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Abstract: RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift
overlap and line broadening, both of which become worse as RNA size increases. Incorporation of
stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless,
the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical
synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical
aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations
lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to
tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of
RNA structure and dynamic studies using labeled phosphoramidites are highlighted.

Keywords: stable isotope; phosphoramidite; solid-phase synthesis; NMR spectroscopy; RNA;
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1. Introduction

RNAs are involved in numerous cellular functions, such as gene regulation, catalysis, signaling,
and retroviral infection [1–6]. RNA owes this functional diversity, in part, to its ability to change its
structure on a wide range of timescales [7–10]. Therefore, biophysical techniques that characterize
RNA structure and dynamics at atomic-resolution are needed to fully elucidate their function.
Although X-ray crystallography and cryo-electron microscopy (cryo-EM) provide insight into RNA
structure, nuclear magnetic resonance (NMR) spectroscopy is the only high-resolution structural
technique capable of probing RNA dynamics on functionally relevant timescales in solution [7–9,11–13].
However, NMR studies of RNA face two challenges: narrow chemical shift dispersion and broad
linewidths, both of which worsen in large RNAs [14–16]. A widely-used method to address these
challenges is the selective incorporation of stable isotope labels such as fluorine-19 (19F), carbon-13 (13C),
hydrogen-2 (2H), and nitrogen-15 (15N) into RNA [15,17–29].

Isotope labeled RNAs are predominantly prepared by in vitro transcription with T7 RNA
polymerase (T7 RNAP) using well established protocols [30,31]. This approach is applicable to
large RNA sequences and allows for uniform or nucleotide-specific labeling by mixing labeled with
unlabeled ribonucleoside-5′-triphosphates (rNTPs). Although this method produces pure material
in quantities amenable to NMR analysis (~0.1–1 µmol), signal overlap presents a significant problem
for large RNAs. Moreover, T7 RNAP requires one or more guanosine (G) or adenosine (A) residues
at the 5′-end for efficient in vitro RNA transcription [30–32]. In some cases, the addition of the 5′-G
overhang(s) can alter the function of the RNA [33]. Additionally, the first 3 nucleotides (nts) at
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the transcription start site have a significant effect on the 5′-heterogeneity of the RNA transcripts
and care must be taken when choosing these sequences [34]. To overcome the non-specificity of T7
RNAP-based in vitro transcription, three methods to prepare position-specifically labeled RNAs have
emerged. In the first, Keyhani et al. developed a chemo-enzymatic synthesis that involves a single
incorporation of a modified nucleoside-3′,5′-bisphosphate to the 3′-end of an RNA fragment followed
by DNA-splinted ligation to complete the desired internally labeled RNA sequence [19]. This method
was used to introduce photocaged, photoswitchable, and isotopically labeled nucleosides into RNAs up
to 392 nts. Furthermore, this method uses standard laboratory equipment and commercially available
enzymes T4 RNA ligase 1, shrimp alkaline phosphatase, and T4 RNA ligase 2, making it readily
accessible to most biochemical/biophysical research groups. However, the relatively low yields from
both bis-phosphorylation of the modified nucleosides (6%–22%) and DNA-splinted ligation of the
RNA fragments (9%–49%) are a major drawback of this approach.

Secondly, Liu et al. developed a hybrid solid-liquid phase transcription technique using an
automated robotic platform known as PLOR (position selective labeling of RNA) to prepare isotopically
labeled RNAs up to 104 nts and fluorescently and heavy atom labeled RNAs up to 71 nts [35–37].
In this approach, the DNA template is attached to a bead and transcription is initiated by the addition
of T7 RNAP and a mixture missing one (or more) of the four rNTPs, causing RNA elongation to stall
at the first position where the missing rNTP would be incorporated. The beads are then washed to
remove unincorporated rNTPs and T7 RNAP. Elongation is then resumed by the addition of a new
mixture containing the previously omitted rNTP. Repetition of the elongation, stalling and reinitiation
steps enables synthesis of position-selectively labeled RNA. The main drawbacks of this method are
the inaccessibility of the automated synthesizer and the need for large, stoichiometric amounts of T7
RNAP and DNA template. Additionally, a nucleotide within a stretch of the same residues (e.g., an A
in a GAAA tetraloop) cannot be individually labeled with PLOR. Lastly, at least the first ~10 nts of
the RNA sequence must be composed of only 3 of the 4 residues to ensure proper formation of the
processive elongation complex and subsequently stall it.

The final method, solid-phase chemical synthesis of RNAs with nucleoside phosphoramidites,
is the main focus of this review. This approach allows for position-specific labeling that greatly
reduces NMR spectral complexity and simplifies resonance assignment (Figure 1). Furthermore,
solid-phase synthesis has no sequence requirements, unlike T7 RNAP and PLOR. Despite these
advantages, solid-phase synthesis is currently limited to labeling RNAs less than 76 nts [38]. Fortunately,
many biologically relevant RNAs fall within this size limit [6]. For RNAs larger than 76 nts, ligation of
smaller RNA strands is required [39]. As will be described, the most effective RNA labeling strategies require a
combination of solid-phase and chemo-enzymatic synthesis, RNA ligation, and T7-RNAP-based transcription.
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Figure 1. Schematic of the utility of using isotope labeled RNA phosphoramidites and solid-phase
synthesis to investigate RNA structure and dynamics. This methodology incorporates labels
site-specifically into RNA, resolving NMR spectral overlap and ambiguities in NMR spectra
interpretation. Magenta circle indicates a 13C atom, D indicates a 2H atom, and PG refers to a
2′-OH protecting group.
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2. Solid-Phase Chemical RNA Synthesis

2.1. The Phosphoramidite Method

The solid-phase chemical synthesis of RNA via the phosphoramidite method is a four-step
process that is carried out in an automated synthesizer (Figure 2A) [40,41]. Although originally
developed for DNA synthesis by Beaucage and Caruthers, the phosphoramidite method has since been
adapted for RNA synthesis [42]. This strategy utilizes the reaction between an activated nucleoside
phosphoramidite and a solid-support bound nucleoside to synthesize the desired RNA sequence in
the 3′ to 5′ direction (Figure 2B). During the first step, the 4,4′-dimethoxytrityl (DMTr) protecting
group at the 5′-hydroxyl (OH) of the tethered 3′-nucleoside is removed with trichloroacetic acid or
dichloroacetic acid. The nucleophilic 5′-OH then attacks and removes the activated phosphoramidite
to couple the two nucleosides with a phosphite triester bond. To minimize the amount of undesired
RNA sequences, the unreacted tethered 3′-nucleosides are capped by acetylation of the 5′-OH groups.
The final step is the oxidation of the phosphite triester to a phosphotriester with either iodine (I2) or
tert-butylhydroperoxide. After the entire sequence has been synthesized, the RNA is deprotected and
cleaved from the solid-support. This strategy provides a powerful alternative to other methods of
producing synthetic RNAs such as enzymatic ligation [43–46].

Molecules 2019, 24, x 3 of 15 

 

labeling strategies require a combination of solid-phase and chemo-enzymatic synthesis, RNA 
ligation, and T7-RNAP-based transcription. 

2. Solid-Phase Chemical RNA Synthesis 

2.1. The Phosphoramidite Method 

The solid-phase chemical synthesis of RNA via the phosphoramidite method is a four-step 
process that is carried out in an automated synthesizer (Figure 2A) [40,41]. Although originally 
developed for DNA synthesis by Beaucage and Caruthers, the phosphoramidite method has since 
been adapted for RNA synthesis [42]. This strategy utilizes the reaction between an activated 
nucleoside phosphoramidite and a solid-support bound nucleoside to synthesize the desired RNA 
sequence in the 3′ to 5′ direction (Figure 2B). During the first step, the 4,4′-dimethoxytrityl (DMTr) 
protecting group at the 5′-hydroxyl (OH) of the tethered 3′-nucleoside is removed with 
trichloroacetic acid or dichloroacetic acid. The nucleophilic 5′-OH then attacks and removes the 
activated phosphoramidite to couple the two nucleosides with a phosphite triester bond. To 
minimize the amount of undesired RNA sequences, the unreacted tethered 3′-nucleosides are 
capped by acetylation of the 5′-OH groups. The final step is the oxidation of the phosphite triester to 
a phosphotriester with either iodine (I2) or tert-butylhydroperoxide. After the entire sequence has 
been synthesized, the RNA is deprotected and cleaved from the solid-support. This strategy 
provides a powerful alternative to other methods of producing synthetic RNAs such as enzymatic 
ligation [43–46]. 

 
Figure 2. Overview of the solid-phase chemical RNA synthesis cycle. (A) Schematic of the 
solid-phase synthesis cycle of RNA, with the coupling of residue n-1 and n shown. PG refers to the 
5′-OH protecting group, which is generally DMTr. PG-2 refers to the 2′-OH protecting group, which 
comes in many varieties, as discussed in this review. Additional cycles can be added to the synthetic 
cycle to grow the RNA polymer from 3′–5′ (B). 

The efficiency of the chemical synthesis of RNA by the phosphoramidite method depends on 
the protecting groups used, specifically at the exocyclic amino groups of the nucleobase (A, C, and 
G), and the 2′- and 5′-OH functionalities of the ribose sugar (Figure 3) [40]. Typically, the 5′-OH 
group is protected with DMTr and the nucleobase exocyclic amino groups are protected with acetyl 
(Ac), phenoxyacetyl (Pac), benzoyl (Bz), or isobutyryl (iBu) groups (Figure 3). In contrast to the 
5’-OH and exocyclic amino protecting groups originally developed for DNA, the 2′-OH protecting 

A B 
Basen-1O

OO

OPG

PG-2

BasenO

OOO P
N

O

NC

PG

PG-2

Basen-1O

OO

HO

PG-2

Basen-1O

OO

O

PG-2

BasenO

OOO P

O

NC

PG

PG-2
Basen-1O

OO

O

PG-2

O

Basen-1O

OO

O

PG-2

BasenO

OOO P

O

NC

PG

PG-2
O

Deprotection

Coupling / CappingOxidation

New cycle
(or release)

Basen-1O

OO

O

PG-2

BasenO

OOO P

O

NC PG-2
O

Basen+1O

OOO P

O

NC PG-2
O

…
..

Basen+…O

OOO P

O

NC

PG

PG-2
O

3’

5’

Figure 2. Overview of the solid-phase chemical RNA synthesis cycle. (A) Schematic of the solid-phase
synthesis cycle of RNA, with the coupling of residue n-1 and n shown. PG refers to the 5′-OH protecting
group, which is generally DMTr. PG-2 refers to the 2′-OH protecting group, which comes in many
varieties, as discussed in this review. Additional cycles can be added to the synthetic cycle to grow the
RNA polymer from 3′–5′ (B).

The efficiency of the chemical synthesis of RNA by the phosphoramidite method depends on the
protecting groups used, specifically at the exocyclic amino groups of the nucleobase (A, C, and G),
and the 2′- and 5′-OH functionalities of the ribose sugar (Figure 3) [40]. Typically, the 5′-OH group
is protected with DMTr and the nucleobase exocyclic amino groups are protected with acetyl (Ac),
phenoxyacetyl (Pac), benzoyl (Bz), or isobutyryl (iBu) groups (Figure 3). In contrast to the 5’-OH
and exocyclic amino protecting groups originally developed for DNA, the 2′-OH protecting groups
are unique to RNA. The 2′-OH protecting groups must: (1) be stable under all reaction conditions
(acidic conditions of de-tritylation, basic conditions of deprotection of the nucleobase and cleavage
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from the solid-support), (2) be quantitatively removed under mild conditions that do not degrade the
RNA, and (3) not interfere with the phosphoramidite coupling reaction [40,47–49]. In the next section,
we briefly summarize the commonly used 2′-OH protecting groups along with their comparative
advantages and disadvantages.
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Figure 3. The phosphoramidite building blocks can have different nucleobase (exocyclic amino) and
2′-OH protecting groups (PG and PG-2, respectively). Common nucleobase protecting groups are acetyl
(Ac), phenoxyacetyl (Pac), benzoyl (Bz), and isobutyryl (iBu). The different 2′-OH protecting groups are
discussed throughout this review, but common groups include [(triisopropylsilyl)oxy]methyl (TOM),
tert-butyldimethylsilyl (tBDMS), 2′-cyanoethoxymethyl (CEM), bis(acetoxyethoxy)methyl ether (ACE),
and photolabile 2-nitrobenzyloxymethyl (NBOM).

2.2. Choice of RNA Phosphoramidite 2’-OH Protecting Groups

There is currently no consensus RNA 2′-OH protecting group, but the available groups can
be broadly categorized into acid-, photo-, and fluoride-labile groups [40,50–54]. For generating
isotope labeled RNAs, the fluoride-labile 2′-OH protecting groups tert-butyldimethylsilyl (tBDMS),
[(triisopropylsilyl)oxy]methyl (TOM), and 2′-cyanoethoxymethyl (CEM) group are preferred.
Despite the stability under acidic conditions and ease of addition and removal, tBDMS suffers
from a low coupling efficiency, long coupling time, and migration from the 2′- to 3′-OH during
RNA synthesis [40]. Despite its limitations, 2′-O-tBDMS phosphoramidites have been successfully
used to synthesize labeled RNAs up to 53 nts [55]. Compared to tBDMS, TOM has shorter coupling
times (~6 min) and does not migrate from 2′- to 3′-OH [40]. With TOM, labeled RNAs as large as
55 nts have been successfully prepared [56]. The CEM group has a high coupling efficiency (~99%),
short coupling time (2–4 min), and minimal steric hindrance that allows synthesis of RNAs as large
as 170 nts [57,58]. In terms of labeled RNA, sequences up to 76 nts have been successfully prepared
for NMR analysis with 2′-O-CEM phosphoramidites [38]. Two other 2′-OH protecting groups that
have not yet been applied to RNA labeling are the photolabile 2-nitrobenzyloxymethyl (NBOM)
group and the acid-labile bis(acetoxyethoxy)methyl ether (ACE) group [47,53,54]. The NBOM group
is stable under acidic and basic conditions, has a short coupling time (2 min), and high coupling
efficiency. However, its removal is not quantitative [40]. While the ACE group has a short coupling
time (1 min) and is capable of generating RNAs in high yield and purity, it is acid labile and therefore
not compatible with 5′-DMTr deprotection. Thus, fluoride-labile 5′-OH protecting groups are required
and the synthesizer has to be modified to handle triethylamine/trihydrofluoride (TEA-3HF) as a
deprotection agent [40]. Nevertheless, the ACE group is commercially successful at preparing RNAs
in large quantities even with modified nucleosides (e.g., inosine, N6-methyladenosine, pseudouridine,
2’-fluoro-A,U,G,C) [47,53].
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Given the advantages and disadvantages of each 2′-OH protecting group, the choice of which
to use typically depends on the downstream application. However, few 2′-OH protecting groups
are capable of making RNA in high enough quantity and purity for NMR spectroscopy. As will be
discussed, 2′-O-tBDMS and 2′-O-TOM phosphoramidites have been used to great success to study RNA
structure and dynamics by NMR spectroscopy [56,59–62]. However, phosphoramidite synthesis with
these protecting groups is limited to RNAs less than 60 nts. Nevertheless, unlabeled 2′-O-tBDMS and
2′-O-TOM phosphoramidites are commercially available, so researchers only need to synthesize isotope
labeled phosphoramidites in-house, dramatically simplifying sample preparation. The commercially
unavailable 2′-O-CEM is the only protecting group that can accommodate larger RNAs, but both
unlabeled and labeled phosphoramidites must be synthesized in-house. In practice, 2′-O-tBDMS
phosphoramidites are used for NMR structure and dynamics studies of RNAs prepared by solid-phase
synthesis, unless the RNA under investigation is greater than 60 nts. Still, very few research groups
have the resources (organic laboratory and solid-phase synthesizer) and expertise (NMR spectroscopy)
necessary to fully exploit these technologies. One goal of this review is to motivate the collaboration
of organic chemists with biophysicists to unlock the power of this method to study RNA structure,
dynamics, and function.

3. Stable Isotope Labeling of RNA Phosphoramidites

In principle, any method to incorporate isotope labels into nucleobases, nucleosides,
or rNTPs can be converted into phosphoramidites, using one or more of the synthetic routes
described herein. The diverse methodologies to generate such labeled molecules were recently
reviewed [20]. Once synthesized, phosphoramidites are characterized by 1H/13C/31P NMR and mass
spectrometry. The latter technique is complicated by the acid-labile nature of the phosphoramidites,
which requires specialized electro-spray ionization techniques in non-aqueous buffers with lithium
chloride for accurate mass determination [63,64]. Several groups have developed synthetic
strategies to obtain 13C/15N-labeled RNA phosphoramidites with a variety of 2′-OH protecting
groups [38,39,55,56,59–62,65–68]. This section will highlight the many efforts employed to synthesize
labeled RNA phosphoramidites.

Jones and colleagues developed a chemo-enzymatic synthetic strategy to prepare
2′-O-tBDMS phosphoramidites from isotope labeled nucleosides prepared by de novo
biosynthesis [69–74]. Starting from labeled adenosine or guanosine, the phosphoramidites were
prepared in 7 steps with overall yields of 60% [66,74]. Furthermore, 85%–90% regioselective
2′-silylation was achieved by concomitant treatment of N-Pac-,5′-DMTr-adenosine or
-guanosine with a mixture of phenyl-H-phosphonate, tert-butyldimethylsilyl chloride
(tBDMS-Cl), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) [66,74]. The [7,NH2-15N2]-adenosine
was prepared in 7 steps with 45% yield starting from an inexpensive pyrimidine,
6-amino-2-thioxo-1,2-dhydro-4(3H)-pyrimidone, and [15N]-NaNO2 and [15N]-NH4Cl as 15N sources for
N7 and NH2, respectively [69]. As an intermediate, [7-15N]-hypoxanthine was generated in 81% yield
and is readily converted to [7-15N]-6-chloropurine for enzymatic transglycosylation with commercially
available purine nucleoside phosphorylase (EC 2.4.2.1) and 7-methylguanosine as the ribose source.
Selective amination at C6 was achieved with [15N]-NH4Cl. [8-13C-1,7,NH2-15N3]-adenosine was
prepared similarly, except during the ring closure of the 4,5-diaminopyrimidine intermediate the 13C
label was introduced by [13C]-sodium ethyl xanthate [73]. Either [8-13C-1,7,NH2-15N3]-adenosine or
-guanosine can be synthesized starting with [8-13C-7,NH2-15N2]-adenosine in 5 steps with 60%–62%
yield and 4 steps with 65%–70% yield, respectively. Although this synthetic strategy is well
suited for purine nucleoside phosphoramidites, the 2′-O-tBDMS regioselectivity is not applicable to
pyrimidines [74]. Virtually any labeled nucleobase can be readily coupled to ribose via commercially
available purine nucleoside phosphorylase, as recently demonstrated [75]. Although labeled nucleobase
is readily coupled to ribose using phosphorylases, the introduction of labeled ribose remains a challenge.
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Wenter and Pitsch developed a convenient approach to obtain [1-15N]-purines and
[3-15N]-pyrimidines by N1/N3 nitration of unlabeled protected nucleoside precursors and
subsequent substitution with in situ generated 15NH3 [56,65,76]. Wenter and Pitsch synthesized
[1-15N]-adenosine and -guanosine and [3-15N]-uridine and -cytidine 2′-O-TOM phosphoramidites
starting from commercially available unlabeled N6-Ac,5′-O-DMTr,2′-O-TOM-adenosine and
5′-O-DMTr,2′-O-TOM-uridine, respectively, with [15N]-NH4Cl as the 15N source [65]. In this approach,
[1-15N]-adenosine was prepared in 5 steps with 37% yield and an inosine intermediate was used
as a starting point to synthesize [1-15N]-guanosine in 6 steps with 24% yield. [3-15N]-uridine was
obtained in 3 steps with 49% yield and was converted to [3-15N]-cytidine with 81% yield in two
additional steps. The isotope labeled, N-Ac,5′-O-DMTr,2′-O-TOM-nucleosides were then converted
into phosphoramidites with 2-cyanoethyl diisopropylphosphoramidochloridite (CEP-Cl) in 1 step with
at least 90% yield. The main advantage of this synthesis is that the incorporation of 15N occurs after
the low yielding 2′-O-TOM protection.

Building on the work of Wenter and Pitsch, Neuner et al. prepared [1-15N]-purine
and [3-15N]-pyrimidine phosphoramidites with either 2′-O-tBDMS or 2′-O-TOM protection [56].
Neuner et al. started their purine and pyrimidine syntheses with a tri-acetylated inosine and tri-tBDMS
uridine, respectively. From the inosine precursor, the [1-15N]-adenosine phosphoramidite was prepared
in 8 steps with 16% yield. During this synthesis, a nitroso-inosine intermediate was used to synthesize
the [1-15N]-guanosine phosphoramidite in 11 steps and 9% yield. As far as the pyrimidines were
concerned, [3-15N]-uridine was synthesized starting from unlabeled 2′-O-tBDMS-uridine in 6 steps with
22% yield. The [3-15N]-cytidine was obtained from 2′-O-tBDMS-[3-15N]-uridine in 5 steps with 25%
yield and [3,NH2-15N2]-cytidine was synthesized in 6 steps with 16% yield. This protocol circumvents
the need for the expensive starting materials used by Wenter and Pitsch but at the expense of lower
reaction yields [65].

From isotope labeled nucleobases [25–27,38,55,60,77], the groups of Kreutz and Micura prepared
2′-O-tBDMS and 2′-O-TOM phosphoramidites for NMR studies [59–62]. For example, uracil was
synthesized, following procedures developed by Santa Lucia and Tinoco [77]. First, 13C was installed
at C6 from [13C]-KCN, C5 from [2-13C]-bromoacetic acid, C4 from [1-13C]-bromoacetic acid, C2 from
[13C]-urea, and 15N was inserted at N1 and N3 with [15N]-urea [77]. The labeled uracil was then
coupled to 1′-O-acetyl-(2′,3′,5′-O-tribenzoyl)-β-d-ribofuranose under Vorbrüggen conditions using
Lewis acids such as trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a selective catalyst [59,60].
The ribose-protected uridine nucleoside was fully deprotected and the 5′-OH was DMTr protected
with 60% yield. From the 5′-O-DMTr-uridine, either the 2′-O-tBDMS or 2′-O-TOM phosphoramidites
were obtained in 2 steps with 46% or 26% yield, respectively [59,60]. The 2′-O-TOM-cytidine
phosphoramidite was readily accessible from the 5′-O-DMTr,2′-O-TOM-uridine intermediate in
4 steps with 45% yield. The 13C-purine phosphoramidites were synthesized from morpholine using
[13C]-thiourea and [13C]-formic acid to install 13C at adenine C2 and purine C8, respectively [27,55,77].

Finally, Kremser et al. synthesized isotope labeled 2′-O-CEM phosphoramidites using
a protocol similar to Ohgi et al., using sequential 3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)
(TIPDS)-protection, 2′-O-CEM protection, 3′,5′-O-TIPDS deprotection, 5′-O-DMTr protection,
and phosphoramidite conversion [38,48,52]. Kremser et al. prepared [8-13C]-adenosine
and -guanosine and [6-13C-5-2H]-uridine and -cytidine 2′-O-CEM phosphoramidites [38].
Starting from 3′,5′-O-TIPDS-adenosine, [8-13C]-adenosine was synthesized in 5 steps with 29%
yield. The [8-13C]-guanosine 2′-O-CEM phosphoramidite was synthesized de novo from the labeled
nucleobase in 9 steps with 14% yield. Synthesis of [6-13C-5-2H]-uridine 2′-O-CEM phosphoramidite
began from the unprotected labeled nucleoside, and proceeded to the phosphoramidite in 5 steps
with 13% yield. Finally, [6-13C-5-2H]-cytidine 2′-O-CEM phosphoramidite was synthesized
from 3′,5′-O-TIPDS-uridine in 6 steps with 44% yield. The major disadvantage of 2′-O-CEM
phosphoramidites is the need to synthesize both unlabeled and stable isotope-labeled material
since they are not commercially available. There are also more synthesis steps compared to tBDMS and
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TOM labeling protocols. Taken together, many stable isotope labeled RNA phosphoramidites have been
synthesized with diverse labeling patterns. The next section is devoted to highlighting a few examples
of how these labels can be exploited to study RNA structure and dynamics by NMR spectroscopy.

4. Applications to NMR Spectroscopy

4.1. Facile RNA Resonance Assignments and Base Pair Interactions

An unparalleled advantage of phosphoramidite solid-phase chemical synthesis over in vitro
transcription is the ability to make RNA with position-specific isotope labels that dramatically simplifies
unambiguous resonance assignments (Figure 1). For example, a 40 nt RNA can be assigned with
40 samples, each containing one of the 40 residues labeled. While assigning all RNA resonances
with this methodology is too cumbersome for most groups, phosphoramidites are a great tool to
confirm assignments from orthogonal NMR experiments or to resolve overlapped peaks in a given
NMR spectra. In addition to assigning RNA resonances, various research groups have utilized
13C/15N-labeled phosphoramidites to monitor both Watson-Crick and non-canonical base pairs in
RNA [56,62].

Incorporation of 15N-labels into RNA provides information on both canonical Watson-Crick and
non-canonical base pairs in RNA [56,62,78–80]. [1,NH2-15N2]- and [2-13C-1,NH2-15N2]-guanosine were
position-specifically incorporated into short (8–12 nts) RNA fragments to compare spectral properties of
GU to GC base pairs [79]. Similarly, [2-13C-1,NH2-15N2]-guanosine and [7,NH2-15N2]-adenosine were
position-specifically incorporated into short (8 nts) RNAs to study face-to-face and sheared GA base
pairs [78]. Additionally, [2-13C-1,7,NH2-15N3]-guanosine and [8-13C-1,7,NH2-15N3]-adenosine were
incorporated into loop A and B domains (14–24 nts) from the hairpin ribozyme found in the satellite
RNA of tobacco ringspot virus [80]. In these examples, the 13C isotopes were used as tags to distinguish
between the residues in doubly labeled samples since 1JH2C2 or 1JH8C8 splits the 1H resonances for
residues that contain 13C directly coupled to 15N. Wenter and Pitsch incorporated [1-15N]-adenosine
and -guanosine and [3-15N]-uridine and -cytidine labels into 5 sites of the 32 nt bistable RNA [65].
An HNN correlation spectroscopy (COSY) experiment was used to correlate the hydrogen bond donor
and acceptor N-atoms within a base pair formed by two 15N-labeled residues [65,81,82]. With this
approach, Wenter and Pitsch were able to unambiguously assign each HNN correlation to a particular
base pair within one of the two co-existing conformers [65].

Neuner et al. probed the conformational flexibility of the P3 stem of PreQ1 class-II riboswitch
interaction with a single-labeled 15N(3)-U:15N(1)-A base pair using their [3-15N]-uridine and
[1-15N]-adenosine labels [56]. Base pair formation for different conformers were unequivocally
observed based on HNN-COSY experiments, suggesting that the P3 stem is closed in the
ligand-bound and unbound RNA (Figure 4A). Secondly, Neuner et al. synthesized [7-15N]-adenosine
phosphoramidite to verify the formation of a base triplet near the active site of the env22 twister
ribozyme [62]. The A49-N(7)HN(3)-U4 hydrogen-bond interaction was directly monitored with
HNN-COSY experiments using chemically synthesized twister ribozyme RNA with [3-15N]-uridine
and [7-15N]-adenosine incorporated at U4 and A49, respectively (Figure 4B). Unfortunately, a correlation
signal between H-15N(3)-U4 and 15N(7)-A49 was lacking in the HNN-COSY spectra. Nevertheless,
the use of [7-15N]-adenosine in HNN-COSY experiments is a straightforward way to demonstrate
non-canonical base pairing interactions in RNA.

To date, two high-resolution NMR structures have been solved using position-specific labeled
RNAs by solid-phase synthesis [83,84]. Traditional NMR assignment strategies are optimized for
largely helical RNAs and often fail for non-canonical tertiary structural regions. Wolter et al. solved
the structure of a 34-nt GTP-binding RNA aptamer that forms exotic structural features including
a trans A:A base pair, a novel GACG quartet, a protonated adenine, and a GCA base triplet [83].
To assign the resonances from these unique regions, 10 site-specifically [6-13C]-uridine and -cytidine
and [8-13C]-adenosine and -guanosine samples were prepared by solid-phase synthesis. A similar
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strategy was applied by Weickhmann et al. to solve the structure of the 43 nt SAM/SAH-binding
riboswitch bound to SAH [84]. The riboswitch adopts an H-type pseudoknot characterized by
extensive base pairing between bulge residues and a flexible 3′ tail. To assign residues within this
region, 15 site-specifically [1,3-15N2]- uridine, [6-13C]-uridine and [6-13C]-cytidine and [2,8-13C2]-,
[8-13C]-adenosine and [8-13C]-guanosine RNA samples were chemically synthesized [84,85]. The use
of position-specific labeling was essential for the assignments and subsequent structure determinations
of both the GTP-binding RNA aptamer and the SAM/SAH-binding riboswitches.
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Figure 4. Example of NMR structural analysis of RNAs made from isotope labeled phosphoramidites.
(A) [3-15N]-uridine and [1-15N]-adenosine labeled preQ1 (class-II) RNA facilitated the probing of the
19U-A51 base pair by HNN COSY experiments [56] (B) [3-15N]-uridine and [7-15N]-adenosine labeling
has the potential to identify base triples in RNAs [62]. Magenta colors indicate labeled residues and the
cyan squares refer to 15N atoms.

4.2. Incorporating Isolated Spin-Pairs for Artifact Free RNA Dynamic Probing

In addition to NMR structural experiments, isotope labeled phosphoramidites have been used
with great success to study RNA dynamics [39,55,59–61]. The isolated 1H-13C spin-pair of the
[6-13C]-pyrimidine and [8-13C]-purine phosphoramidites remove the 13C-13C scalar and dipolar
coupling interactions and thus facilitate straightforward probing of functional dynamics in RNA.
Strebitzer and Nußbaumer et al. demonstrated the potential of atom-specific 13C-labeling to
probe conformational dynamics in the ε-element of the duck Hepatitis B virus RNA (dHBVε) [55].
Wijmenga and co-workers previously showed that an RNA construct that represented the upper
stem undergoes conformational fluctuations from the fast (pico- and nanosecond) to intermediate
(microsecond) timescale [86]. To cross-validate this previous study, a dHBVε construct was made with
[2,8-13C2]-adenosine incorporated at residues A20, A22, and A41. The kinetics of the unfolding process
(kex = 1522 ± 128 s-1) were quantified via a 13C-CPMG relaxation dispersion (RD) experiment utilizing
the 13C-adenosine labels (Figure 5A). In addition to 13C RD experiments, the absence of nearby protons
makes purine 1H8-13C8 and pyrimidine 1H6-13C6 spin-pairs well suited for 1H RD experiments. In the
latter case, pyrimidine 1H5 must be selectively deuterated. With this in mind, Juen et al. probed
the milli- to microsecond dynamics in the 27 nt A-site RNA with 1H RD experiments, owing to the
incorporation of [6-13C-5-2H]-uridine and -cytidine and [8-13C]-adenosine and -guanosine labels at
various sites (Figure 5B) [61]. The overall exchange rate constant (kex = 1880 ± 140 s−1) between the
major and minor RNA states was obtained from the 1H RD profiles of C7, C9, A10, A93, G94, and U95.
Moreover, these data agreed with the previously reported 13C RD experiments, validating the 1H RD
approach to study milli- to microsecond dynamics in RNA. These approaches are limited to RNAs less
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than 70 nts and only labeled nucleobase is readily coupled to unlabeled ribose. The introduction of
labeled ribose using this method remains a challenge.
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Figure 5. Example of dynamic probing of RNAs made from isotope labeled phosphoramidites.
(A) Incorporation of [2,8-13C2]-adenosine into dHBVεRNA enabled 13C CPMG investigation of residues
A20, A22, and A41 and the overall kinetic rate of unfolding to be quantified [55]. (B) Incorporation of
[8-13C]-adenosine and –guanosine and [6-13C-5-2H]-uridine and –cytidine into A-site RNA allowed for
the use of 1H CPMG studies and revealed the overall exchange rate with a minor populated state [61].
Magenta colors indicate labeled residues and magenta circles refer to 13C atoms.

Two strategies to overcome the inherent size limitations of solid-phase RNA synthesis involve
ligation of small chemically synthesized fragments to a larger in vitro transcribed segment and
use of chemo-enzymatic methodology to incorporate both isotope labeled nucleobase and ribose
moieties. This approach was recently applied to interrogate the dynamics of 96 nt CCR5 RNA that
stimulates -1 programmed ribosomal frameshifting upon binding to a microRNA (Figure 6A) [39].
Chen et al. divided the 96 nt construct into a 72 nt acceptor fragment and a 24 nt donor fragment
(Figure 6B). Eight donor fragments, each containing a different [1′,8-13C2]-adenosine-labeled residue
were prepared by solid-phase synthesis and ligated to an unlabeled acceptor fragment with T4 DNA
ligase (Figure 6B,C). Not only did this approach allow for the unambiguous resonance assignment
of each of the 8 A residues, it also facilitated dynamics measurements by a 1H1′-13C1′ CMPG RD
experiment. Of the 7 A residues measured, 5 showed evidence of chemical exchange on the millisecond
time-scale attributed to base pair opening and closing. Chen et al. identified a sparsely populated
(~10%) excited state with a chemical shift matching that of the CCR5:microRNA complex. Chen et al.
concluded that the CCR5 samples free and bound conformations in solution and the addition of cognate
microRNA stabilizes the bound conformation.
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Figure 6. Combining chemo-enzymatic synthesis, chemical ligation, and phosphoramidite synthesis
to make nucleobase and ribose isotope labeled CCR5 RNA [39]. (A) Secondary structure of the 96 nt
CCR5 RNA. (B) Outline of ligation method. The unlabeled 72 nt acceptor fragment was made by
in vitro transcription and the 24 nt donor fragment (colored in magenta) was made by solid-phase
synthesis to incorporate individual [1′,8-13C2]-adenosine labels, as shown in (A). (C) Schematic of the
combined chemo-enzymatic synthesis and phosphoramidite synthesis to build the [1′,8-13C2]-adenosine
phosphoramidite. Magenta color indicates labeled residues, magenta circles refer to 13C atoms, and Ph
refers to phenyl group.

5. Conclusions

In summary, we present an overview of past and current RNA phosphoramidite isotope
labeling methodologies and their applications in RNA structure and dynamic analysis by NMR
spectroscopy. The biggest practical considerations in the solid-phase chemical synthesis of labeled
phosphoramidites is 2′-OH protection and stable isotope labeling pattern, both of which are specified
by the RNA of interest. Most NMR studies discussed herein were with RNAs prepared with
2′-O-tBDMS and 2′-O-TOM phosphoramidites, owing to the commercial availability of the unlabeled
material. From the developments made by Kreutz and co-workers, Silantes has made the following
labeled phosphoramidites commercially available: [3-15N]-, [1,3-15N2]-, and [6-13C-5-2H]-uridine and
-cytidine, and [1-15N]-, [8-13C]-adenosine and -guanosine (Figure 7). The availability of 13C/15N-labeled
2′-O-tBDMS phosphoramidites will increase the accessibility of these methods. Thus far, analysis of
RNAs greater than 60 nts is only possible with 2′-O-CEM phosphoramidites or enzymatic ligation
of smaller RNA fragments. However, RNA structural biology is moving toward larger and larger
RNAs—especially as cryo-EM gains popularity. Therefore, attention must center on: (1) synthetic
approaches to incorporate isotope labels into the ribose and (2) solid-phase synthetic conditions that
accommodate RNAs larger than 100 nts.
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Figure 7. Schematic of all the isotope labeled 2′-O-tBDMS RNA phosphoramidites made commercially
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