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Visual crowding refers to phenomena in which the
perception of a peripheral target is strongly affected by
nearby flankers. Observers often report seeing the
stimuli as “jumbled up,” or otherwise confuse the target
with the flankers. Theories of visual crowding contend
over which aspect of the stimulus gets confused in
peripheral vision. Attempts to test these theories have
led to seemingly conflicting results, with some
experiments suggesting that the mechanism underlying
crowding operates on unbound features like color or
orientation (Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001), while others suggest it “jumbles up”
more complex features, or even objects like letters
(Korte, 1923). Many of these theories operate on
discrete features of the display items, such as the
orientation of each line or the identity of each item. By
contrast, here we examine the predictions of the Texture
Tiling Model, which operates on continuous feature
measurements (Balas, Nakano, & Rosenholtz, 2009). We
show that the main effects of three studies from the
crowding literature are consistent with the predictions of
Texture Tiling Model. This suggests that many of the
stimulus-specific curiosities surrounding crowding are
the inherent result of the informativeness of a rich set of
image statistics for the particular tasks.

Colloquially, peripheral vision refers to vision
outside of the center of gaze (i.e., outside the central 1°-
2° of visual angle known as the fovea).! Peripheral
vision is where you are not looking (i.e., not pointing
your eyes). Despite it being markedly worse than
central vision, peripheral vision is a key player in many
natural tasks, including gaze guidance, object recogni-
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tion, scene perception, and navigation (Strasburger,
Rentschler, & Jiittner, 2011; Whitney & Levi, 2011).

Peripheral vision has limited acuity and color
perception compared with central vision (Anstis, 1998;
Strasburger et al., 2011). Whereas these deficits are well
studied and significant, they only explain a small
fraction of the difficulty viewers have when performing
peripheral tasks. For example, the modest decrease in
acuity with eccentricity—distance to the point of
fixation—would imply that one could read an entire
page of 12-pt. text at reading distance without moving
one’s eyes (based on functions relating letter acuity to
eccentricity from Anstis, 1998). The crucial limit to
peripheral processing is not lack of acuity, but rather
visual crowding.

Crowding refers to the empirical phenomena in
which observers have difficulty performing a peripheral
task, such as identifying or discriminating a target,
when that target is surrounded by nearby flankers or is
otherwise too complex or cluttered. Traditionally,
crowding has often been demonstrated and studied
with recognition of a target letter flanked by other
letters, but crowding is fundamental to peripheral
vision, and not specific to letter stimuli (Pelli &
Tillman, 2008). A crowded stimulus often subjectively
looks “mixed up,” such that the details and exact
locations of the stimulus’ visual features become
difficult to discern. Lettvin (1976) described the
subjective experience as one in which the stimulus “only
seems to have a ‘statistical’ existence. .. The loss of
spatial order does not involve angles or any other
property that we commonly discuss. ..” This line of
thinking has developed into conceptualization of
crowding as “forced texture perception.”

What, however, does “forced texture perception”
mean? Researchers have answered this question in
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different ways, analogous to different dominant ap-
proaches to modeling texture perception (Rosenholtz,
2014). Whether attempting to predict texture segmen-
tation, discrimination, or representation, most models
of texture perception fall into two broad classes: models
that describe texture in terms of the features of discrete,
presegmented texture elements (“things”), and models
that describe texture by a rich set of image statistics
(“stuff”). As an example of the things class of models,
some theories of texture segmentation represent texture
by a set of discrete features, called textons. Whether
segmentation occurs depends on whether two abutting
textures contain the same number of attributes, like
vertical lines, endstops, closed curves, and arrow
junctions (Julesz, 1981; Julesz & Bergen, 1983; Pomer-
antz & Cragin, 2015). On the other hand, filter—
nonlinearity—filter models of texture segmentation
(Landy & Bergen, 1991; Malik & Perona, 1990;
Rosenholtz, 2000), as well as texture representations
based on image statistics (Heeger & Bergen, 1995;
Portilla & Simoncelli, 2000), fall into the class of stuff
models of texture perception.

If we characterize crowding models in this fashion,
several prominent classes of models are thing models,
operating on discrete features. In averaging models, the
visual system is presumed to measure, say, the
orientation of each individual item, and encode only a
few summary statistics such as the mean and variance
(Greenwood, Bex, & Dakin, 2012; Parkes et al., 2001).
On the other hand, substitution models hypothesize
that peripheral vision detects discrete things—for
example, texton-like features or letter identities—but
loses or jumbles their location information (Pelli,
Cavanagh, Desimone, Tjan, & Treisman, 2007; Stras-
burger et al., 2011; van den Berg, Johnson, Martinez
Anton, Schepers, & Cornelissen, 2012; Whitney & Levi,
2011). A key question for both of these classes of
discrete-feature models is “What are the ‘textons,’ the
‘atoms’ of crowding?” In other words, what things are
averaged? What things are detected before the loss of
position information? Are the atoms unbound features,
such as the orientation of each display item? Or bound
features such as conjunctions of orientation and color?
Or object identity, like letters?

The other approach to modeling crowding (and
texture perception) essentially says that the primitives
of crowding are not atoms at all, but rather stuff
(Adelson, 2001). This other class of models operates on
continuous features, such as the outputs of a cascade of
filtering operations and nonlinearities. For example, a
number of researchers have attempted to reason about
the implications of a simple pooling model that
averages continuous feature measurements over a
pooling region (Levi & Carney, 2009; Manassi, Herzog,
Sayim, & Herzog, 2012; Manassi, Sayim, & Herzog,
2013; Saarela, Sayim, Westheimer, & Herzog, 2009).
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However, this simple pooling model, conceived of as
pooling within at most a handful of feature bands, has
been disproven by a number of experiments (Kooi,
Toet, Tripathy, & Levi, 1994; Levi & Carney, 2009;
Levi, Klein, & Hariharan, 2002; Livne & Sagi, 2007;
Malania, Herzog, & Westheimer, 2007; Manassi et al.,
2012; Manassi et al., 2013; Nandy & Tjan, 2012; Sayim,
Westheimer, & Herzog, 2010; van den Berg, Roerdink,
& Cornelissen, 2007), and serves more as a straw man
than as a real contender to model crowding. In
contrast, our Texture Tiling Model (TTM) represents
its inputs with a high dimensional set of local image
statistics (stuff), known to be good for capturing
texture appearance (Balas, 2006; Portilla & Simoncelli,
2000). This model measures correlations of the
magnitude of responses of oriented V1-like wavelets
across differences in orientation, neighboring positions,
scale, and phase correlation across scale, as well as the
marginal distribution of luminance and luminance
autocorrelation (Rosenholtz, Huang, & Ehinger, 2012;
Rosenholtz, Huang, Raj, Balas, & Ilie, 2012). A similar
model, measuring the same set of statistics, has been
put forward to describe early visual cortex (Freeman &
Simoncelli, 2011; Freeman, Ziemba, Heeger, Simon-
celli, & Movshon, 2013). We have previously shown
that this model can predict the results of a number of
crowding experiments (Balas et al., 2009), among other
phenomena (Rosenholtz, Huang, Raj, et al., 2012).

In this paper, we examine the results from three
different studies, each of which tested hypotheses about
the supposed atoms of crowding—the discrete features
upon which the mechanisms of crowding are presumed
to act. One study on letter crowding (Figure 1A)
indicates that the atoms are not individual letters
(Freeman, Chakravarthi, & Pelli, 2012). A study with
“T-like stimuli (Figure 1B) suggests that the position
and orientation of the crossbar are in some sense bound
(Greenwood et al., 2012). A study with Gabor stimuli
(Figure 1C) indicates imperfect binding between color,
orientation, and spatial frequency (Pdder & Wagemans,
2007). These experiments and their analyses are quite
complex; given the differences between the stimuli, it is
not obvious which discrete-feature model of crowding
could explain the full set of results. On the other hand,
a strength of image processing-based, continuous-
feature models is their applicability to arbitrary stimuli.
We use TTM as our candidate continuous feature
model, since it has shown promise on a number of
crowding results (Balas et al., 2009; Rosenholtz,
Huang, Raj et al., 2012). We test whether TTM can
account for the key results in all three studies. If so, this
provides evidence in favor of continuous-feature
pooling models of crowding, suggesting that perhaps
the primitives of crowding are not atoms after all.

Testing this hypothesis is fairly complex. First, we
must make TTM predictions for the previous experi-
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Figure 1. Example stimuli from three experiments discussed in this study. (A) Letter triplet from experiment 1 in Freeman et al. (2012).
Observers viewed peripheral letter triplets and reported the identity of the central letter. (B) In Greenwood et al. (2012), observers
reported the relative position and orientation of the central tilted crossbar. For example, the correct response for the first stimulus is
“above the midpoint and counterclockwise,” while the correct answer for the second is “below the midpoint and clockwise.” In their
experiment 4, Greenwood et al. (2012) varied the angular deviation of the crossbar from the horizontal in order to manipulate the
overall probability of crowding. (C) Poder and Wagemans (2007) examined how crowding affects feature binding. The observer

reported the color (red or green), relative spatial frequency (high or low), and orientation (horizontal or vertical) of the central Gabor.
Each stimulus randomly had two, four, or six flanking Gabors. The background gray level was different in this experiment than the

others.

ments, essentially running our model through each
experiment as a subject. In the next section, we describe
the methodology for doing this, which involves using
human observers. Next, we compare these TTM
predictions to the original behavioral results. This
alone, however, is insufficient. In each of the three
papers described above, the authors fit computational
models of various degrees of complexity in order to
draw conclusions about the likely atoms of crowding;
the authors’ conclusions did not follow merely from
eyeballing the data, nor from a few simple tests of
significance. Here we ask, if TTM were a subject in the
experiment, would the authors have come to the same
conclusions by fitting its data (i.e., its predictions) as
they did fitting their own experimental data? Taking
this approach allows us to have a better sense of
whether our model predicts key features of the data.
Note that we are agnostic about both the details of the
previous computational models and about the conclu-
sions drawn from those results. We simply ask whether
a crowding mechanism based on pooling of a rich set of
continuous features could have led to the previously
observed data and the resulting conclusions.

The purpose of this paper necessitates that we
present a lot of information about the original
experiments, the original models, and our attempts to
test a unified account of these results. We have done
our best to organize the paper to make it as clear as
possible. First, we describe our standard methodology
for generating predictions from TTM. Then, each
original study appears in its own section, with four
parts, to (a) present the motivation of the original
study, (b) describe the experimental methodology, (c)
compare our predictions to the original data, and (d)
present the outcome of applying the computational
modeling in the original study to the data of our model
subject. Each section has a figure with sample stimuli

and relevant results. Finally, we discuss the broader
consequences of our findings.

Generating predictions from TTM

To gather predictions of the TTM, we use the same
methodology as in our previous work (Balas et al., 2009;
Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz,
Huang, Raj et al., 2012; Rosenholtz, 2011; Zhang,
Huang, Yigit-Elliott, & Rosenholtz, 2015). In short, the
model represents a stimulus image as vectors of image
statistics computed over localized, overlapping sections
(pooling regions) of the image. These measured statistics
are then fed into an algorithm that generates a new
image that matches the original image’s statistics, but is
otherwise random. This methodology allows us to
literally see the information encoded by the given set of
statistics. The set of images that can be synthesized from
a given image (with the same statistics but generated
from different random seeds) form an equivalence class
of the model. We call these synthesized stimuli
“mongrels” (Balas et al., 2009).

The full version of TTM measures statistics over a
number of pooling regions that overlap and tile the
entire visual field. It takes hours to synthesize each
image. Here we run the local version of the model,
which extracts statistics from only a single pooling
region. This reduces to Portilla and Simoncelli (P-S)
texture analysis/synthesis (Portilla & Simoncelli, 2000;
available at http://www.cns.nyu.edu/~Icv/texture/),
applied to stimuli we have blurred to account for
reduced peripheral acuity. For stimuli such as those
here, which lack larger scale grouping structure and are
fairly homogeneous, syntheses of a single pooling
region typically appear quite similar to those from the
full version of the model.
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For color stimuli, we use a color texture synthesis
algorithm (available at http://www.cns.nyu.edu/pub/
eero/colorTextureSynth.zip). This algorithm runs prin-
ciple components analysis (PCA) on the original color
image, and measures statistics on each of the three PCA
channels. It synthesizes a new image by iteratively
applying P-S texture synthesis to each of the three color
bands, enforcing, on each iteration, the correlations
between bands corresponding to the eigenvectors of the
PCA. For grayscale images, this reduces to ordinary P-S.

We generate mongrels from image statistics mea-
sured on the stimuli in the three original studies. We
generate many of these mongrels per condition and ask
observers to perform essentially the same task as in the
original study. The observers can view the mongrels for
an unlimited time and without restriction of eye
movements. Before each experiment, subjects were
shown examples of the original stimuli along with their
mongrels and told colloquially how the process of
creating the mongrel can mix up locations, features,
and legibility of the originals. This procedure attempts
to minimize higher level factors in order to test the
effect of low-level encoding on complex symbol
recognition tasks (see Geisler & Chou, 1995; Zhang et
al., 2015, for more discussion). Observer performance
on the mongrel task gives us the predictions of TTM
for a single pooling region.

The P-S texture analysis/synthesis method assumes
that the image wraps around, meaning the top is
adjacent to the bottom, and the left adjacent to the
right (i.e., periodic boundary conditions). Essentially, it
assumes that the image is on a torus. This leads to
mongrels in which the “stuff” from the center of the
original patch (e.g., the stimulus letters) can be centered
on or near one of the edges, rather than the center of
the image. This makes doing tasks like “report what
letter appeared in the center of the original patch”
somewhat tricky for naive subjects, even when told
about the wraparound. As the center of the mongrel is
completely arbitrary—it is simply a matter of what
starting point one uses when unwrapping the torus—we
correct for the wraparound by toroidally shifting each
mongrel to move the center of mass of the foreground
pixels to the center of the image.

Can a simple substitution model account for
crowding?

Substitution is undeniably a phenomenon in crowd-
ing, in which a subject, asked to report the identity of a
target, instead reports one of its flankers. This
phenomenon might suggest a mechanism of crowding,
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which measures features for target and flankers, but
either does not encode their location or encodes it in a
noisy way (Chung & Legge, 2009; Strasburger &
Malania, 2013; van den Berg et al., 2012). This loss of
location information would predict substitution of
flankers for the target, though it is not the only
mechanism that will do so (see Freeman et al., 2012,
and Discussion).

Is crowding due to substitution operating at the level
of entire objects like letters (i.e., does the mechanism of
crowding identify complete letters, but lose their
location?)? Freeman et al. (2012) examined the
explanatory power of a simple substitution model at
predicting responses in a crowded letter-identification
experiment. In simple substitution, the response to a
crowded stimulus is determined by independently
sampling either the target or a flanker. This means that
on a given trial, the response is either: the target, a
letter similar to the target, a flanker, or a letter similar
to that flanker. Importantly, because simple substitu-
tion is only a function of a single letter, any interaction
between target and flankers, such as their similarity,
does not directly influence the responses.

Their experiments

Freeman et al. (2012) presented subjects with triplets
of letters that were viewed peripherally (Figure 2A, B).
The subject’s task was to report the identity of the
central letter, the target, disregarding the flankers on
either side. Freeman et al. (2012) based their conclu-
sions largely on the results in their experiments 1 and 2,
and so we address those two experiments here. In
experiment 1, letter triplets were chosen such that one
flanker was similar to the target and the other was
dissimilar. Care was taken in choosing letter triplets to
avoid introducing target—flanker correlations. This is
necessary partially because observers more easily
identify letters at the ends of a crowded array (Bouma,
1970). If target—flanker correlations were allowed, a
subject who identified only the flankers could exploit
the correlations to guess the target. A stimulus set was
created for each subject such that each letter was used
as a target, a similar flanker, and a dissimilar flanker. In
experiment 2, an alphabet of two groups of three letters
each (LTI, MNW) was used for all subjects. Within
each group, the letters are similar, but between groups,
they are dissimilar. The flankers were identical to each
other in the second experiment, and both the target and
flanker identities were chosen randomly on each trial.

Freeman et al. (2012) proposed that a key prediction
of simple substitution is that subjects will report a
similar flanker just as often as a dissimilar flanker. They
found that this null hypothesis does not hold, and
concluded that simple substitution cannot account for
letter-identification performance under crowding. A
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Figure 2. (A) Example stimulus from experiment 1 in Freeman et
al. (2012), with two mongrels to its right used in our Experiment
1A. Mongrels are generated by iteratively enforcing image
statistics on a random noise seed. Subjects were asked to report
what three letters they believed the mongrel was generated
from, free-viewing with no time limit. Notice that the mongrels
show effects of substitution (swapping of letter positions), as
well as complex interactions between letters. In agreement
with Freeman et al. (2012), the flanker (A) more similar to the
target (X) tends to be reproduced more faithfully in the
mongrels than the dissimilar (S) flanker. (B) Original and
mongrels for Freeman et al. (2012)’s experiment 2 (mongrels in
our Experiment 1B). Interestingly, the letter “I” seems to
appear in the mongrels, despite being absent in the original. (C)
Subject reports of the similar flanker (first bar) compared to the
dissimilar flanker (second bar), averaged across subjects, for
both (left) Freeman et al. (2012) and (right) our Experiment 1A.
Notice that in both studies, subjects reported the similar flanker
significantly more often than the dissimilar (asterisk indicates p
< 1 X 107 two-sided permutation test). (D) How often
subjects mistakenly reported one of the identical flankers when
they were similar (first bar) to or dissimilar (second bar) to the
target, for both (left) Freeman et al. (2012)’s experiment 2 and
(right) our Experiment 1B.
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recent paper (Hanus & Vul, 2013), however, argued
that simple substitution with letter confusions could
account for increased similar flanker reports, based on
their own modeling of the impact of individual letter
confusability. We remain largely agnostic to the
specifics of the models discussed in these two studies,
and focus on the phenomena of similar versus
dissimilar flanker reports (see also Bernard & Chung,
2011).

Stimuli and procedure for generating TTM predictions

We tested five subjects in our reproduction of
experiment 1 from Freeman et al. (2012). Four were
experienced observers in previous mongrel experiments,
and all were naive as to the design of the experiments.
(Three were lab members, and thus may not have been
completely naive as to the purpose of the experiments.)
We tested four experienced psychophysical observers in
Experiment 2. Two of these observers were naive to the
purposes of the experiment, one of who also partici-
pated in Experiment 1. Of the two remaining observers,
one was an author.

Using P-S synthesis, we generated mongrels of the
letter triplet stimuli in (Freeman et al., 2012; Figure 2A,
B). Prior to their first main experiment, Freeman et al.
(2012) measured the confusion matrix for each observer
between uncrowded peripheral letters with added noise.
The confusion matrix was used to design a set of stimuli
in experiment 1 for each observer, such that each letter
in the alphabet was associated with a similar and
dissimilar letter, resulting in a unique letter triplet of a
target, a similar flanker, and a dissimilar flanker.
Rather than carry out this procedure for each subject,
we used the stimuli generated for their first observer
(JF) for all observers in the mongrel task. Given the
success of observer-independent letter-confusion mod-
eling (Watson & Fitzhugh, 1989), it is reasonable to
assume that letter-confusion matrices do not differ
greatly in structure between observers, an assumption
verified by Hanus and Vul (2013). We will show that we
(similarly to Hanus & Vul, 2013) can nonetheless
distinguish between simple substitution and pooling
models. For each of the original 52 stimuli (each letter
of the alphabet appears with equal frequency as the
target, and the similar flanker can appear first or last in
the triplet), we generated 10 unique mongrels (i.e., 10
members from the equivalence class of the original
stimuli, according to TTM). This gave us a total of 520
trials per observer. Letter size and spacing were
matched to the original experiment as closely as
possible. Trial order was randomized for each subject.

To generate predictions for their second experiment,
we generated letter triplets out of two groups of three
letters, as in Freeman et al. (2012). Enumerating all
possible combinations produces 36 unique triplets. We
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generated 10 mongrels for each triplet. Stimulus order
was randomized for each subject.

In both experiments, instead of instructing the
subjects to name a single target letter in the center of
the mongrel image, we required subjects to enter three
letters and used the second letter as the response. We
did this to facilitate performing possible additional
analyses of the responses (e.g., how errors in flanker
reports relate to target errors; as such analyses are not
relevant to the present paper, we do not present them
here). For Experiment 1, subjects were informed that in
the original patch, all letters occurred with equal
frequency in all three locations, and that each mongrel
represented a triplet of three unique letters. For
Experiment 2, they were told the six possible letters
(examples of which were shown on the screen at all
times) and the flankers would always be identical.
Response time was unlimited and subjects received no
feedback.

Results

Data analysis: In Experiment 1, trials in which subjects
mistakenly reported too many letters, too few letters, or
repeated letters were discarded (0.62% of all trials).
Subjects reported the correct letter on 24.9% *+ 1.1% (M
+ SE) of trials, which is well above chance (1/26, or
3.85%), p < 1 X 10~'°. This is noteworthy because unlike
simple substitution, the TTM model does not explicitly
encode information about letter identity; pooled image
statistics are sufficient to support identification of letters.
Subjects reported the similar flanker on 13.8% *+ 0.4%
of trials and the dissimilar flanker on 8.4% * 1.6% of
trials (Figure 2C). The two types of flankers are not
reported equally (p < 1 X 107°; two-sided permutation
test), consistent with what Freeman et al. (2012)
observed in their first experiment. This result was also
significant for four of the five subjects individually (p <
0.035; p=0.12 for the fifth; two-sided permutation test).
In Experiment 2, any trials in which subjects did not
report identical flankers were discarded (1.39% of trials).
Subjects reported flankers more often when they were
similar (26.8% * 3.8%) to the target than when they
were dissimilar (14.4% = 2.1%; Figure 2D). This trend is
highly significant (p < 1 X 107°; two-sided permutation
test). This difference in flanker reports is qualitatively if
not quantitatively similar to the results from Freeman et
al. (2012), who found that flankers were reported 60% =
6% of the time on similar-flanker trials and 24% = 1%
on dissimilar flanker trials. Subjects in the mongrel
experiment had higher overall reports of absent letters
than in the Freeman et al. (2012) study. In short, we find
that in both Experiments 1 and 2, similar flankers are
reported more often than to be expected by a pure
substitution model, and thus our data support the notion
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that simple substitution is not a complete account of
crowding.
Applying their models to TTM predictions: Freeman et
al. (2012) interpreted their first experiment as showing
that simple flanker substitution (where responses are
based on, but not necessarily identical to, a flanker
chosen at random) cannot account for letter-similarity
effects in crowding, which is consistent with our results.
Moreover, using their mixture modeling technique, we
determined that flanker substitution could at most
account for 72% of responses in our mongrel experiment,
compared to the 55% found by Freeman et al. (2012).
Similarly, using the mixture model from their
experiment 2, we found simple substitution to account
for at most 84% of trials. These results, taken together,
suggest that substitution cannot be a full account of
crowding. While our percentages attributable to
substitution are higher than those found in the original
study, it is important to keep in mind that the mixture
model maximizes the role of substitution in fitting the
data; only trials for which it is impossible for
substitution to explain are attributed to pooling. We
still reach the same conclusion about simple substitu-
tion; in other words, if our model were a subject in their
experiment, they would have drawn qualitatively the
same conclusions (if quantitatively different) as they
did when looking at actual behavioral data.

Do different visual features crowd in concert or
independently?

If the atoms of crowding are not whole letters, as
discussed in the previous subsection, what aspects of the
stimuli are encoded prior to crowding (i.e., loss of
location information or computation of summary
statistics)? Greenwood et al. (2012) designed a set of
experiments to determine which visual processing stage
is responsible for crowding. One natural question to ask
is whether different features of a stimulus, say position
and orientation, are treated independently or bound
together when crowding occurs. In a substitution-style
model, in which some amount of recognition occurs
(bars vs. corners vs. shapes and so on) prior to loss of
position information, more binding implies that crowd-
ing operates at a later stage. Similarly, some models
suggest that features of discrete items are identified and
then averaged, producing crowding. The complexity of
the feature measured and then averaged may suggest
something about the stage at which crowding occurs.
Thus, for both substitution and averaging classes of
models, how much binding occurs gets at the important
question of where in visual processing the mechanisms
of crowding operate. One should note, however, that for
models measuring image statistics rather than features of
discrete items, the connection between amount of
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Figure 3. (A, left) An example stimulus from Greenwood et al.
(2012) displaying strong crowding and a difference in both
position and orientation between target and flankers (both-
differ condition). Orientations of the target and flankers (target
at 5° flankers at —10°) are relatively close to zero. The correct
response to the orientation and position (relative to the vertical
bar’s midpoint) of the center crossbar in this case would be
“clockwise and below.” (A, right) Two of the corresponding
mongrels. Notice that the orientation of the center object
becomes ambiguous in the left mongrel and swaps with a
flanker in the right mongrel. (B, left) Example from the weak
crowding condition for which both position and orientation
differ. Correct response to these stimuli would also be
“clockwise and below.” The orientation difference between
target and flankers is large here (target at 35°, flankers at —40°).
(C—F) The average data over four subjects (bars) along with
averaged model fits (circles and triangles). Each subplot
corresponds to a particular relationship between target and
flankers, just as in Greenwood et al. (2012). The different colors
are different types of responses the subjects made. Within each
plot, the bars are grouped according to the orientation of the
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binding and stage of visual processing is not as
straightforward. As we will see in our mongrels, a rich
set of image statistics can capture a fair amount of
information about feature binding even when that
information is not explicitly encoded, much as the
statistics capture some information about letter identity
without explicit encoding of said identity.

Greenwood et al. (2012) fitted two models to their
data. In both, crowding (i.e., averaging) mechanisms
either operated on a given trial or they did not, in a way
that depends probabilistically on the stimulus. In one
model, this gating occurred for position and orientation
features independently. In the other, whether or not
orientation crowded also gated whether position
crowded. They found that the latter model in which one
gate controlled crowding for both features better fit the
data. This result led them to the conclusion that
binding of features occurs prior to the mechanisms of
crowding. Here we compare the fits of their two models
to our mongrel data and ask whether TTM would have
led to the same conclusion.

Their experiment

Greenwood et al. (2012) presented triplets of cross-
like symbols in subjects’ periphery in their experiment 4
(Figure 3A, B). On each trial, one cross-like target was
flanked by two other cross-like symbols, and subjects
were to report the relative position and orientation of
the target crossbar (above or below the midline? tilted
clockwise or counterclockwise?). In some conditions,
the orientation of the target and flanker were close to
zero, thus inducing strong crowding (*£10°; Figure 3A).
In other conditions, it was very different from zero,
thus inducing only weak crowding (+40° Figure 3B).
The strength of crowding as a function of orientation
difference between target and flanker was determined
separately in their experiment 1. By changing the level
of orientation crowding independently of position
crowding, Greenwood et al. (2012) argued that they
could test whether crowding in one dimension induces

p
target. Notice that subjects tend to make position errors when
the target and flankers differ in position (D). They make
orientation errors only when orientation is different (E) by a
small amount (*£10°, strong crowding) but not when orienta-
tion differs greatly (=40°, weak crowding). In the case where
both position and orientation differ (F), subjects tend to make
errors in both features under strong crowding. When crowding
is weak, though, subjects get both features correct most often.
The model fits in the last plot (F) show that the independent
model (solid triangles) predicts more position errors than the
data show. The joint model (white circles), however, correctly
predicts a greater number of correct responses than position
errors in this case.
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it in the other, or whether they crowd independently.
(In what follows, strong and weak crowding refer to
experimental conditions, not performance.)

Stimuli and procedure for generating TTM predictions

We tested four subjects, all experienced psycho-
physical observers. All subjects had prior experience
viewing mongrels. One was an author and one was
naive to both the design and purpose of the experi-
ments. The other two were lab members and naive as to
the design but perhaps not to the broad purpose of the
experiment. Because this task was quite unnatural and
difficult, we used observers experienced with mongrels
in order to focus on difficulty due only to information
loss by the model. For each of the 32 original stimuli in
experiment 4 from Greenwood et al. (2012), we
generated 20 synthetic mongrel images (Figure 2A, B
for example), for a total of 640 trials per subject.
Subjects in the mongrel experiment were asked to do
their best to infer from the appearance of the mongrel
the orientation and position of the target crossbar in
the original stimulus (from which the mongrel was
derived). Subjects were shown examples of original
stimuli and told how those original stimuli were
generated (e.g., that the irrelevant flankers were always
identical to each other). They were also told that when
stimuli are synthesized, the objects can switch posi-
tions, flip, etc. Subjects had unlimited viewing time to
respond to the orientation and position of the target
crossbar by selecting one of four possible responses. To
match the conditions in Greenwood et al. (2012), trials
were split into blocks of 320 trials each. Each block had
trials with either strong (difficult) or weak (easier)
crowding. The order of blocks was counterbalanced
between subjects, and subjects received no feedback.

Results

Data analysis: As in Greenwood et al. (2012), we
separate the data into four categories that correspond
to the relationship between the target and flankers:
both-match, position-differs, orientation-differs, and
both-differ (Figure 3C through F). In each of these
categories, when crowding occurs (leading to weighted
averaging a la Greenwood et al., 2012), the observer
will be more likely to report the value of a flanker’s
features. According to this model, in the both-match
condition, averaging target and flanker responses
would still lead to a correct response (e.g., the average
of three positions above the midline is above the
midline). We find that our subjects are most likely to be
correct in both features, regardless of crowding level
(Figure 3C). In the position-differs case, the predom-
inant responses in our data are position errors (also
regardless of crowding level), although not much more

Keshvari & Rosenholtz 8

frequent than correct responses. This suggests that
while position judgments were crowded, if gating
occurred a la Greenwood et al. (2012), it would operate
on around or slightly less than 50% of trials (Figure
3D). In the orientation-differs case, the results are more
complex. In the strong crowding subcase, observers
most commonly responded with an orientation error,
and to a lesser extent (but not significantly less), they
responded correctly, suggesting 50% or more of trials
were crowded in orientation. In the weak crowding
case, however, orientation errors dropped to nearly
zero, and the most common response was to be correct
(Figure 3E). This is not surprising, as Greenwood et al.
(2012) designed the weak crowding condition with large
tilts to preclude orientation errors.

Importantly, according to Greenwood et al. (2012),
the key set of trials consists of those in which both the
position and orientation differ between target and
flankers (both-differ; Figure 3F). In the case of strong
crowding, their subjects most commonly made mis-
takes in both position and orientation. When crowding
is released in the weak crowding condition, however,
the dominant response in their experiment was to be
correct in both position and orientation. This effect is
also prominent in our results.

To be specific, when crowding is released by
increasing the difference in orientation between target
and flankers, subjects have fewer orientation and
position errors. This can be shown by computing the
proportion of correct responses expected if releasing
crowding only affected orientation judgments, and
comparing it to the actual proportion of correct
responses. If releasing crowding only affected orienta-
tion judgments, the proportion of correct responses in
the weak crowding case should be equal to the number
of correct responses with strong crowding, plus the
number of orientation errors with strong crowding,
minus the number of orientation errors with weak
crowding. If the actual number is higher, then releasing
crowding in orientation also releases crowding in
position, supporting Greenwood et al. (2012)’s joint
model of crowding. If the expected and actual
proportions are the same, then an independent model
of crowding, where position and orientation don’t
interact, cannot be ruled out. We find that in three of
four subjects individually, the proportion of correct
responses is 22.5% =* 3.8% higher than expected if
weak orientation crowding only affected orientation
judgments (p < 0.025; two-sided permutation test for
each subject), and higher (6.25%) but not significant for
the fourth subject (p = 0.4581; two-sided permutation
test for one subject). This is the same trend observed by
Greenwood et al. (2012).

Applying their models to TTM predictions: In order to
interpret their results, Greenwood et al. (2012) fitted
two models to their data. The models were similar in
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that both assume (a) noisy encoding of position and
orientation, (b) a mechanism that gates orientation
crowding on or off with a probability that depends on
how close the target and flanker orientations are, and
(c) the effect of crowding is modeled as a mechanism
that takes a weighted average of the target and flanker
features. The models differ in that one model (the
independent model) has a separate parameter for the
probability gating on or off position crowding, while
the other (the joint model) posits that crowding in
position happens if and only if crowding in orientation
happens on a given trial. For a schematic of these
models, see figure 6A in Greenwood et al. (2012).
Greenwood et al. (2012) argued that if the joint model
does similarly (given that it has one fewer free
parameter) or better in explaining the data, this implies
that crowding in position is tied to crowding in
orientation (i.e., that crowding happens after the
binding of position and orientation).

We fit these two models to our mongrel data and
compare the fits. Because we had difficulty converging
to a good fit using the models and data from
Greenwood et al. (2012), we made one minor change in
both of the models. Specifically, we used the thresholds
determined from their experiment 3 to set the standard
deviation of position noise in their model (their
equation A4). This was done to keep parameter
estimates at intermediate values and to help the error
minimization converge more quickly. Importantly, this
component of the modeling is identical for both
models, and occurs before the binding step, so it should
not affect the ability to distinguish the models.

We fit both models to each of our subjects
individually and found that for each subject, the
independent model (i.e., the model in which crowding
happens independently for orientation and position) fit
worse than the joint model. The root mean squared
error of the independent model was 1.71 = 1.1
percentage points worse than the joint model. The joint
model fits the mongrel data better for each subject
individually and overall. Compare this to the fits in
Greenwood et al. (2012), where they found root mean
square errors of 6.29 for the independent model, and
3.78 for the joint model, a difference of 2.51 = 0.0012.
The joint model also fits their data better. Given the
difference between the fits of the independent and joint
models, our data also supports the conclusion that
orientation and position are bound prior to crowding.

How does crowding affect feature integration?

Péder and Wagemans (2007) also studied to what
degree feature binding survives crowding. They asked
whether fully bound items are mixed up by crowding
(high-level substitution), whether the mixing happens in
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each feature band separately, or something in between.
By analyzing feature errors and fitting models to the
subject responses, they concluded that the level at
which crowding occurs is neither extreme, but includes
partially bound features. For example, the authors
found a correlation between the number of flankers
with a particular feature value and the number of times
that feature value was erroncously reported. This
correlation, however, was not perfect, suggesting some
binding of the target features. Additionally, they
argued that a Feature Integration Theory (FIT)-style
model in which features bind probabilistically within a
spotlight of attention fits the data very well, despite
having only two free parameters.

We used the method described by Poder and
Wagemans (2007) to generate stimuli, which we then
used to generate mongrels. Subjects viewed the
mongrels and did the same task as in the original
experiment. As in the previous sections, we use the
same analysis and modeling on our data to test whether
we would arrive at the same conclusions about feature
binding in crowding.

Their experiment

Using Gabor patches as stimuli, Poder and Wage-
mans (2007) tested the effect of flankers on an
identification task in which the observer must report
three features of the target. Each Gabor patch had three
orthogonal properties: color (red or green), orientation
(vertical or horizontal), and spatial frequency (high or
low). The target was selected randomly from the eight
possibilities (2 X 2 X 2). The target was flanked by two,
four, or six Gabors, randomly chosen on each trial. The
flankers’ features were randomly chosen such that no
flanker was identical to the target. The flankers were
placed around the target, with their centers regularly
spaced on a notional circle of radius 0.8° (Figure 4A, B).
On each trial, the array of Gabors was briefly displayed
peripherally, and subjects indicated the target identity by
selecting one of eight possible responses.

Stimuli and procedure for generating TTM predictions

Four subjects participated in our experiment. One
was an author, two had significant experience with
mongrels, and the fourth had a small amount of
experience with mongrels. All subjects except the
author were naive to the purposes of the experiment.
All properties of the stimuli were chosen to match those
of the original study. The subjects were instructed to
respond to what they thought were likely the features of
the central target in the original stimulus. Subjects
responded by choosing one Gabor patch of the eight
possibilities displayed at the bottom of the screen and
received feedback on each trial.
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Figure 4. (A) Example stimulus from Poder and Wagemans
(2007), consisting of a central Gabor target with four flankers,
along with two mongrels to its right. Notice that in the
mongrels, fully bound objects (e.g., colored Gabors) appear, but
their component features and relative positions may change.
The first mongrel seems to have an illusory conjunction, a green
vertical Gabor; there were none in the original stimulus. The
second mongrel shows that TTM'’s representation can encode
some information about the overall spatial arrangement. (B)
Original and mongrels of a two-flanker stimulus. Notice that the
first mongrel also shows signs of an illusory green vertical,
whereas the second mongrel shows swapping of whole objects.
(C) Results of Experiment 3. All results in this figure are from
data pooled over all subjects. Probability of mistakenly
reporting a particular flanker as a function of the proportion of
times that flanker appears in the stimulus, computed over all
subjects’ data. Predictions from random selection and random
guessing are overlaid. Responses fall between random selection
and random guessing, as in Poder and Wagemans (2007). (D)
Probability of reporting green in Experiment 3 as a function of
the number of green flankers. Green bars indicate a green
target, while red bars indicate a red target (and thus incorrect
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Results

Data analysis: In their analysis, Poder and Wagemans
(2007) organized the data in several different ways to
make sense of the phenomena. First, they noted that for
all subjects, performance decreases with increasing
number of distractors. They also plotted the predictions
of a random selection model, where the subject randomly
reports one of the Gabors in a given stimulus (essentially
losing all position information). This random selection
model predicts the same trend but severely underesti-
mates actual performance. Our data (for individual
subjects and on average) also show both this decline in
performance with increasing number of distractors and
better performance than predicted by random selection.
This means that while TTM’s representation loses
information about the stimulus, it does preserve some
spatial configuration information. One can directly
observe this in the mongrels (Figure 4A).

Another important finding reported by Poder and
Wagemans (2007) is that subjects’ probability of
responding with a particular distractor is proportional
to the prevalence of that particular distractor in a given
display. They attempted to discriminate between two
mechanisms that might drive this performance: random
selection (mentioned previously) or misbinding, where
the subject reports a combination of features randomly
chosen from those present in the stimulus. They showed
that the probability of reporting a flanker is propor-
tional to how prevalent that flanker is in a particular
stimulus. However, the proportionality is less than 1,
indicating that at least some responses are not due to
random selection. Likewise, they provided evidence for
misbinding by showing that increasing the number of
times a particular feature value appears among the
flankers increases the likelihood of it being reported.
For example, having more green flankers in the display
leads to a higher probability of subjects reporting a
green target. We find strong evidence that TTM
produces both of these effects (Figure 4C, D).
Applying their models to TTM predictions: Poder and
Wagemans (2007) presented several computational
models of their experiment. The one they found most

pu
trials). All data come from trials with four flankers. Features that
appear more often are reported more often, again in agreement
with Poder and Wagemans (2007). (E) Plot of performance in
Poder and Wagemans (2007), compared to performance in our
Experiment 3. Each point’s x-value corresponds to a bar in
figure 7 of Poder and Wagemans (2007), where they organize
the data by number of flankers in the stimulus and the number
of feature errors in the response. (F) FIT-style model fits to data
from Poder and Wagemans (2007; red triangles) and our
Experiment 3 (blue circles). Notice that both data are well fit by
the model, which only has two free parameters.
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compelling is a FIT-style model. Briefly, this model
asserts that responses on a given trial are a result of a
doubly stochastic process: First, a “center of attention”
is chosen randomly from a two-dimensional normal
distribution centered at the stimulus center (the target).
The variance of this normal distribution—essentially
the error in centering attention on the target—is a free
parameter of the model. Second, the probability of
choosing features from a given display item falls off
with distance from the center of attention, according to
another two-dimensional normal distribution whose
variance is a second free parameter of the model. Péder
and Wagemans (2007) simulated this model and found
the values of the free parameters that best fit the data.
Specifically, they fitted the distribution of responses as
a function of the number of flankers, the number of
feature errors (how many features differed between the
response and the target), and whether the response was
present in the flankers (see figure 7 in Poder &
Wagemans, 2007). Organizing the data in this way, we
compare the results of our study and theirs in Figure
4E. They found that this model fits well compared to
other models tested (Poder & Wagemans, 2007). They
found the best-fitting variance parameters for both
normal distributions to be 0.32° visual angle. We also
fit their model to our data and found it to fit well, with
the optimal parameters being effectively 0.48° and 0.2°
of visual angle in the original crowding experiment
(Poder & Wagemans, 2007). The model fits to their and
our data are shown in Figure 4F.

The TTM of visual processing, in which a rich set of
image statistics are measured over sparse pooling
regions that tile the visual field, accounts for a variety
of crowding phenomena (Balas et al., 2009; Rosenholtz,
Huang, & Ehinger, 2012; Rosenholtz, Huang, Raj, et
al., 2012; Zhang et al., 2015). Importantly, because the
model operates on images rather than hand-labeled,
experiment-specific features, the model is flexible
enough to make predictions for arbitrary stimuli. We
have shown here that three reasonably different
crowding phenomena can be captured by this one
model.

First, Freeman et al. (2012) found that when viewing
letter arrays in the periphery, performance cannot be
described by independent position and identity confu-
sion; a more complex mechanism (pooling) is required
to account for crowding. We also find our model
predicts that their crowding results cannot be com-
pletely explained by simple substitution.

Second, when we compare the predictions of TTM to
those of Greenwood et al. (2012)’s model, we find that
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both result in the so-called “release of crowding” for
position under conditions of weak crowding for
orientation; orientation and position seem to be in
some sense bound by peripheral vision. It is important
to note that TTM predicts this release from crowding
phenomenon, even though it has no explicit gating
mechanism that turns crowding mechanisms on or off
depending upon the stimulus. This suggests that given
the information encoded and lost by peripheral vision,
some stimuli inherently lead to more or less difficult
recognition of the target.

Finally, in Pdder and Wagemans (2007), subjects
attempted to identify peripheral objects in which target
and flankers varied independently along three orthog-
onal feature dimensions. Responses seemed to be a mix
of substitution of whole flankers (full binding), and
substitution of partially bound features (including
illusory conjunctions). They found that a parsimonious
explanation of this phenomenon was a FIT-style model
with a soft-edged and semirandomly placed attentional
window. The TTM also predicts a mixture of whole
flanker and illusory conjunction reports and impor-
tantly generates data that are well approximated by the
same FIT-style model.

Predictions made by the TTM, overall, are thus
consistent with a wide range of results from a diverse
set of experiments. The qualitative success of the model
is encouraging. This success likely derives in part from
it belonging to a class of models that includes a cascade
of oriented bandpass filtering, nonlinearities, and
pooling over sizeable but sparse regions in order to
compute a large number of summary statistics. The
specific image statistics hypothesized by the model may
not be exactly right, as also suggested by the present
work. Though the qualitative results are good, quan-
titatively, our model predictions did not always agree
with the data. For example, in the letter-identification
task (originally from Freeman et al., 2012) subjects
viewing mongrels in our study reported significantly
more absent letters than in the original study (Figure
2C; the decrease in “similar flanker” responses in our
data as compared to Freeman et al., 2012, is
attributable to absent-letter responses). The number of
reports of absent letters might decrease with the use of
the full version of TTM, which gathers additional
information from multiple pooling regions. However,
in addition, the model statistics may need further
refinement. We would have been surprised if the image
statistics in Portilla and Simoncelli (2000), developed to
capture texture appearance, turned out to be precisely
the statistics necessary to predict the phenomena of
visual crowding.

One powerful feature of TTM is the ability to
visualize the equivalence classes of the model, as
represented by the mongrels. Mongrels can be used to
gain intuitions about peripheral vision, without having
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Figure 5. (A) Three mongrels of letter triplet stimuli from
Freeman et al. (2012) in which the letters in the original
stimulus were identical (Ill, TTT, and WWW). Notice that
identical letter triplets tend to be better represented by the
mongrels than when the letters are different (Figure 2A, B),
although they aren’t perfect (in the WWW case for example).
The improvement in representation comes from the fact that
identical letter triplets form a more coherent visual texture,
irrespective of the letter identity itself, and textures in general
are better represented by summary statistics. (B) Example
stimulus that is similar to Greenwood et al. (2012)’s stimuli, and
two mongrels to its right. Notice that in the mongrels,
orientation and position are bound; the tilted bar intersects the
vertical bar in each object at the same place as the original,
even though objects can become shuffled around. (C) Plot of all
relevant data from the original three studies (horizontal axis)
versus TTM predictions (i.e., the data in our three experiments;
vertical axis). The data points for Freeman et al. (2012) derive
from Figure 2C, D. The data points from Greenwood et al.
(2012) are those in Figure 3C through F. The data points from
Poder and Wagemans (2007) are copied from Figure 4E. A
viable model of crowding must be able to generate a plot like
this one, where predictions can be generated for arbitrary
stimuli in the form of images.
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to run an entire experiment. These intuitions facilitate
the development of new experiments and theories. For
example, we have observed that triplets of identical
letters (e.g., AAA) were better preserved in mongrels
than triplets of nonidentical letters (e.g., ABA; Figure
5A vs. Figure 2A, B, respectively). The hypothesized
encoding better represents identical letters, likely
leading to easier recognition in such cases. This is in
addition to any decision-making effects, in which
identical letters also have an advantage because
reporting a flanker also gives the correct answer. An
interesting effect that becomes apparent when viewing
mongrels of letter triplets is that letter order also makes
a difference; mongrels suggest that GNW, for example,
may result in a qualitatively different percept than
WNG. This makes sense, as the local correlations
measured by the model will be different in the two
cases. Future experiments might determine whether or
not letter order actually makes a difference in letter
triplets viewed peripherally.

The mongrels we generated of the stimuli in Pdder
and Wagemans (2007) resulted in illusory conjunc-
tions mainly between color and other features. In
other words, spatial frequency and orientation of
Gabors were more tightly bound to each other than
color was to either of the other features. A follow-up
experiment could more carefully examine the nature of
the illusory conjunctions in the crowded periphery.
Rosenholtz, Huang, Raj et al. (2012) previously
demonstrated that TTM predicts orientation—color
illusory conjunctions underlying difficult conjunction
search tasks.

An interesting observation from the mongrels is that
the locations of individual objects are often jumbled up
such that the target does not necessarily appear in the
center of the array. In other words, the model predicts
substitution-like phenomena without a substitution-like
mechanism. At least for some simple stimuli, the image
statistics measured by TTM are sufficient to encode the
correct binding between features of the same object. This
means that if the original stimulus was the letter triplet
ABA, the mongrels would often contain two As and one
B. If the subject knows that the stimulus will contain two
of the same letter and one different, they can bring to
bear this knowledge and pick the target by choosing the
letter that is different. Rather than a crowded letter
identification task, as the experimenter may have
intended, the subject may actually be doing an oddball
identification task. By better understanding the repre-
sentation stage, as visualized by the mongrels, we can
better understand the role of decision-making in
performing tasks under conditions of crowding. Exper-
imenters must not only model the encoding losses due to
crowding, but also take into consideration the subject’s
prior knowledge of the task.



Journal of Vision (2016) 16(3):39, 1-15

This study sets a new benchmark for crowding
research by attempting to predict a range of experi-
mental results with a single model (Figure 5C).
Looking at Figure 5C, a standard linear regression
model results in a best-fit line with slope 0.608 = 0.057,
intercept 0.07 * 0.02, and adjusted R*=0.665. (Putting
aside, for purposes of discussion, that this standard
fitting procedure is not strictly correct for these data.
Some of the data points represent percentages of trials
with a given response, which must add up to 100%; this
introduces unavoidable correlations between the values
within the same study. Furthermore, the percentage
data theoretically violate assumptions of homoscedas-
ticity [uniform variance].) If we assume TTM is a
complete model of peripheral encoding, without any
fitted parameters, then the line fit to the data should
have slope 1 and intercept 0. Enforcing this results in
R?=10.39, with no free parameters. One could add a
single fitted parameter (e.g., a multiplicative constant
on the mongrel predictions) in order to improve the fit,
but the value of that parameter would not be easily
interpretable in the context of understanding the
model. There is clearly room for improving the model
in future studies.

Nevertheless, TTM makes testable predictions with-
out having to hand-tune it to the task-relevant stimulus
features or augment it with ad hoc crowding mecha-
nisms like grouping or gating. This is a direct result of
the visual texture representation it uses, which is image-
computable and operates on stuff rather than preseg-
mented and processed things like items and bars. Given
the parallels between models of texture processing and
models of crowding, it is worth noting that stuff models
of texture perception have been more successful than
thing models (Rosenholtz, 2014). Models based on
image statistics make testable predictions for a far
broader range of input stimuli and have performed well
across a range of stimuli and tasks (Heeger & Bergen,
1995; Malik & Perona, 1990; Portilla & Simoncelli,
2000; Rosenholtz, Huang, Raj et al., 2012; Zhang et al.,
2015). In order to be viable, future models of crowding
must, like TTM, be image-computable, and able to
make predictions on the wide range of stimuli
behavioral researchers can throw at them.

Keywords: crowding, computational modeling, pe-
ripheral vision, texture perception
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