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Abstract

Degenerative joint disease (DJD) is a major cause of reduced athletic function and retirement in equine performers. For this
reason, regenerative therapies for DJD have gained increasing interest. Platelet-rich plasma (PRP) and mesenchymal stem
cells (MSCs) were isolated from a 6-year-old donor horse. MSCs were either used in their native state or after chondrogenic
induction. In an initial study, 20 horses with naturally occurring DJD in the fetlock joint were divided in 4 groups and
injected with the following: 1) PRP; 2) MSCs; 3) MSCs and PRP; or 4) chondrogenic induced MSCs and PRP. The horses were
then evaluated by means of a clinical scoring system after 6 weeks (T1), 12 weeks (T2), 6 months (T3) and 12 months (T4) post
injection. In a second study, 30 horses with the same medical background were randomly assigned to one of the two
combination therapies and evaluated at T1. The protein expression profile of native MSCs was found to be negative for
major histocompatibility (MHC) II and p63, low in MHC I and positive for Ki67, collagen type II (Col II) and Vimentin.
Chondrogenic induction resulted in increased mRNA expression of aggrecan, Col II and cartilage oligomeric matrix protein
(COMP) as well as in increased protein expression of p63 and glycosaminoglycan, but in decreased protein expression of
Ki67. The combined use of PRP and MSCs significantly improved the functionality and sustainability of damaged joints from
6 weeks until 12 months after treatment, compared to PRP treatment alone. The highest short-term clinical evolution scores
were obtained with chondrogenic induced MSCs and PRP. This study reports successful in vitro chondrogenic induction of
equine MSCs. In vivo application of (induced) MSCs together with PRP in horses suffering from DJD in the fetlock joint
resulted in a significant clinical improvement until 12 months after treatment.
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Introduction

Degenerative joint disease (DJD) is a major cause of reduced

athletic function and retirement in equine performers [1–3].

Medical treatment for DJD may include anti-inflammatory and

analgesic drugs to reduce inflammation and pain, and so-called

disease-modifying drugs such as glucosamine, chondroitin sulphate

or hyaluronic acid [4–6]. In the case of severe cartilage and bone

degeneration, the use of articular cartilage curettage, osteophyte

removal or even arthrodesis could be suitable [4,7]. Nevertheless,

the aforementioned therapies are merely aimed at alleviating the

symptoms or enhancing clinical recovery, without inducing an

actual regeneration of the affected joint.

The field of equine regenerative medicine is drawing increasing

attention in the scientific community for its treatment strategies of

joint pathologies. Equine mesenchymal stem cells (MSCs) are of

specific therapeutic interest as they can differentiate in vitro

towards cells with a hyaline-like cartilage morphology and produce

cartilage-specific components such as collagen type II and

glycosaminoglycans [8–10]. Moreover, horses may serve as a

valuable large animal model for the evaluation of new human

therapies concerning in vivo efficiency and safety, due to interspe-

cies similarities in tendon structure [11,12] as well as thickness of

the non-calcified cartilage of the stifle joint [13]. Therefore, the

evaluation of new treatments for musculoskeletal injuries in horses

may be of broad clinical benefit for both equine and human

medicine.

Other than a single case report with a positive clinical outcome

of naturally occurring DJD after MSC therapy [14], the few

available placebo-controlled studies in horses consist of experi-

mentally induced cartilage lesions [15–17], not entirely resembling

the clinically observed pathology. Importantly, the micro-environ-
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ment - or niche - in degenerated cartilage might not provide the

correct signals for MSC differentiation or alternatively, may even

negatively influence their viability. Therefore, a priori chondro-

genic induction of MSCs may improve the clinical outcome. In

fact, this approach of provoking tenogenic induction has been used

in the past to treat different equine tendon lesions, with promising

clinical results [18,19]. Therefore, a principal aim of this study was

to evaluate the clinical effects of a combined therapy for the

treatment of equine DJD, using either native MSCs plus platelet-

rich plasma (PRP) or chondrogenic induced MSCs plus PRP. This

approach was compared to the more conventional regenerative

therapies based on the use of PRP or native MSCs alone, which

have been shown to be clinically safe [18–26]. This study also

sought to compare the therapeutic efficacies of chondrogenically-

induced MSCs (plus PRP) to native MSCs (plus PRP).

Allogenic peripheral blood (PB) from one donor horse was used

as the source of MSCs, since it has been previously reported that

PB MSCs also have the capacity to produce cartilage in vitro

[10,27]. Moreover, the same donor horse could be used to

produce PRP, thus substantially increasing the standardization of

the sample production and the comparability between the different

treatment groups: 1) PRP alone (n= 5); 2) native MSCs alone

(n = 5); 3) native MSCs and PRP (n= 5); and 4) chondrogenic
induced MSCs and PRP (n = 5). Chondrogenic induction was

assessed in vitro by immunocytochemistry and real-time RT-PCR

analysis. A clinical scoring system was established in order to

enable two non-blinded independent veterinarians to give their

professional assessment of the clinical status of the injured joint. At

different time points after treatment (6 weeks, 12 weeks, 6 months

and 12 months), scores were given to all the patients.

Materials and Methods

This study was carried out in strict accordance with the

recommendations of the Animal Welfare Department of the

Belgian Federal Public Service of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments

of Global Stem cell Technology (Permit Number: LA1700607). All

injections were performed after sedating the horses, and all efforts

were made to minimize suffering.

Isolation and Chondrogenic Induction of Mesenchymal
Stem Cells (MSCs)
In total, 50 ml of blood was collected in sterile EDTA tubes

from the vena jugularis of a 6-year-old donor gelding, which was

tested for different transmittable diseases at Böse laboratory

(Harsum, Germany), as previously reported by our group [19].

Approval of the ethical committee was obtained (EC_2012_001).

In order to isolate mesenchymal stem cells (MSCs), the blood

sample was centrifuged at 1000 G for 20 minutes and the buffy

coat was collected and diluted 1:2 in phosphate buffered saline

(PBS) 1x. Afterwards, this suspension was gently layered on an

equal amount of PercollH density gradient (GE Healthcare). The

further isolation and characterization was performed as previously

described [10].

After that, 206106 peripheral blood mononuclear cells

(PBMCs) were seeded per T75 flask in 3 flasks and expanded in

culture medium consisting of low glucose (LG) DMEM, 20%

foetal calf serum (FCS) and 1% antibiotics-antimycotics (AB/AM)

[10]. The medium was refreshed twice a week and the cells were

maintained at 37uC and 5% CO2. At 60% confluency, the cells

were trypsinized with 0.25% trypsin-EDTA and subcultured until

passage 3, at which time cells were characterized as previously

described [10] before seeding them at 6.76103 MSCs/cm2 in T75

flasks for expansion, or chondrogenic induction. Chondrogenic

induction medium consisted of DMEM LG, 20% FCS, 1% AB/

AM and cartilage-specific growth factors, similar to a previous

report by Jonitz [28]. At the next confluency, native and

chondrogenic induced cells were trypsinized, resuspended in

1 ml of DMEM LG with 10% of dimethyl sulfoxide (DMSO,

Sigma) and frozen before being shipped on dry-ice for clinical

application (Arti-CellH and Arti-CellH Plus respectively).

Preparation of Platelet-rich Plasma (PRP)
In total, 300 ml of peripheral blood was taken in a citrate

phosphate dextrose adenine-1 (CPDA-1) single blood bag (Ter-

umoH) for platelet-rich plasma (PRP) preparation. From this donor

horse, 30 samples of 1 ml PRP were prepared as previously

described by our group [18,19]. Each sample contained approx-

imately 2006106 platelets and was frozen and stored at 280uC
before clinical application.

Table 1. TaqMan gene expression assays used for real-time
RT-PCR.

Target gene Assay ID

Aggrecan Ec03469667_m1

Collagen II Ec03467386_g1

COMP Ec03468079_g1

GAPDH Ec03210916_gH

doi:10.1371/journal.pone.0085917.t001

Table 2. All the patients were clinically assessed for joint
effusion, response to flexion test and lameness according to
the American Association of Equine Practitioners (AAEP).

Score Clinical implication

Joint
effusion

0 No swelling

1 Moderate swelling

2 Severe swelling

Flexion
test

0 No flexion response

1 Mild flexion response

2 Moderate flexion response

3 Severe flexion response

AAEP
grading

0 No lameness

1 Lameness not consistently regardless circumstances

2 Lameness consistently under certain circumstances

3 Lameness consistently observable on a straight line

4 Obvious lameness: marked nodding or shortened
stride

5 Minimal weight bearing lameness in motion or at rest

Because the importance of each parameter was correlated with its impact, the
sum of these 3 parameters was reckoned as the overall clinical severity score (0
to 10).
doi:10.1371/journal.pone.0085917.t002
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Cytological Staining
Hematoxylin (HE), Crystal Violet (CV), Alcian Blue (AB) and

Safranin O (SO) staining (all from Sigma) were performed on

MSCs and chondrogenic-induced MSCs, as indicated by the

manufacturer. Both HE and CV staining were carried out, in

order to visualize the cell morphology and cellular organization.

Furthermore, AB and SO staining were performed to give an

indication of the presence of acid polysaccharides, such as

glycosaminoglycans in cartilage-like structures.

Immunocytochemistry
Immunocytochemistry was performed to evaluate the expres-

sion of collagen type II (Col II), Ki67 (proliferation marker), p63

(tumor suppression gene) and vimentin (mesenchymal cell marker)

on native MSCs and chondrogenic-induced MSCs in adhesive

tissue culture plates and after trypsinization and cytospin

preparation at 700 rpm for 4 minutes. Cells were fixed for 10

minutes with 4% PF and permeabilized for 2 minutes with 0.1%

Triton X at room temperature. Subsequently, cells were incubated

with hydrogen peroxide (0.03%) for 5 minutes at room temper-

ature and after washing with PBS, incubated for 30 minutes at

room temperature with the primary rabbit IgG polyclonal

antibodies recognizing: Col IIA1 (1:50), Ki67 (1:200) and p63

(1:100) and mouse IgG1 monoclonal anti-vimentin (1:100) (all

from Abcam). After washing with PBS, secondary ready-to-use

goat anti-mouse and anti-rabbit peroxidase (PO)-linked antibodies

(Dako) were added and incubated for 30 minutes at room

temperature. Finally, 3,39-diaminobenzidine (DAB) was added for

5 minutes and a counter staining with hematoxylin was performed

to visualize the surrounding cells. As controls, identical staining

was performed on undifferentiated MSCs and background

staining was assessed by using the proper isotype-specific mouse

monoclonal or rabbit polyclonal antibody. All isotypes were

matched to the immunoglobulin subtype and used at the same

protein concentration as the corresponding antibodies. Wherever

appropriate, equine tendon or skin tissue sections were used as

negative controls.

Flow Cytometry
To characterize the MSCs immunophenotypically, the expres-

sion of several stem cell markers was evaluated by flow cytometry,

as previously described [10]. For the present study, we evaluated

the expression of the typical rejection proteins, major histocom-

Figure 1. Representative images of peripheral blood (PB)-derived mesenchymal stem cells (MSCs) in their undifferentiated state (A
& C) and chondrogenic induced (B & D) after Hematoxylin (A & B) and Crystal Violet (C & D) stainings. The typical chondrogenic
morphology and lacune formation (black arrow) can be noticed after induction. Scale bars represent 50 mm.
doi:10.1371/journal.pone.0085917.g001

Figure 2. Results of RT-PCR for the gene expression of collagen
(Col) type II, aggrecan and cartilage oligomeric matrix protein
(COMP) in the native MSCs (Ctrl) and chondrogenic induced
MSCs (Ind). Values are given as the mean of three measurements 6
SEM.
doi:10.1371/journal.pone.0085917.g002
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patibility (MHC) class I and II on native and chondrogenic

induced MSCs. Per series, 400’000 cells were used and labeled

with the following primary antibodies: mouse anti-horse MHC

class I IgG2a (Washington State University, 1:50) and mouse anti-

horse MHC class II IgG1 (Abd Serotec, 1:50). Cells were

incubated with the primary antibodies for 15 minutes on ice in

the dark and washed twice in washing buffer, consisting of DMEM

with 1% bovine serum albumin (BSA). A secondary rabbit anti-

mouse-FITC (Abcam, 1:100) antibody was used to identify positive

cells after 15 minutes of incubation on ice in the dark. Finally, all

cells were washed three times in washing buffer and at least 109000

cells were evaluated using a fluorescence activated cell sorter

(FACS). All analyses were based on (i) autofluorescence and (ii)

control cells incubated with isotype-specific IgG’s, in order to

establish the background signal. All isotypes were matched to the

immunoglobulin subtype and used at the same protein concen-

tration as the corresponding antibodies. As positive controls,

PBMCs were used to confirm MHC cross-reactivity.

Gene Expression Analysis by Real-time RT-PCR
Equine MSCs in passage 3 were seeded in T25 flasks at a density

of 89000 MSCs/cm2 with expansion medium or chondrogenic

induction medium for 30 hours. After treatment, cells were lysed

in 2 ml of Trizol (Invitrogen) and the lysate was separated into

aqueous and organic phases by chloroform separation (300 ml,
Sigma-Aldrich). The aqueous phase was recovered after centrifu-

gation and total RNA was precipitated by using equal volumes of

isopropanol. The precipitate was washed with 75% EtOH once

and then solubilized with 25 ml of RNAse free water and

quantified on the Nanodrop Lite (Fisher Scientific) before reverse

transcribing 1 mg of RNA, using the TaqMan Reverse Transcrip-

tion Reagents Kit (Life Technologies). Gene expression analysis

was performed in triplicate (30 ng of cDNA in each reaction) with

TaqMan Gene Expression Assays (Life Technologies) (Table 1) on

the CFX96 Real-Time PCR System (Biorad). Values were

normalized to GAPDH mRNA as internal control and presented

as fold change, compared to native MSCs (i.e. in expansion

medium), using the comparative CT method ( = 22DDCT
method).

Patient Inclusion Criteria
For a first study, 20 acceptor horses were selected based on their

injuries. To be included in this study, clinical lameness had to be

present in a mild to moderate form for at least 3 months.

Moreover, the observed locomotory disorder had to be attribut-

able to fetlock (metacarpophalangeal or metatarsophalangeal) joint

osteoarthritis. In this regard, the source of the lameness was

confirmed by both local analgesia and a positive flexion test for all

the patients. In all included horses, the lameness was exacerbated

by a flexion test of the fetlock joint, and was abolished by intra-

articular administration of a local anaesthetic solution. In the

present study, 5 ml of 0.5% Mepivacaine Hydrochloride (Mea-

verin ActavisH) solution was used, and horses were evaluated 10

minutes after injection. Furthermore, for horses to be included,

radiographic (X-ray) or computer-tomographic (CT) signs of

osteoarthritis of the fetlock joint had to be noticeable in the form of

osteophytes and/or cartilage defects. For a second study (com-

paring 2 combination treatments), 30 horses were selected using

the same inclusion criteria. Untreated or placebo animals could

not be included in the present study, since only owner horses with

naturally occurring DJD were used.

Injecting Mesenchymal Stem Cells (MSCs) and
Monitoring of Adverse Reactions
For each horse, the intra-articular injection was performed at

least 24 hours after local anaesthesia, since it has been reported

Figure 3. Representative images of peripheral blood (PB)-derived mesenchymal stem cells (MSCs) in their undifferentiated state (A
& C) and chondrogenic induced (B & D) after Alcian Blue (A & B) and Safranin O (C & D) stainings. Glycosaminoglycan production (black
arrows) can be noticed after induction. Scale bars represent 50 mm.
doi:10.1371/journal.pone.0085917.g003
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that exposure of MSCs to high concentrations of anaesthetics

negatively influences cell viability [29]. In addition, 0.04 mg/kg

detomidine (DomosedanH) and 0.1 mg/ml butorphanol (Turbo-

gesicH) were administered intravenously, for their sedative and

analgesic effects, respectively. In the first study, horses were

randomly assigned to PRP, native MSCs, native MSCs and PRP

(Combination 1), or chondrogenic-induced MSCs and PRP

(Combination 2) treatment. In the second study, horses were

randomly assigned to one of the two combination therapies. After

thawing, both MSCs and PRP were aspirated in the same syringe

(for combination groups) and administered intra-articulary. After

the treatment, the horses were closely monitored for 1 week by

means of a daily examination of the injected joint and by

observing the occurrence of possible adverse effects or hypersen-

sitivity reactions (wheal formation, sweating, strong respirations or

even fever). Subsequently, the joints were evaluated at approxi-

mately 6 weeks (T1), 12 weeks (T2), 6 months (T3) and 12 months

(T4) post injection through clinical evaluation by 2 independent

veterinarians for all horses. In the second study, horses were

randomly assigned to one of the two combination therapies and

evaluated at T1. The ethical committee approved the experimental

design (EC_2013_001).

Figure 4. Immunocytochemistry on adhesive mesenchymal stem cells (MSCs) using Ki67 (A), collagen (Col) type II (B), vimentin (C)
and p63 (D). Native MSCs were negative for p63 and positive for Ki67, Col II and vimentin, whereas chondrogenic induced MSCs were positive for
p63, Col II and vimentin with a decreased signal for Ki67 (arrows= negative nuclei). The relevant isotype controls were negative. Scale bar represents
50 mm.
doi:10.1371/journal.pone.0085917.g004
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Clinical Scoring System
In order to evaluate the severity of the clinical condition, the

following parameters were graded by the same veterinarians at the

aforementioned time points (T0–4): clinical lameness from 0 to 5

(0 = no lameness and 5= minimal weight bearing lameness)

according to the American Association of Equine Practitioners

(AAEP), response to flexion test from 0 to 3 (0 = no flexion

response and 3= severe flexion response) and fetlock joint effusion

from 0 to 2 (0 = no swelling and 2= severe swelling). Because the

importance of each parameter was correlated with its impact, the

sum of these 3 parameters was reckoned as the overall clinical

severity score (0 to 10), with 0 corresponding to clinical soundness.

A detailed overview of the different scores can be found in Table 2.

All the horses in this study showed initially a mild to moderate

lameness (1–2 out of 5), mild to moderate response to flexion test

(1–2 out of 3) and moderate to severe joint effusion (1–2 out of 2).

As a result, all horses had a very similar initial clinical score of 4–5

out of 10. Progress was scored relative to before the treatment.

Since none of the patients worsened, all the scores were greater

than zero and translated in a positive evolution score ranging from

0 to 5:0 = severity score of 5 out of 10; 1 = severity score of 4 out

of 10; 2= severity score of 3 out of 10; 3 = severity score of 2 out

of 10; 4= severity score of 1 out of 10; and 5= return to clinical

soundness or severity score of 0 out of 10. Severity scores were

translated to evolution scores for easier interpretation of the data

and a positive trend would therefore indicate a clinical improve-

ment. Statistical analysis was performed based upon the clinical

evolution scores.

Statistical Analysis
For data analysis in study 1, the average of the evolution scores

at 6 and 12 weeks represented the early evolution score, and the

average of the evolution scores at 6 and 12 months represented the

late evolution score. The early and late evolution scores are

compared between the group receiving both MSCs (either native

or induced) and PRP and the group receiving only MSCs on the

one hand or receiving only PRP on the other hand, using the

Wilcoxon signed rank sum test at the 5% significance level.

Furthermore, within the combined treatment (study 2), the

chondrogenic-induced MSCs are compared with native MSCs

only for the earliest evolution score (i.e. at 6 weeks) equally using

the Wilcoxon signed rank sum test at the 5% significance level.

Results

Isolation of Mesenchymal Stem Cells (MSCs)
The first spindle shaped cells were noticed after 17 days in

culture and were isolated at 21 days at approximately 60%

confluency. The characterization experiments revealed the same

MSC properties as previously described [10], with the addition of

several markers.

Characterization and Chondrogenic Induction of MSCs
To initially characterize MSCs and confirm chondrogenic

induction, we analyzed cell morphology by light microscopy

utilizing Hematoxylin and Crystal Violet staining. Biochemical

induction was analyzed by measuring gene and protein expression

Figure 5. Flow cytometry confirmed a low expression of major histocompatibility complex (MHC) class I and no expression of MHC
class II on the native MSCs and chondrogenic induced MSCs. The light and dark grey histograms represent the relevant isotype control
staining and marker antibody staining, respectively with the corresponding percentage of mean positive cells 6 SEM.
doi:10.1371/journal.pone.0085917.g005
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of selected cell markers (glycosaminoglycan production, collagen

type II (Col II), Ki67 p63, vimentin, major histocompatibility

complex, aggrecan, cartilage oligomeric matrix protein) providing

insight into the degree of chondrogenic-induction by real-time

RT-PCR, Alcian Blue staining, Safranin O staining, immunocy-

tochemistry and flow cytometry.

Light microscopic analysis in conjunction with HE and Crystal

Violet staining showed that native MSCs (Figure 1A & C) had a

stellate/spindle-shaped morphology and displayed a propensity to

grow in colonies, whereas MSCs induced into the chondrogenic

lineage (Figure 1B & D) showed a more rectangular morphology.

In addition, a few chondrocyte-like cells in lacune-like structures

could be noticed after 3 days of culturing in the chondrogenic-

inducing medium (Figure 1D). Gene expression analysis confirmed

the switch towards a chondrogenic phenotype, exhibiting increases

in the levels of Col II, aggrecan (ACAN) and cartilage oligomeric

matrix protein (COMP) in induced MSCs, compared to native

MSCs (Figure 2). Histological staining of the cells with both Alcian

Blue and Safranin O confirmed the production of glycosamino-

glycans in the chondrogenic-induced group (Figure 3B & D),

whereas undifferentiated MSCs stained negative (Figure 3A & C).

Immunocytochemistry in adhesion (Figure 4) as well as after

trypsinization and cytospin preparation (Figure S1) revealed that

most of the nuclei in the native MSC group were positive for the

proliferation marker Ki67, whereas noticeably less nuclei stained

positively in the chondrogenic-induced group (Figure 4A, Figure

S1A). Moreover, native MSCs and chondrogenic-induced MSCs

were both positive for Col II (Figure 4B, Figure S1B). Adhesive

culture and cytospin analysis further indicated that native and

chondrogenic-induced MSCs were immunoreactive for vimentin

(Figure 4C, Figure S1C), while p63 (Figure 4D, Figure S1D),

which is a member of the p53 tumor suppressor gene family, was

only detectable in chondrogenic-induced MSCs. Isotype (Figure 4,

Figure S1) and negative controls (data not shown) stained negative.

In vitro differentiation towards undesired lineages (i.e. myogenic,

endothelial, or smooth muscle differentiation) results in an increase

of the expression of typical rejection proteins, major histocompat-

ibility complex (MHC) classes I and II [30]. It is thus of relevance

that our differentiation protocol showed no increase in these

Figure 6. Clinical evolution scores of the different treatments at different time points in the first study (A). Values are given as the
mean6 SEM. Diagrams represent the clinical evolution scores of 30 horses treated with native mesenchymal stem cells (MSCs) and PRP (Combination
1, n = 15) or chondrogenic induced MSCs and PRP (Combination 2, n = 15) in the second study (B).
doi:10.1371/journal.pone.0085917.g006
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markers. While MHC class II expression was completely absent in

both native and chondrogenic-induced MSCs, MHC class I was

expressed in both types of MSCs, but at very low levels (Figure 5A

& B). The positive control cells (peripheral blood mononuclear

cells) on the other hand, were clearly positive for both MHC

markers and confirmed antibody cross-reactivity (data not shown).

Scoring of the Clinical Lameness
Study 1. The grading and overall clinical severity scores with

the corresponding initial severity scores can be found in the Figure

S2. All the patients enrolled in this study had similar clinical scores

immediately prior to the onset of treatment and for each patient

the clinical evolution scores were calculated at the termination of

the experiment. The scores for each treatment group were hence

clinically comparable (Table 3). The platelet-rich plasma (PRP)

treated group (#1) initially (6 weeks post injection) received an

average score of 3.4, which is higher than for the MSC treated

group (#2). By combining both PRP and MSCs (group #3) the

initial average score was increased. The clinical score improved

further in the chondrogenic induced MSCs and PRP combina-

tional therapy (group #4). Subsequently, the average score of the

PRP treated group (#1) decreased to 2.6 at one year after the

treatment, indicating that the effect was short-lived. The initial

Table 3. Clinical evolution scores with average and standard
deviation (STD) at different time points for the different
treatment groups: 1 = platelet-rich plasma (PRP),
2 =mesenchymal stem cells (MSCs), 3 = PRP+MSCs, and
4 = PRP+chondrogenic induced MSCs.

6 weeks 12 weeks 6 months 12 months

GROUP 1 Horse 1 4 2 2 1

Horse 2 4 5 4 4

Horse 3 3 3 3 3

Horse 4 3 2 2 2

Horse 5 3 3 3 3

Average 3.4 3 2.8 2.6

STD 0.5 1.2 0.8 1.1

GROUP 2 Horse 6 3 4 5 5

Horse 7 0 1 2 2

Horse 8 3 4 5 5

Horse 9 4 4 5 4

Horse 10 5 5 5 5

Average 3 3.6 4.4 4.2

STD 1.9 1.5 1.3 1.3

GROUP 3 Horse 11 3 4 4 5

Horse 12 4 5 5 3

Horse 13 4 5 5 4

Horse 14 5 5 5 5

Horse 15 3 4 4 4

Average 3.8 4.6 4.6 4.2

STD 0.8 0.5 0.5 0.8

GROUP 4 Horse 16 4 4 5 5

Horse 17 5 5 5 5

Horse 18 4 4 4 4

Horse 19 5 5 5 5

Horse 20 4 5 5 5

Average 4.4 4.6 4.8 4.8

STD 0.5 0.5 0.4 0.4

doi:10.1371/journal.pone.0085917.t003

Table 4. Median, minimum (min) and maximum (max) of the early and late evolution score are indicated per treatment: platelet-
rich plasma (PRP), native mesenchymal stem cells (MSCs), combination (Comb) 1 (native MSCs and PRP) or Comb 2 (chondrogenic
induced MSCs and PRP).

Treatment Early score median (min; max) Late score median (min; max)

PRP 3.0 (2.5; 4.5) 3.0 (1.5; 4.0)

MSCs 3.5 (0.5; 5.0) 5.0 (2.0; 5.0)

Comb 1 4.5 (3.5; 5.0) 4.5 (4.0; 5.0)

Comb 2 4.5 (4.0; 5.0) 5.0 (4.0; 5.0)

The ‘‘early’’ score indicates the average of the clinical evolution scores at 6 weeks and 12 weeks, whereas ‘‘late’’ indicates the average of the clinical evolution scores at 6
months and 12 months after treatment.
doi:10.1371/journal.pone.0085917.t004

Table 5. Clinical evolution scores at 6 weeks after treatment
of 15 horses with native mesenchymal stem cells (MSCs) and
PRP (Combination 1) or chondrogenic induced MSCs and PRP
(Combination 2).

Combination 1 Combination 2

Horse 1 3 3

Horse 2 5 4

Horse 3 4 4

Horse 4 4 4

Horse 5 3 3

Horse 6 5 4

Horse 7 5 4

Horse 8 3 5

Horse 9 5 4

Horse 10 3 5

Horse 11 3 4

Horse 12 0 2

Horse 13 5 5

Horse 14 5 4

Horse 15 3 2

Average 3.7 3.8

doi:10.1371/journal.pone.0085917.t005
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average score of 3.0 in group #2 was the lowest for all the

treatment groups, due to one non-responder. The average score

for group #2, however, increased to 4.4 at 6 months, and then

decreased to 4.2 at one year after the treatment. Horses in group

#3 had a higher initial average score of 3.8, analogous to the PRP

treated group, that increased to an average score of 4.2 at one year

post injection, likely attributed to the long-term effects of the

MSCs. Noteworthy, the average score of group #4 was initially

4.4 and increased further to 4.8 from 6 months to one year post

injection. Moreover, two horses in group #4 showed functional

recovery as early as 6 weeks after commencing treatment and

remained sound throughout the entire study. Indeed, all horses in

group #4 exhibited at least a score 4 at 6 weeks after treatment; 4

out of 5 horses in group #4 were sound at one year post injection

and one horse had a score of 4 throughout the entire study period.

For the first study, an overview of the average evolution scores

after each treatment is presented in Figure 6A. To get a stronger

short-term (early) versus long-term (late) clinical evolution in

response to the different therapies the scores at 6 weeks and 12

weeks and 6 months and 12 months were added together (Table 4).

The combined treatments were significantly better than the PRP

treatment alone, both for the early evolution score (P= 0.033) and

the late evolution score (P = 0.012). No significant differences were

found between the combined treatment and the MSC treatment

alone. The combined use of chondrogenic-induced MSCs and

PRP generated the highest evolution scores, although the

difference was not significantly higher than the combined use of

native MSCs and PRP for either the early (P = 0.530) or late

evolution score (P= 0.207).

Study 2. For this reason, the second clinical study was

performed in which a total of 30 horses were treated with either

native MSCs plus PRP (Combination 1, n= 15) or with

chondrogenic-induced MSCs plus PRP (Combination 2, n = 15).

The horses were only evaluated at the first time point (i.e. 6 weeks

post injection). Our results show that 53% (8/15) of the horses in

the first group received an evolution score 4 or more, versus 73%

(11/15) in the second group. However, in both treatment groups

the average evolution score was approximately the same (3.7 vs

3.8) and no statistically significant (P = 0.67) difference could be

noticed (Table 5, Figure 6B).

Discussion

The isolated cells in the present study fulfilled all the

requirements to be typed as mesenchymal stem cells (MSCs)

according to the proposed guidelines by Dominici in 2006 [31].

Moreover, it has been reported that frozen equine peripheral

blood (PB)-derived MSCs do not lose their stem cell characteristics

[32] and that fresh equine PB-derived MSCs dramatically decline

in cell number after 12 hours of transport and have a higher risk of

becoming senescence after 24 hours of transport [33]. Therefore,

the use of frozen samples was justified in this study, added to the

product shelf life and standardized the treatments.

This study reports successful in vitro chondrogenic induction of

equine PB-derived MSCs, followed by an in vivo investigation in

which the therapeutic potential of chondrogenic-induced MSCs

plus platelet-rich plasma (PRP) for the treatment of degenerative

joint disease (DJD) was compared to native MSCs and/or PRP in

20 horses and both combination therapies in 30 horses. In vitro

analysis of chondrogenic-induced MSCs showed decreased

expression of the proliferation marker Ki67, indicating terminal

differentiation with reduced proliferative capacities of the MSCs.

Chondrogenic differentiation was further confirmed by increased

mRNA levels of aggrecan, collagen type II and cartilage

oligomeric matrix protein (COMP) as well as increased synthesis

of glycosaminoglycans.

Apart from these typical chondrogenic markers, we also

investigated the expression of the typical ‘‘rejection’’ proteins,

major histocompatibility complex (MHC) class I and II, as well as

of p63, a member of the p53 tumor suppressor gene family. MHC

expression was evaluated because it has been reported that

differentiation of allogenic MSCs towards myogenic lineages

induced immunogenicity (by increasing MHC levels) [30]. In the

present study, we were able to demonstrate that MHC class I was

expressed at low levels in native MSCs, whereas neither MHC

class II nor p63 were expressed in native MSCs, in agreement with

previous reports [10,34–36]. Three days of chondrogenic induc-

tion did not alter MHC levels, reflecting low immunogenicity,

which would be permissive for allogenic transplantations. How-

ever, chondrogenic induced cells clearly expressed p63, which is a

typical epithelial stem cell marker [37,38]. In this regard, it has

been reported that p63 plays a pivotal role in embryonic skeletal

development and that p63 expression in hypertrophic chondro-

cytes would accelerate endochondral ossification [39]. Whether

the expression of this protein enhanced cartilage repair in this

study remains to be shown.

In the present study, we applied PRP and MSCs either alone, or

in combination (with or without chondrogenic induction). Usage

of PRP was anticipated to improve the clinical outcome as it has

been reported that PRP enhances MSC proliferation and

chondrogenic differentiation [40]. Although no statistically signif-

icant improvement in clinical signs of fetlock joint arthrosis could

be noticed after the addition of PRP to MSCs (in comparison to

MSCs alone), short-term clinical evolution scores clearly improved

(3 vs 3.8 at 6 weeks and 3.6 vs 4.6 at 12 weeks post injection).

Moreover, both combination therapies significantly improved the

early and late clinical evolution scores in comparison to PRP

treatment alone. The effect presented here differs from that of a

previous study in deep digital flexor tendon lesions in Bergamasca

sheep, where the addition of autologous PRP to PB-derived MSCs

did not enhance regeneration [41]. In rat Achilles tendon lesions

on the other hand, synergistic effects of PRP and tendon stem cells

were demonstrated and resulted in the increased expression of

tendon-healing genes [42]. In agreement with our study, it has also

been reported that short-term beneficial effects might be expected

from PRP treatment, although the exact mechanism or causative

agent(s) are currently unknown [43]. It should also be taken into

consideration that patient to patient heterogeneity at the time of

blood sampling would result in PRP samples of varied potencies,

between independent donors and within a given donor, helping

account for the contradictory results obtained in previous studies

[44]. Clearly, more research is warranted to determine the

stimulatory or inhibitory factors present in PRP samples.

As we utilized only one batch of allogenic PRP and MSCs in the

present study (i.e. PRP and MSCs from one donor), the

experimental paradigm was more standardized for all patients,

allowing a more accurate comparison between the different

treatment groups. In this regard, Carrade et al. have reported that

a single intra-articular injection of allogenic MSCs in healthy

equine joints induced a similar immune response as an autologous

injection [22]. Moreover, in a study by Guest et al., no cell-

mediated immune response was detected at all after allogenic

MSC injection in equine superficial digital flexor tendon lesions

[45]. Analogously, in this study, there were no indications of an

immune response after allogenic MSC or PRP treatment.

Nonetheless, no definite conclusion can yet be made concerning

the immunogenicity of both allogenic therapies used in this study.
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The major advancement of this study is the application of MSCs

in equine patients with naturally occurring fetlock joint arthrosis,

rather than in horses with experimentally induced cartilage lesions.

The fact that experimentally induced cartilage lesions may only

partially resemble the naturally occurring arthrosis may explain

why previous studies [15–17] were not able to detect clinical

improvement, in contrast to our study. However, while clinical

improvement was absent in the aforementioned studies, an early

beneficial impact on histologic appearance and biochemical

composition [17] as well as a late enhancement of aggrecan levels

[16] was observed. Frisbie et al. [15] reported no significant

clinical or histological effect within 70 days after treatment with

bone marrow-derived MSCs in the middle carpal joint of horses,

but did observe improvements in synovial fluid PgE2 levels, which

would ultimately inhibit the production of pro-inflammatory

cytokines [46].

In contrast with previous equine reports, and in agreement with

the present study, it has been described that carpal joint arthrosis

in donkeys improved clinically and radiographically at 2 months

and 6 months after treatment with bone marrow-derived MSCs

[47]. Moreover, green fluorescent protein-labelled MSCs integrat-

ed in the cartilage, which indicated that the MSCs participated in

the healing process of the damaged tissue. Whether the difference

in location and structural composition of the joints, the exper-

imental model, the MSC samples, or even the carrier used in the

aforementioned studies were responsible for the lack of clinical

improvement remains to be proven.

While our study provides evidence of clinical improvement with

MSC therapy in the fetlock joint, it must be noted that the initial

clinical severity scores were mild to moderate (4–5 on 10),

indicating that these patients were not in the last stage of

osteoarthritis. Clearly, the mechanisms underlying this effect are

unclear and will need to be investigated in the future. Further-

more, patients in earlier and later stages of osteoarthritis and larger

sample numbers under double-blinded evaluation criteria will

eventually need to undergo a similar procedure as described here

to improve statistical power and allow for more definite

conclusions. In our first preliminary study reported here, only

five horses per treatment were evaluated, which could have been

the reason why no statistical significant difference was observed

between the evolution scores of both combination therapies (i.e.

PRP+native MSCs versus PRP+induced MSCs). Although in a

larger group of patients substantially more horses received a score

of 4 or more in the second combination therapy, the average

evolution scores of both combination therapies were not signifi-

cantly different. Indeed, further optimization is necessary to

ultimately assess both therapies.

In conclusion, our results indicate that chondrogenic induction

can be achieved in equine MSCs and that the combined use of

PRP and MSCs (chondrogenic induced or not) significantly

improved the functionality and sustainability of damaged joints in

horses with mild to moderate lameness, due to fetlock joint

osteoarthritis, up to 12 months post treatment. The highest clinical

scores were noticed upon treatment with the chondrogenic

induced MSCs and PRP. Nonetheless, more protracted studies

need to be performed to confirm the positive effects of

chondrogenic induction.

Supporting Information

Figure S1 Immunocytochemistry on cytospins using
Ki67 (A), collagen (Col) type II (B), vimentin (C) and
p63 (D). Native mesenchymal stem cells (MSCs) were
negative for p63 and positive for Ki67, Col II and
vimentin, whereas chondrogenic induced MSCs were
positive for p63, Col II and vimentin and slightly
positive for Ki67. Arrows indicate a decreased signal for Ki67

in some chondrogenic induced MSCs. The relevant isotype

controls were negative. Scale bar represents 25 mm.

(TIF)

Figure S2 Clinical grading and severity scores for the
different treatment (PRP=platelet-rich plasma,
MSC=mesenchymal stem cell, IND=chondrogenic in-
duced mesenchymal stem cell) groups at different time
points. The sum of the clinical grading according to the

American Association of Equine Practitioners (AAEP) on 5, the

flexion test on 3 and joint effusion evaluation on 2 gave an overall

clinical severity score on 10.

(TIF)
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