 LOC101799741 2.3%
2 144490455 0.413 −2.24E-01 2.83E-05 LOC101801644 2.4%

RFI
1 182200072 0.444 2.48E-01 1.65E-06 RNF17 3.%
1 188132623 0.012 9.86E-01 7.28E-06 CCDC82 2.3%
1 45549287 0.164 2.99E-01 1.61E-05 ELK3 2.5%

Pos, position; AF, minor allele frequency; Beta, the estimate coefficient; Var, % of phenotypic variance explained by the top SNP.; ADG, average daily gain during the test; 
BW21, body weight at 21-days; BW42, body weight at 42-days; FI, feed intake; FCR, feed conversion ratio; RFI, residual feed intake.
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disorders (Balakrishnan and Polli, 2006). These gene loci explain 
3.3% and 3.1% of the phenotypic variation of BW21, respectively. 
The chicken SLC39A10 gene is located within the growth-related 
QTL region associated with abdominal fat weight, leg muscle 
weight, and fat weight (Table 4). Our results suggest that solute 
carrier proteins may affect the growth of meat-type ducks.

Candidate Genes Associated With Feed 
Efficiency
Some cytokines related to immune response have been found 
to locate within the feeding efficiency QTL regions. In broilers, 
Mignon-Grasteau et al. (2015) found that some interleukins (IL10, 
IL7R) are associated with growth and gut length. This study found 

FIGURE 2 | The genome-wide significant loci. The blue curve represents the minor allele frequency; the point colour represents the linkage coefficient between the 
most significant point and other loci, with red being the highest. (A) Chr6: 24–26 Mb region. In this region chr6: 25158157_A>T was significantly associated with 
FCR (P = 1.65E-06). (B) Chr1:181–183 Mb region. In this region Chr1: 182200072_C>T was significantly associated with RFI (P = 1.65E-06).

TABLE 4 | Candidate gene information and pathway annotation.

Gene Associated 
trait

Related QTL in chicken Related pathway

SLC39A10 BW21 Body weight; Muscle weight; Fat weight; Daily gain Transport of glucose and other sugars
DNAJC19 BW21 Growth; Body weight; Daily gain; Fat weight; Metabolism of proteins
ELK3 RFI Body weight; Residual feed intake; Fat weight; Muscle weight; Body component weight; Interleukin signaling pathway
SORCS1 FCR Growth; Body weight; Daily gain; Fat weight; No record
IL1RAPL1 FCR Feed efficiency; Femur weight; Growth; Body size; Fat weight; Body weight No record

BW21, body weight at 21 days; FCR, feed conversion ratio; RFI, residual feed intake.
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that SNP between the fourth and fifth exon of the IL1RAPL1 
gene could explain 2.5% of FCR phenotypic variation. IL1RAPL1 
is an important receptor for interleukins and mutations within 
this gene in human have been shown to cause mental retardation 
(Smith et al., 2003). The ELK3 gene which is part of the interleukin 
response pathway was also found to be a putative candidate gene 
for FCR (Heo and Cho, 2014), and one intronic SNP was found to 
explain 12% genetic variation of RFI. In chicken related studies, 
chicken IL1RAPL1 lies within range of the FCR QTL, while ELK3 
locates within the QTL region related to RFI (Table 4). These 
results indicate that the interleukin-related biological pathways 
may have a role in the metabolic activity of meat-type ducks.

One significant locus, which locates within the 182Mb region 
on Chr1 associated with feed intake, can explain 15% of the 
genetic variation. A potential candidate gene located nearby is 
RNF17. RNF17 is mainly expressed in human testis tissue, is 
part of the germ cell cloud and participates in sperm formation 
(Pan et al., 2005). The relationship between RNF17 and feeding 
efficiency traits has not yet been reported and so further analysis 
will be required to determine whether this gene does indeed play 
a role in feeding efficiency in meat-type ducks.

CONCLUSIONS

In this study, the genetic parameters of feeding efficiency and 
growth traits were estimated, and the related genomic variations 
identified. We obtained 15 non-overlapping QTL by using 
mixed-linear models, including 19 significant loci for the five 
different traits studied. Our results provide candidate genes for 
the marker-assisted selection of growth and feeding efficiency in 
ducks, and also help to better understand the genetic mechanisms 
underlying feeding efficiency and growth.
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