1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Curr Opin Neurobiol. Author manuscript; available in PMC 2022 March 08.

-, HHS Public Access
«

Published in final edited form as:
Curr Opin Neurobiol. 2022 February ; 72: 80-90. doi:10.1016/j.conb.2021.09.006.

On the dynamic and even reversible nature of Leigh syndrome:
Lessons from human imaging and mouse models

Melissa A. Walkerl:2:3:2 Maria Mirandal 22, Amanda Allred?, Vamsi K. Moothal:2

IHoward Hughes Medical Institute, Department of Molecular Biology, Massachusetts General
Hospital, United States

2Broad Institute of Harvard, MIT, United States

3Department of Neurology, Massachusetts General Hospital, United States

Abstract

Leigh syndrome (LS) is a neurodegenerative disease characterized by bilaterally symmetric
brainstem or basal ganglia lesions. More than 80 genes, largely impacting mitochondrial energy
metabolism, can underlie LS, and no approved medicines exist. Described 70 years ago, LS
was initially diagnosed by the characteristic, necrotic lesions on autopsy. It has been broadly
assumed that antemortem neuroimaging abnormalities in these regions correspond to end-stage
histopathology. However, clinical observations and animal studies suggest that neuroimaging
findings may represent an intermediate state, that is more dynamic than previously appreciated,
and even reversible. We review this literature, discuss related conditions that are treatable, and
present two new LS cases with radiographic improvement. We review studies in which hypoxia
reverses advanced LS in a mouse model. The fluctuating and potentially reversible nature of
radiographic LS lesions will be important in clinical trial design. Better understanding of this
plasticity could lead to new therapies.

Introduction

Leigh syndrome (LS), also known as subacute necrotizing encephalomyelopathy, is the most
common pediatric manifestation of inherited mitochondrial disorders [1]. In 1951, Dennis
Leigh described a 5-month old male infant with subacute onset of progressive somnolence.
He died at age 7 months, afebrile but diaphoretic with unreactive pupils, marked hypertonia,
with upgoing toes but absent deep tendon reflexes. Autopsy revealed bilateral, symmetric
brainstem, basal ganglia, and spinal cord gray matter lesions characterized by gliosis,
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vacuolation, capillary proliferation, and relative sparing of neurons within areas with severe
necrosis [2].

As more cases of LS began to be recognized, there was growing appreciation that this

is a metabolic disease. Acidosis, as indicated by low serum bicarbonate in patients in

the 1950s and subsequently lactic acidosis found in patients in the 1960s, was the first
salient biochemical observation [3]. Defects in pyruvate metabolism were subsequently
documented in several patients with LS. Although defects in pyruvate metabolism were
initially thought to be related to pyruvate carboxylase deficiency, this hypothesis was

never proven, and many of these cases were ultimately linked to pyruvate dehydrogenase
deficiency [4]. Cytochrome ¢ oxidase deficiency became the first component of the electron
transport chain (ETC) to be linked to LS in 1977 [5].

Our diagnostic approach and molecular genetic understanding of LS have dramatically
improved over the past few decades. LS was diagnosed based on autopsy findings

till the 1970s when the advent of brain contrast tomography (CT) and, subsequently,
magnetic resonance imaging (MRI) enabled antemortem diagnosis [6-9]. With advances in
biochemical and molecular genetic testing, scores of mitochondrial biochemical and genetic
lesions were linked to LS. Today, LS is widely recognized as the most common pediatric
manifestation of mitochondrial disease, with greater than 80 genes — mostly encoding
proteins localized to mitochondria — underlying this syndrome [1].

Lake et al. have most recently defined LS as i) a characteristic clinical presentation including
psychomotor retardation and/or regression with progressive neurologic decline, often in
a stepwise fashion, with decompensations, frequently with illness, ii) radiologic evidence
of LS lesions in the basal ganglia or brainstem nuclei, which appear hyperintense in T2-
weighted MRI sequences, iii) biochemical evidence of abnormal energy metabolism, and
iv) identification of a pathogenic variant in a characteristic gene [1]. ‘Leigh-like’ disease
or “LS spectrum” is used to describe cases in which a subset of these features including
the radiographic or histologic findings are fulfilled [1]. At present, the precise sequence
of events linking mutations in disease genes to end brain disease is not known. A better
understanding of this molecular pathogenesis is crucial as, at present, there are no proven
therapies.

Here, we review the published literature, present two new clinical cases, and integrate recent
animal studies that collectively suggest that the brain disease in LS may be more plastic than
previously appreciated. In particular, we explore the question of whether the antemortem
MRI abnormalities may not fully equate to end-stage pathology and that these radiographic
findings might instead reflect intermediate — potentially reversible — stages of this disease.

Radiographic brain lesions in Leigh syndrome

Hyperintense signals on the T2-weighted MRI sequence can arise from multiple processes,
making the origin of LS lesion signal abnormalities unclear. Tissues such as cerebrospinal
fluid (CSF) that typically have high water content appear bright or white on T2-weighted
sequences, whereas brain matter appears in shades of gray varying by composition. LS
lesions are T2 hyperintense, as they represent an uncharacteristically bright signal in affected

Curr Opin Neurobiol. Author manuscript; available in PMC 2022 March 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Walker et al.

Page 3

regions [10]. What processes typically produce T2 hyperintensity? Possibilities include
hemorrhage, ischemia, neoplasm, infection, and inflammation [10]. Reduced diffusivity on
isotropic diffusion mapping (thought to represent cytotoxic edema) [11] has occasionally
been reported in LS lesions (e.g. the study reported by Bonfante et al. [9]). Notably,
however, not all studies included this technique; and this abnormality can also represent
an artifact of high T2 signal. While the contribution of hemorrhage, neoplasm, or infection
to the T2 signal abnormalities in LS can be definitively excluded by autopsy and clinical
studies, the relative contributions of inflammation, edema, loss of plasma membrane
integrity, and/or frank necrosis to high T2 signals remain unknown in both the end-stage
disease and antemortem intermediate states in humans.

Although LS lesions are quite distinctive, a small handful of hereditary conditions and

a number of acquired conditions — ranging from toxins, insults, nutritional deficiencies,
infections — can lead to lesions with MRI features resembling LS (Table 1) [1,12—
35,54,56]. These mimetics are not only important considerations in the differential
diagnosis, but also promise to provide insight into the etiopathogenesis of LS.

The rare LS cases reporting both neuroimaging and subsequent autopsy findings are
instructive and reveal histologic evidence of edema and capillary proliferation, gliosis,
and — to a lesser extent — inflammation. Kissel et al. [36] reported an apparent adult-
onset LS case with progressive T2 prolongation signal changes of the cerebral peduncles,
periaqueductal gray, and basal ganglia with initial expansion, followed by contraction of
the latter. Microscopic evaluation on autopsy reviewed capillary proliferation and gliosis
in regions with relative neuronal preservation, as well as lipid-laden macrophages in
areas of complete neuronal replacement by cavitation and necrosis. All areas affected on
histopathologic examination were also detected on MRI [36]. Koch et al. [7] reported a case
of twin infants with LS where CT scan lesions observed in late stages also correlated with
loss of cellularity, vascular engorgement, and gliosis on autopsy.

Resolution of radiographic brain lesions in patients with Leigh syndrome

Serial imaging has at times demonstrated regression of some radiographic LS lesions.
Indeed, as early as 1985, Koch et al. reported the aforementioned case of twins diagnosed
with LS on head CT. In that study, some of the lesions appeared to regress on repeat
imaging. Initial CT demonstrated hypodensities of the bilateral basal ganglia and midbrain
tegmentum at age 10 months. The basal ganglia lesions were not, however, apparent on
repeat imaging at 17 months despite persistent decline in respiratory function. Autopsy
performed on one twin showed that the basal ganglia lesions that had resolved on repeat
imaging demonstrated no gross necrosis, only mild neuronal loss, capillary proliferation,
and reactive astrocytosis. However, in the brainstem, where imaging abnormalities had
been persistent, there was ‘significant’ loss of cells, vascular ‘engorgement,” and ‘marked’
reactive astrocytosis [7]. These findings led the authors to hypothesize that ‘active lesions
with vascular proliferation” but without frank necrosis might appear and subsequently
resolve [7,8]. Intriguingly, recent reports of arterial spin labeling in patients with LS indicate
increased blood flow to LS regions during acute symptomatic crises [37]. Others have
similarly observed radiologic improvement of T2 signal abnormalities without evidence of
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necrosis in various cohorts [9,38,39] and in case report format (Table 2). These findings
suggest that LS lesions that regress on repeat imaging potentially correspond to intermediate
pathologic states rather than end-stage necrotic lesions.

We report two new cases of transient LS brain lesions. Case 1 is a 10-year-old girl

who first presented at age 9 months with failure to thrive and stridor. The MRI brain
obtained at that time revealed T2 hyperintense bilateral lesions of the caudate nuclei and
putamina, thalami, and red nuclei. CSF lactate was elevated at ~5 mM. DNA sequencing
revealed compound heterozygous mutations in mitochondrial complex | (ClI) assembly
factor NDUFAF3 (c.489_490delTG and p.Y11D). She began taking a.-Tocotrienol quinone
in a clinical trial as a toddler and continues on this medication. At age 4 years, she was
nonambulatory but had made significant developmental progress, with 2—3 spoken words
and the ability to point to multiple people or body parts on command. The T2 half-Fourier
single-shot turbo spin-echo (HASTE) brain sequence demonstrated the decreased total area
of T2 hyperintensity of the basal ganglia lesions and apparent regression of basal ganglia,
thalami, and red nuclei signal abnormalities (Figure 1A). Case 2 is a 9-year-old boy who
initially presented at age 16 months with ataxia, decreased arousal, and seizures. The MRI
brain at that time demonstrated bilateral, symmetric T2 hyperintensities of the dentate
nuclei, and lactate peaks on magnetic resonance spectroscopy. Enzyme and genetic testing
confirmed defects in the pyruvate dehydrogenase complex subunit PDHAZ (hemizygous
p.L5P), and ketogenic diet was initiated. The repeat MRI brain at age 4 years showed
interval decrease in T2 hyperintense lesions (Figure 1B). At age 8 years, he speaks in full
sentences and ambulates independently.

We identified more than 32 published cases of LS with radiographic resolution of some or
all lesions [7-9,38-50,52-54] (Table 2). Age of onset ranged from birth to 22 years. Twenty-
one patients carried a genetically confirmed diagnosis. Eight patients carried mitochondrial
DNA (mtDNA) mutations, 13 had nuclear gene defects, with only two of these occurring

in genes functioning outside of the mitochondrion (SLC19A3[54,55] and 7PK1 [56]).
Transient lesions were located either in the basal ganglia (18/30), the brainstem (1/30), or

in multiple brain regions (basal ganglia and the brainstem [4/30], basal ganglia and thalami
[1/30], basal ganglia and the cerebellum [4/30], the brainstem and thalami [2/30]). Although
most cases describe bilateral regression of lesions, asymmetric resolution of caudate lesions
was observed in two patients. Transient lesions often recurred in the setting of illness or
metabolic crises, which are well known to be preciptants of disease progression [40,41,48].
Among published cases, 16 patients’ improved MRIs coincided with clinical improvement
at the time of publication [8,38,40,42-46,48,49,52-54]. In some cases, this improvement
was coincident with a treatment including ketogenic diet [38,44], rapamycin/steroids/n-
acetylcysteine [52], coenzyme Q10 [49], or biotin and thiamine supplementation [54,57].
Critically, no contemporaneous histology has been reported for these intermediate states in
which T2 hyperintensity had been observed but had later regressed, and the availability of
associated clinical data is variable making it difficult to correlate imaging findings with
clinical course.
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Inherited or acquired thiamine deficiency: a special case of treatable lesions in humans

Owing to shared features in the disease mechanism (Table 1), clinical presentation,
radiographic, and histological findings, comparison of LS to Wernicke Korsakoff syndrome
(WKS) — which is often reversible with treatment and comparatively well-understood

— merits special attention. WKS results from dietary deficiency of and is treated with
supplementation of the essential vitamin thiamine (B1), which is a coenzyme component
for several mitochondrial enzymes, including the pyruvate dehydrogenase complex, a known
genetic cause of LS [1]. It is increasingly recognized that WKS has two phenotypes: one
arising purely from nutritional deficiency; and a nutritional deficiency in the setting of
alcohol use disorder [31]. The former presents in the acute phase (Wernicke encephalopathy)
with hearing loss in addition to the classic triad of confusion, oculomotor dysfunction, and
ataxia, although hearing impairment is not a feature of alcohol use disorder-related disease
[58]. In WKS, T2 hyperintensities are found in the bilateral mammillary bodies, thalami,
tectal plate, and periaqueductal gray matter. Notably, nonalcohol use disorder patients —
who are more frequently pediatric — may additionally have signal abnormalities of the
basal ganglia, particularly the putamina [31]. The mammillary bodies are uniformly affected
in WKS but never to our knowledge in LS (Table 1). The radiographic appearance and
postmortem histology of WKS and LS are similar, with both characterized by relative
neuronal sparing and striking gliosis, but unlike LS, WKS often also demonstrates evidence
of prior hemorrhage [59]. With prompt thiamine supplementation [31], most patients with
WKS will experience significant clinical recovery, and resolution of brain lesions after
treatment has been reported [60].

Intriguingly, although most LS disease genes encode mitochondrial proteins involved in
energy metabolism, two of the genetic causes of LS involve perturbations of thiamine
metabolism (Table 1), raising the possibility of shared pathogenesis between WKS and LS.
LS-linked genes SLC19A3and TPKI encode the plasma membrane and cytosolic proteins
required for thiamine transport into cells and its processing, respectively. In contrast to
WAKS, mutations in these genes lead to lesions in brain regions entirely consistent with LS
and comprise the very small subset of treatable forms of LS that exhibit reversibility with
high doses of thiamine [56,61].

Improvement of Leigh syndrome brain disease in a mouse model

The best-characterized animal model of LS is the mitochondrial CI accessory subunit
Ndufs4 knockout (Ndufs4'~) mouse developed by the Palmiter laboratory [62]. CI
deficiency is a common cause of LS, and mutations in NDUFS4 can, rarely, cause LS
in humans [63]. Ndufs4~~ mice are born at term and show little or no apparent disease
till about 5 weeks when they develop progressive encephalopathy and die around 7
weeks [64]. The Naufs4~!~ have reduced body weight and temperature, ataxia, seizures,
lethargy, blindness, and irregular breathing [64,64,65]. These mice typically develop
bilateral symmetric gray matter lesions in the brainstem (vestibular nuclei), cerebellum,
and olfactory bulb. Although the neuroanatomy of these lesions is consistent with the
aforementioned definition of LS [1], vestibular nuclei lesions have also specifically been
reported in humans [68], and cerebellar lesions are a common feature in patients with
LS, it is notable that these mice do not exhibit lesions in the basal ganglia [64]. Similar
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to humans, the Naufs4™'~ lesions are characterized by gliosis with prominent microglial
activation, vascular proliferation, neuronal loss, and vacuolation [64]. Furthermore, the
lesions identified by histopathology correlate with T2-weighted MRI hyperintensities [65].
Other murine mitochondrial encephalopathy models have been reported [69-72], but the
correlation of the histopathology with radiologic findings has only been firmly established
for the Naufs4™!~.

Multiple therapeutic approaches have been tested in the Ndufs4'~ mouse. Recent gene
therapy strategies to re-express mouse Naufs4 systemically restored lifespan and healthspan
in the Naufs4~!~ [73]. Repletion of nicotinamide adenine dinucleotide (NAD+) provided
moderate extension of the the Naufs4~/~ lifespan from 60 to 100 days [74,75]. Interestingly,
ectopic expression of the yeast NADH dehydrogenase NDI1 in the brain rescued the lifespan
of the brain-specific Maufs4 knockout, but the mice still had severe ataxia [76]. It is unclear
whether the beneficial effect of NDI1 is specific to restoring NAD+ redox balance or of
other downstream effects of electron transport chain inhibition (i.e. redox of the coenzyme
Q pool, oxygen consumption, proton pumping by downstream complexes, or mitochondrial
ATP). Surprisingly, targeting reactive oxygen species with a potent antioxidant (KH176)
[77] or transgenic expression of metallothionein 1 [78] had no effect on lifespan. Rapamycin
and doxycycline improved healthspan and doubled the lifespan of Naufs4~/~ [79-82].

The most powerful intervention to date in this model, comparable to gene therapy,

has been chronic, continuous exposure to mild hypoxia (11% oxygen), which led to a
dramatic extension of lifespan and healthspan, with these mice now living for more than
270 days. Moreover, radiologic (T2 MRI signal abnormalities) and histologic staining of
neuroinflammatory microglial marker ionized calcium binder adaptor moleculare-1 (IBA1)
show no evidence of the lesions in hypoxia-treated mice [83,84]. Although rapamycin,
doxycycline, and hypoxia prevent neuroinflammation, anti-inflammatory drug tacrolimus
had no beneficial effect [79] suggesting that the mechanism(s) of action of successful
interventions go beyond blocking inflammation. To our knowledge, spontaneous recovery or
reversal — partial or complete, by imaging or histology — has never been documented in
this mouse model.

Treatment of Naufs4~/~ with hypoxia (11% oxygen) initiated at advanced disease (7 weeks),
when the mice present advanced symptoms including radiologic abnormalities and are

close to fulfilling humane euthanasia criteria, clinically reverses disease and rescues the
mice by improving their overall body weight and motor function, as well as substantially
extending their lifespan. Given the uniformly progressive nature of the disease in this mouse
model and that neurodegeneration has been reported at this timepoint [64], this dramatic
improvement was surprising. Remarkably, in addition to clinical improvement, T2 MRI
hyperintensities progressively decrease till they become almost undetectable after one month
of hypoxia treatment, which correlates to a substantial reduction of neuroinflammation in
histopathology at this age [84] (Figure 2).

Although the mechanism of LS lesion improvement in the Nlaufs4 ™~ remains unknown,
partial reversibility in WKS disease rodent models has been reported. In a thiamine-deficient
mouse model, thiamine treatment prevented further neuroinflammation and neuronal death
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only when administered before extensive neuronal loss occurs [85], indicating that treatment
halts disease progression but does not fully reverse it, suggesting that inflammation
preceding necrosis may be amenable to intervention. Differences in the ‘lesion age’

may explain why thiamine treatment in the analogous rat model normalized radiologic
hyperintensities in the thalamus and colliculi but not in mammillary nuclei and lateral
ventricles [86]. Unlike thiamine rescue in WKS models, pathologic phenotype, imaging
abnormalities, and histology are all ameliorated by hypoxia even when it is implemented at
very advanced disease stages and does not restore the primary Cl biochemical defect in the
Naufs47!= [83].

Radiographic improvement in lesions in the Naufs4™'~ has also been achieved
experimentally with other interventions that reduce brain oxygen delivery including anemia
and administration of sublethal carbon monoxide but not with constitutive activation of

the hypoxia-inducible factor (HIF) pathway [87]. Naufs4~'~ mice exhibit a high partial
pressure of brain oxygen, and hyperoxia worsens disease, potentially reflecting reduced
oxygen extraction by brain mitochondria [87], a finding reminiscent of the decreased oxygen
utilization observed in patients with mitochondrial myopathies [88].

Future outlook

In the 70 years since the initial description of LS, the field has made tremendous progress
both in antemortem diagnosis enabled by MRI imaging and in defining more than 80
genetic causes for this disease. Although we typically think about LS as being a uniformly
progressive and lethal disease, as we have discussed, there are a growing number of clinical
case reports and now mouse models that support the notion that some of the antemortem
imaging abnormalities observed in LS may not represent end-stage disease but may in fact
represent an intermediate state in the disease that is far more dynamic and even reversible.
In particular, mouse studies suggest that neuroinflammation is one of the features that is
reversible and correlates with phenotypic and radiographic improvement.

At present, we do not have a clear understanding of how inherited mutations in any

of greater than 80 different genes can lead to radiographically supported LS. Key

open questions are as follows: (1) which are the dynamic neuropathological features

of LS lesions evidenced by T2 MRI (e.g. neuroinflammation, edema)? (2) in addition

to neuroinflammation, which aspects of intermediate disease are reversible? (3) why do
infections or illness precipitate these lesions on imaging? (4) is there a critical treatment
time window before irreversible tissue damage sets in? (5) is improvement caused by
removal of pathogenic drivers (e.g. excess oxygen), by halting neuropathological effects of
mitochondrial dysfunction (e.g. neuroinflammation), or instead by activating brain repair
pathways?

The answers to these important questions remain unknown, but a detailed study of the
human and mouse model literature yields a handful of common themes. As expected,
repletion of cofactor deficiencies such as thiamine correlates temporally with brain lesion
improvement in humans and rodents. It has also been shown that interventions to either
buffer consequences of oxidative phosphorylation defects (e.g. redox imbalances) or
reduce energetic demands (e.g. via mechanistic target of rapamycin (mTOR) inhibition)
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can delay brain disease and extend life in the mouse. Finally, capillary proliferation on
histopathology and hyperperfusion of lesions during crises in humans supports a role for
brain microvasculature in LS irrespective of genetic etiology. Strikingly, the radiographic
differential diagnosis for LS lesions (Table 1) includes multiple processes in which
pathogenic vasogenic edema — which may be associated with inflammation — has been
implicated. These findings are of course insufficient to determine if hyperperfusion or any
of its resultant effects — notable excess oxygenation — is causal or merely secondary
findings in LS. However, bench research has produced exciting evidence that the presence of
local hyperoxia — presumably unused oxygen substrate in the setting of deficient oxidative
phosphorylation — may be driving disease progression and that removing it by various
mechanisms improves disease phenotypes, neuroimaging, and even histology after disease
onset. Having mouse models that share biochemical, histopathological, and radiographic
features of LS combined with interventions that can tune the dynamics of the lesion will be
a valuable resource to start addressing the key questions to understand and hopefully harness
the dynamic nature of LS lesions for treatment.

Finally, it is critical to appreciate the dynamic nature of LS brain lesions in the context

of therapeutic discovery and approval. If the underlying biology of the intermediate states
of disease and their reversibility can be understood, it could imply that we can identify
risk factors to be avoided and hopefully new medicines that directly target this biology

for treating the scores of patients. Although such interventions may not fix the proximal
genetic lesion, they could be very powerful in preventing disease progression. Mitochondrial
diseases are extremely rare and heterogeneous, and although interventions in the past have
been coincident with recovery in LS, we emphasize that most of the cases of radiographic
improvement that we have reviewed here (Table 2) occurred spontaneously (e.g. studies
reported by Koch et al. [7], Koch et al. [8], Arii and Tanabe [39], Sofou et al. [41], Roig et
al. [43], and Alves et al. [50]). This underscores the need for proper natural history studies
and rigorous control arms in clinical trials [89].

Patient cases

Written consent to publish case information was obtained from patients.
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Figurel.
T2-weighted MRI showing resolution of lesions. (a) Patient 1 basal ganglia and thalamic

lesions at age 9 months with resolution of thalamic lesions at age 4 years (top) and red
nuclei lesions at 9 months with resolution at age 4 years (bottom). (b) Patient 2 demonstrates
improvement of dentate nuclei hyperintensities at age 16 months with marked improvement
at age 4 years. MRI, magnetic resonance imaging.
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Figure2.
Radiologic and histopathologic reversal of lesions in the Ndufs4~ mouse after hypoxia

treatment. Top: T2 MRI; red arrows indicate hyperintensities in vestibular nuclei. Bottom:
immunohistochemistry of coronal section labeling microglia with IBA1 and the nuclear
counterstain DAPI (4”,6-diamidino-2-phenylindole). MRI adapted from Ferrari et al., 2017.
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