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INTRODUCTION

Rapid eye movement sleep (REMS) is a 
unique behavioral phenomenon and is an 
integral component of  sleep. Different 
states of  sleep and wakefulness have been 
objectively identifi ed by the simultaneous 
presence or absence of  associated classical 
electrophysiological signals recorded from 
the brain, the electroencephalogram (EEG), 
eye movements, the electrooculogram 
(EOG) and musc le  tone and the 
electromyogram (EMG). REMS is 
classically and objectively identifi ed and 
quantifi ed by desynchronized EEG, atonia 
in the antigravity muscles, rapid eye 
movements and appearance of  ponto-
geniculo occipital (PGO) waves. Thus, 

as compared with waking, during REMS 
the EEG and EOG apparently resemble 
that associated with waking, while EMG 
shows an opposite expression. Therefore, 
this sleep state has also been referred to 
as “active sleep” or “paradoxical sleep” or 
“desynchronized sleep.” Further, as this stage 
is often associated with dreaming, this stage 
has been termed as dream state of  sleep, 
although it is known that sometimes dream 
may appear during non-REMS as well. The 
REMS has been identifi ed in almost all the 
higher species in evolution recorded so 
far, including humans.[1-3] To this effect, we 
reiterate our argument that as one of  the 
primary characteristic features to identify 
REMS is the recording from the brain the 
EEG signals, consequently this stage of  
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ABSTRACT
Rapid eye movement sleep (REMS) loss affects most of the physiological processes, and 
it has been proposed that REMS maintains normal physiological processes. Changes in 
cultural, social, personal traits and life-style severely affect the amount and pattern of sleep, 
including REMS, which then manifests symptoms in animals, including humans. The effects 
may vary from simple fatigue and irritability to severe patho-physiological and behavioral 
defi cits such as cognitive and behavioral dysfunctions. It has been a challenge to identify a 
molecule(s) that may have a potential for treating REMS loss-associated symptoms, which 
are very diverse. For decades, the critical role of locus coeruleus neurons in regulating REMS 
has been known, which has further been supported by the fact that the noradrenalin (NA) 
level is elevated in the brain after REMS loss. In this review, we have collected evidence 
from the published literature, including those from this laboratory, and argue that factors that 
affect REMS and vice versa modulate the level of a common molecule, the NA. Further, NA 
is known to affect the physiological processes affected by REMS loss. Therefore, we propose 
that modulation of the level of NA in the brain may be targeted for treating REMS loss-related 
symptoms. Further, we also argue that among the various ways to affect the release of NA-
level, targeting α2 adrenoceptor autoreceptor on the pre-synaptic terminal may be the better 
option for ameliorating REMS loss-associated symptoms. 

Targeting modulation of  noradrenalin 
release in the brain for amelioration 

of  REMS loss-associated effects
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Key Messages: Elevated level of NA in the brain is a key molecule that induces REMS loss-associated symptoms. 
Modulation of presynaptic α2-adrenoceptors, which are autoreceptors, is a better target and option to counter the 
elevated level of NA as a treatment of REMS loss-associated symptoms.
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sleep has been identifi ed in species higher in evolution 
possessing developed and evolved brain. As a corollary, it 
is also obvious that because of  a lack of  fundamental bio-
molecular markers, it is yet to be confi rmed if  this stage 
is present, may be even in a rudimentary form in other 
lower species.

The quantity of  REMS varies among species; it is affected 
by life-style changes and under various psycho-somato-
patho-physio-logical altered conditions.[4] Under normal 
conditions, the quantum of  REMS reduces with ageing; 
however, normally, this stage is never absent through 
life.[5,6] The essentiality of  REMS to maintain normal 
life processes may be supported by the fact that it is 
not under voluntary control, it is affected in almost all 
disorders, its loss is followed by a compensatory rebound 
increase during the post-deprivation recovery period, 
its prolonged loss may be fatal and, fi nally, its basic 
regulatory mechanism lies at the core of  the brainstem 
as that of  controlling other absolutely essential functions 
for living, e.g. heart rate, respiration, blood pressure and 
sleep-waking, which, however, may be modulated by 
other factors.

Involvement of noradrenaline (NA) in REMS-loss 
associated symptoms 
REMS loss is often associated with expressions of  a 
number of  specifi c and nonspecifi c symptoms, many of  
which may or may be apparently unrelated. Although it 
may be diffi cult to associate REMS loss as an exclusive 
cause or effect of  a disorder, we propose that in the case 
of  REMS disturbance (directly or indirectly as a cause 
or an effect), the neural mechanism regulating it must 
be affected. Therefore, targeting a common factor, if  
any, which is known to be essentially expressed during 
REMS as well as under conditions of  REMS loss, may 
be targeted to help the sufferer. Altered REMS is one of  
the common symptoms associated with many disordered 
states, including hypertension,[7] hyperglycemia, hyper-
excitability,[8,9] lack of  concentration, memory loss,[10] 
Alzheimer’s disease,[11,12] Parkinson’s disease[13] and 
depression.[14] The level of  NA is altered in most of  
these altered states (dysfunctions) and, interestingly, NA 
is elevated after REMS loss as well.[15] By and large, NA is 
at least an important common causative factor inducing 
many of  the REMS deprivation (REMSD)-associated 
symptoms, including neuronal cytomorphometry,[16-18] 
apoptosis in brain neurons,[19] increased Na–K ATPase 
activity[20] and thermoregulatory changes[21] that were 
prevented by adrenoceptor (AR) antagonists.[22] Therefore, 
we propose that targeting mechanisms(s) that maintain 
the NA level in the brain could be a possible way to 
address treatment of  REMS loss-associated symptoms. 
However, before we proceed to justify in support of  our 

proposition, what role NA plays in REMS regulation 
needs to be evaluated.

Neural regulation of REMS and its relation with 
brain level of NA
REMS has a well-regulated cyclic appearance; at least 
in humans, its frequency and duration per episode 
increases with the depth of  sleep.[6] Lesion, transection 
and stimulation studies have shown that neurons located 
in the brainstem are its primary regulators, while neurons 
in other brain regions modulate REMS by infl uencing 
these primary regulators.[23] On the basis of  temporal 
correlation of  fi ring rate of  neurons during REMS, 
neurons have been classifi ed as REM-ON (those are active 
during REMS) or REM-OFF (those are silent during 
REMS).[24] It is classically known that REM-ON neurons 
are presumably ACh-ergic and are concentrated largely 
within the latero-dorsal tegmentum/pedunculo-pontine 
tegmentum (LDT/PPT), while the REM-OFF neurons 
are NA-ergic and largely located in the locus coeruleus 
(LC).[25] It is important to note that some neurons in 
other parts of  the brain have also been found to behave 
phenotypically as REM-OFF and REM-ON neurons; 
however, they have not been studied as extensively as 
those in LC and LDT/PPT. The LDT/PPT and LC 
neurons have reciprocal projections,[26,27] which could 
be a direct connection or through GABA-ergic,[28] 
glutamatergic or glycinergic[29] interneurons. Additionally, 
these REMS-related neurons receive projections from 
widespread areas in the brain, including those involved 
in regulating sleep and waking (reviewed in[23]). Thus, it is 
evident that modulation of  the activity of  REMS-related 
neurons would be complex and so will be the regulation 
of  REMS. 

In an attempt to explain the neural regulation of  REMS, 
based on single neuronal recording in freely moving 
normally behaving animals in isolated experiments, a simple 
model based on the Lotka-Volterra principle explaining the 
reciprocal interaction between REM-ON and REM-OFF 
neurons was proposed.[30,31] The temporal relationship 
of  reciprocal behavior of  the REM-ON and REM-OFF 
neurons was confi rmed by simultaneous recording of  a pair 
of  REM-ON and REM-OFF neuronal activities, along with 
waking–non-REMS (NREMS) and REMS in chronically 
prepared freely moving normally behaving cats.[24,30] 

Subsequent extensive systematic in vivo and in vitro studies 
during the past two decades have confi rmed the role of  
GABA-terminals and GABA-interneurons acting pre- and 
postsynaptically on REMS-related neurons[32-34] for REMS 
regulation. These fi ndings have been consolidated recently 
and a working model that activation of  a de-activation 
process is responsible for REMS initiation and regulation 
has been proposed.[23] 
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Factors affecting LC–NA-ergic neurons modulate 
REMS and may induce REMS loss-related 
symptoms
The REMS is a multifactorial complex phenomenon; its 
regulation is also likely to be multi-dimensional. The role 
of  many neurotransmitters and neuropeptides directly 
or indirectly have been implicated in the regulation of  
REMS.[35,36] The LC is the primary site of  NA-ergic neurons 
in the brain.[37] These neurons normally cease activity during 
REMS;[38,39] however, they do not cease activity during 
REMSD.[40] On the other hand, if  the LC–NA-ergic neurons 
were kept active for a short- or long-term by electrical 
stimulation[41,42] or by preventing GABA-ergic inhibitory 
input to act on them[43] or by increasing the Na–K ATPase 
activity on the LC neurons,[44] REMS was reduced. Many 
factors that modulate REMS have been shown or proposed to 
mediate their action by modulating LC neurons. For example, 
normally, REMS does not appear during waking because 
wake–active[45] areas including orexinergic perifornical 
area (PeF)[46,47] activate, while the NREMS-areas[45] in the 
brain inhibit[48] the neurons in LC, the site of  LC–REM-
OFF neurons. Further, neuronal activity is modulated by 
microinjection of  neurotransmitter agonist and antagonist 
into the LC-altered REMS.[49,50] As the decrease in REMS is 
due to increased excitation and sustained activity of  the LC–
REM-OFF NA-ergic neurons, it is imperative that the later 
would elevate the NA level in the brain during REMSD and 
vice versa. Also, after REMSD, as tyrosine hydroxylase (TH) 

is increased and monoamine oxidase (MAO) is decreased, 
there would be increased NA in the brain.[51-53] The possible 
mechanism of  REMSD-associated elevated synaptic NA 
level at NA-ergic synapses and the brain at large is shown 
in Figure 1. Thus, in principle, either by modulating LC–
NA-ergic neuronal activity, which in turn would control the 
quantity of  NA-release, or by preventing the action of  the 
elevated NA on potential target(s), REMS loss-associated 
symptoms may be ameliorated. 

Modulation of effect of NA in the brain: A 
possible therapeutic approach to ameliorate 
REMS loss-associated symptoms
Normally cessation of  NA-ergic REM-OFF neuronal 
activity is a prerequisite condition for generation and 
maintenance of  REMS.[54] If  they do not cease activity, 
REMS does not appear and as a result of  noncessation (i.e., 
continuation of  activity) of  LC neurons, there is likely to be 
elevated level of  NA in the brain. This elevated NA in the 
brain in turn has been reported to induce many, if  not most, 
of  the REMS loss-associated symptoms.[16-17,19,55-57] These 
propositions may be supported by the fact that many of  
the diseases associated with REMS loss[58] show an elevated 
level of  NA or express symptoms that could be due to 
elevated level of  NA.[59] Therefore, effective neutralization 
of  the action of  released NA, particularly at the site of  its 
release/action, could be a natural and preferred choice of  
therapeutic intervention to counter the REMS loss-induced 

Figure 1: Noradrenalin (NA) concentration at the synapse is ultimately responsible for manifesting its effect. Its action is mediated by NA-level and its action on the 
postsynaptic adrenoceptors (ARs). However, the level of NA at the synapse is modulated by changes in either or combination of some or all of the following factors: 
(i) firing rate of NA-ergic neurons and (ii) changes in (a) TH activity, (b) NA transporter activity, (c) MAO activity and (d) number of α2-ARs and their activation of the 
NA-ergic neurons.  Left panel (A) represents that if any one sub-type of receptor (e.g., by antagonist of α1-ARs as shown here) is blocked, relatively more NA becomes 
available to act on other sub-types of ARs, which may then express nonspecific side-effects (symptom). Although as an example we have shown that by blocking α1-
ARs, a similar effect may be evident by blocking any other one type or combination of ARs types Right panel (B) represents action of NA on the pre-synaptic α2-ARs 
(autoreceptors) and thus modulating the release of NA
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effects and associated symptoms. This could be achieved 
by either or combination of  the following:
(i) Blocking the postsynaptic AR to prevent the action of  

NA;
(ii) By elevating the level of  monoamine oxidase that 

breaks down the released NA;
(iii) By increasing the NA-transporter and reducing the 

effective concentration of  NA at the synaptic sites;
(iv) By modulating the synthesis and release of  NA;
(v) By infl uencing inputs on the LC–NA-ergic neurons 

thereby altering their activities and release of  NA; or
(vi) By targeting the presynaptic ARs at the NA-ergic 

terminal and thus modulating the release of  NA

Various possibilities targeting the release of  NA at the 
terminal, along with their advantages and disadvantages, 
have been discussed in the following sections considering 
each one of  them as a potential therapeutic approach for 
the treatment of  REMSD-associated symptoms.

NA-ergic AR
NA acts through ARs that belong to G-protein-coupled 
receptor and may give rise to a variety of  responses. There are 
mainly three subtypes of  ARs: α1, α2 and β-ARs; they share 
a high degree of  amino acid homology, especially within the 
ligand binding pockets around the transmembrane regions.[60] 
Ligand-binding residues confer subtype-specifi c selectivity 
to a particular receptor. α1-ARs are further sub-classifi ed 
as α1A, α1B and α1D types and are coupled to the Gq/11 
family.[61] Stimulation of  these α1 ARs recruits signaling 
pathways involving activation of  phospholipase C, D, A2 
and MAP kinases and, subsequently, modulate transcriptional 
activation of  early and late response genes. For example, it 
has been reported to affect the expression and activation of  
Ca2+ channels, Na+/H+ exchangers and K+ channels,[61-64] 
which in turn are reported to modulate neuronal functions. 
At least in neurons, NA has been reported to close L-type 
Ca2+channels by acting on α1-AR.[65]

The subtypes of  β-ARs, viz. β1, β2 and β3, activate 
effectors by coupling to Gs or Gi molecules in a time- 
and dose-dependent manner.[66] Although the action 
of  NA on different types of  cells might not have been 
studied, at least in cardiomyocytes, stimulation of  β-AR 
by nonselective agonist results in Gs-mediated enhanced 
cAMP generation and activation of  the related downstream 
events. The β-AR-mediated effects enhance contractility 
of  the cardiac muscles either by one or in combination 
with increasing Ca2+ infl ux through L-type Ca2+ channels, 
increased reuptake of  Ca2+ by disinhibition of  sarcoplasmic 
reticular Ca2+-ATPase and modulation of  myofi lament Ca2+ 
sensitivity.[67-69] The β2-ARs can also couple to Gi protein 
to inhibit the downstream effectors.[70-72]

The α2-AR family has α2a, α2b and α2c receptor subtypes, 
and they are encoded by three distinct genes. The α2-AR 
couples to the Gi subunit and is involved in the modulation 
(usually inhibition) of  NA release.[73,74] Activation of  Gi 
leads to inhibition of  adenylate cyclase, which results in 
decreased cAMP generation. Coupling to several other 
signaling pathways has also been reported upon activation 
of  α2-ARs for modulation of  neurotransmitter functions. 
These include activation of  K+ channels, inhibition of  Ca2+ 
channels, activation of  Na+/H+ antiporter, mobilization of  
intracellular Ca2+ and activation of  the mitogen-activated 
protein kinase (MAPK) cascade.[75-77] 

Targeting the postsynaptic α1-ARs
α1-ARs are distributed on the neurons throughout the 
brain, including those in the areas responsible for REMS 
regulation as such as well as on neurons responsible for 
functions related to REMS. Presence of  α1-ARs on the 
wake–active neurons in the pedunculo-pontine tegmentum 
(PPT)[78] and on thermosensitive neurons in the preoptic 
area[79] have been reported, which in principle may mediate 
REMSD-associated changes in brain functions. α1-AR 
antagonists like prazosin (PRZ) have been widely used 
in the treatment of  sleep (including REMS) disturbance, 
hypertension, posttraumatic stress disorder (PTSD) and 
anxiety.[80] Methoxamine, an α1-AR agonist, increased 
wakefulness while decreasing NREMS and REMS,[81] 
which was reversed by PRZ. In stress-sensitive WKY 
(Wistar Kyoto) rats, REMS was fragmented by electric 
shock, and this was prevented by PRZ.[82] Similarly, in lower 
vertebrate model using zebrafi sh, PRZ treatment reduced 
the effect of  sleep deprivation on anxiety.[83] REMSD 
caused many changes, including cellular morphology and 
biochemical parameters, and molecular expressions of  
Na–K ATPase have been shown to recover by treatment 
with PRZ.[17,57,84,85] These studies support that blocking 
α1-AR activation could reduce the REMS loss-associated 
symptoms. Mignot et al.[86] investigated the role of  central 
α1-ARs in cataplexy in genetically modifi ed narcoleptic 
Doberman pinschers. Treatment of  narcoleptic dogs 
with PRZ exacerbated cataplexy, whereas treatment 
with α1-agonist, methoxamine, ameliorated it. However, 
there are a few confl icting reports as well. For example, 
oral administration of  PRZ shortened quiet waking and 
REMS but increased active waking and slow wave sleep,[87] 
whereas other α1-AR antagonists, thymoxamine and 
mesoridazine increased REMS in humans.[88,89] Thus, the 
conditions induced by sleep loss, including REMS-loss, 
were rescued/recovered by activating/deactivating (as 
the case may be) the α1-ARs supporting our contention. 
These fi ndings suggest that if  NA was prevented to act 
on α1-ARs, REMS was increased and the REMS loss-
associated symptoms were decreased.[90] 
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Targeting postsynaptic β-AR
Improvement in sleep disturbance-associated mood disorder, 
severe depression and sleep apnea have been reported by 
treatment with β-AR blockers in both animals and humans.
[91-94] Also, REMSD-associated aggressiveness has been 
suggested to be mediated by NA acting on β-AR.[95] β-agonist, 
isoproterenol, suppressed while β-antagonist, propranolol, 
consistently enhanced REMS episodes.[96] Although the 
amelioration of  REMS loss-associated symptoms could 
be due to improved REMS, their causal and temporal 
relationship need validation. Microinjection of  isoproterenol 
into the medial septal region of  the basal forebrain 
signifi cantly increased the time spent in wakefulness, while 
there was a near-complete suppression of  REMS.[97] Based 
on these fi ndings, it has been postulated that NA released 
from the LC REM-OFF neurons acts on β-ARs present on 
REM-ON neurons and inhibits those preventing REMS 
generation.[50] As a corollary, it has been suggested that 
β-blockers would withdraw the NA-induced inhibition of  
the REM-ON neurons and facilitate their activation, leading 
to the generation of  REMS; however, there are differences 
in specifi city of  chemicals acting on receptors. For example, 
Kostis and Rosen (1987)[98] reported that hydrophilic 
β-blocker (e.g., atenolol) do not affect sleep, while lipophilic 
β-blocker (e.g., pindolol) disturbs sleep continuity. Similarly, in 
another study, β-AR blockers, acebutolol and metoprolol, did 
not show any effect on sleep pattern.[99] Acute administration 
of  β3-AR agonist, CL316243 reduced while its prolonged 
treatment did not affect REMS.[100] 

Thus, although it has been well established that the 
adrenergic system plays a significant role in REMS 
regulation, the precise mechanism of  how it (β-blockers in 
particular) mediates the action needs further study. It may 
be noted that these drugs are widely used in cases of  cardiac 
arrhythmias and hypertension; however, their associated 
undesirable side-effects of  sleep disturbances and insomnia 
limits their use.[101] Hence, it is important to understand the 
use of  these chemicals as drugs possibly after classifying 
patients so that these drugs may be used in combination 
with other molecules to reduce the side-effects. In addition 
to the application of  agonist and antagonist mentioned 
above, molecules activating reuptake and/or breakdown 
of  NA by MAO-A [Figure 1] at the synaptic terminal also 
have been used in the treatment of  sleep disturbances.[102-105] 
In this strategy also, ultimately, the effective level of  NA 
at the synaptic cleft is altered.

Targeting the release of NA
Like any other neurotransmitter, NA is released from 
the presynaptic terminals and it acts on the pre- and 
postsynaptic receptors for inducing its action. Thus, all 
other conditions remaining unchanged, the quantity of  
NA at the synaptic site decides its effect on expressing 

a behavior. We have discussed above how the effects of  
the released NA (due to loss of  REMS) could be reduced 
by directly inactivating (NA degradation or re-uptake) the 
released NA or by preventing the released NA to act on 
the postsynaptic receptors. Another option of  modulating 
the action of  a neurotransmitter at the synaptic site is to 
modulate the release of  neurotransmitter per se (NA at this 
instance) from the presynaptic site, which has also been 
used in treatment as well as in research.[105-107] 

Here, we propose that manipulation of  auto-regulatory 
mechanism of  release of  neurotransmitter than 
preventing the action of  already released NA possibly 
would be a better option to maintain the effective level of  
NA at the synaptic site. This is because use of  antagonist 
of  one subtype of  AR, although preventing the action of  
NA on such receptor subtypes, the already released NA 
remains or becomes available to act on other subtypes of  
ARs leading to added complications. This is because, for 
example, under normal conditions, the released quantity 
of  NA will be such that it acts on an optimum number of  
one or more subtypes of  ARs to get a function expressed 
at an optimum level. However, if  a subtype of  AR is 
blocked by its antagonist, the equilibrium of  the ligand 
(NA in this case) to subtypes of  receptor (ARs in this 
instance) would shift and, although a function may get 
modulated, possibly toward a desired level, other functions 
may get affected or get biased, expressing undesirable 
side-effects possibly as compensatory effect(s). This 
could be due to various reasons including overcoming the 
threshold of  activation of  another subtype of  ARs, which 
was not signifi cantly affected under normal condition, 
under the condition of  blocking of  one subtype of  AR. 
After blocking one subtype of  AR, the available NA 
might reach the threshold of  activation of  one or more 
of  other subtypes of  ARs expressing undesirable side-
effects. This view may be supported by the fact that NA 
acting on different subtypes of  ARs in the same brain 
area, viz. preoptic area, modulates sleeping-, waking- and 
thermo-regulation.[108] The literature on experimental as 
well as clinical practices mentions many such side-effects 
or associated phenomena that are often ignored due 
to lack of  recorded consistent effects. Although in all 
cases we do not know the cause and effect relationship, 
our reasoning offers explanation for the same, which is 
justifi able and testable. Hence, we propose that in order to 
target REMS loss-associated induced symptoms, a more 
effective strategy could be to target modulation of  the 
release of  NA itself. However, the limitation is how to 
design site-specifi c moderation of  release of  NA.

Targeting the presynaptic α2 auto receptors
There are many examples where patho-physiologial 
processes have been reported to be modulated by targeting 



Singh and Mallick: Treating REMS loss effects by targeting NA release

 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JAN-MAR 2015 / VOL 3 | ISSUE 1 13

the α2-ARs. Initially, it was believed that α2-ARs are present 
exclusively on the presynaptic site; however, recent reports 
suggest that in addition to the presynaptic site, they are 
present on the postsynaptic site as well.[60] The unique 
property of  α2-AR being present on the presynaptic site 
is that excess NA at the terminal (synaptic cleft) activates 
these α2-ARs, preventing further release of  NA; thus, the 
level of  NA is auto-regulated at the terminal. The released 
NA inhibits the infl ux of  calcium ions and thereby prevents 
further release of  NA.[109] As there are collateral feedback 
inputs on the NA-ergic neurons in the LC,[110] it is likely that 
the collateral inputs on to itself  and rhythmic release of  NA 
due to auto-regulation of  NA maintains the rhythmic fi ring 
of  the LC–REM-OFF neurons and prevents appearance 
of  REMS, especially during waking.[23,30,111]

The α2-AR agonist, clonidine, has often been used as the 
treatment to reduce NA release. For example, clonidine 
and its analogue has been used in treating patient suffering 
from Crisponi syndrome.[112] In humans, a lower dose 
of  clonidine increased while a higher dose decreased 
REMS.[113] The fi ndings suggested that before assigning a 
therapeutic role to an agent, its dose, time and secondary 
or associated physiological impact should be evaluated. 
Dexmedetomidine, a more selective α2-AR agonist than 
clonidine, has been reported to decrease sleep and reduce 
c-Fos expression in the LC neurons.[114] The spindles 
observed under sedation with dexmedetomidine are 
qualitatively similar to those during natural sleep. However, 
it has associated problems, e.g. it works even when NA 
level is severely depleted by various other agents like 
reserpine and DSP-4.[115] Yohimbine (3 mg/kg), an α2-
AR antagonist, augmented waking and reduced sleep.[116] 
Activation of  α2-ARs in and around LC reduced NA release 
and, consequently, reduced NA-mediated effects in the 
central nervous system.[117,118] α2-ARs have been shown 
to be involved in REMS-associated thermoregulatory 
responses.[119] REMSD-induced increased NA was 
responsible for impairment in learning and memory in 
rats, which was signifi cantly improved by treating with 
α2-AR agonists.[120] 

Proposed model for the treatment of REMSD-
associated symptoms
In the brain, the LC is the primary site of  NA-ergic neurons. 
As these neurons project throughout the brain and are 
responsible for most of  NA in the brain, alterations in the 
activity of  these LC–NA-ergic neurons ultimately modulate 
the level of  NA in the brain. These neurons normally cease 
fi ring during REMS; however, they do not stop fi ring upon 
REMSD. Therefore, during REMS, although normally NA 
is washed-off  from the NA-ergic projected sites, up on 
REMSD those sites have an increased level of  NA. The LC 

neuronal activities are affected by the inputs they receive from 
within the brain as well as from the periphery; also, they are 
infl uenced by many other physico-chemical factors. Thus, it 
is understandable that the REMS is affected by wide varieties 
of  inputs originating from within or from external inputs 
and, upon REMS disturbance, there will be changes in the 
level of  NA in different parts of  the brain. This explanation 
supports the observation that REMS is affected (may be 
even secondarily) in almost all altered states, e.g. acute fever 
to chronic and complex psycho-somatic disorders.

Although until now we do not know the exact details, REMS 
disturbance appears to be a primary cause of  many acute to 
chronic disorders and, depending on the specifi c neurons 
that are affected and their projections in the brain, the level 
of  NA would be modulated. This altered NA level would 
then modulate the physiological activities, which then get 
expressed as REMSD-associated symptoms. In other case(s) 
where the level of  NA in the brain is elevated as a primary 
cause, the REMS-loss may be induced as a secondary effect 
and the associated pathological symptoms are expressed 
depending on the susceptibility of  the neurons affected and 
their projections where the NA level is increased. Further, as 
most NA in the brain is released from the LC neurons, which 
is generally of  the REM-OFF type, the REMS is also affected 
as a secondary/associated effect/response. It is possible that 
initial change in the level of  NA due to REMS-loss could be 
a compensatory effect, which is often benefi cial. However, 
if  the loss is continued, it leads to chronic disorder and the 
mechanism needs to be understood in detail.

Based on the arguments given above, we propose that 
diseases associated with REMS loss need to be treated 
by a combination of  factor(s), α2-ARs agonist, which 
would reduce the release of  NA along with agonist or 
antagonist of  such receptor, which presumably is the 
primary cause of  modulating the LC neurons. It may be 
a tough call on how to decide on the latter; however, we 
think that it could be done symptomatically on the basis 
of  expressed symptoms. Although apparently it may be 
diffi cult to conceive at present, at least it may be said with 
certainty that all sleep/REMS disorder patient cannot be 
treated in the same manner (by the same drug) and, if  this 
is done, including due to self-medication, it would create 
more complications as is often experienced; however, 
which might not have been reported as frequently due to 
a lack of  consistent expression of  symptoms. Finally, we 
propose that modulation of  NA-release is likely to be the 
desirable treatment for REMS loss-associated symptoms. 
This may be achieved by modulating the fi ring rate of  the 
LC–NA-ergic neurons in combination with or without 
independently modulating the presynaptic α2-ARs; 
however, the challenge is to design such a targeted delivery 
system to be used as a therapy.
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Basic principle of such targeted drug delivery 
system as a proof of principle
As discussed above, in principle, delivery of  α2-AR agonist 
to a desired site is the likely solution. However, the challenge 
is how to deliver the drug to a desired target, e.g. where the 
NA-ergic inputs are on the postsynaptic neurons possessing 
specifi c subtypes of  receptors (cholinergic, GABA-ergic, etc. 
for instance). Subject to experimental verifi cation, we suggest 
(propose) that the desired α2-AR agonist could be packaged 
in liposomes having affi nity for the target site where the drug 
(the cargo) needs to be delivered; the affi nity of  the designed 
molecules on the liposomes could be made of  various 
combinations. Once such designed liposomes (the vehicles) are 
targeted at specifi c sites, the drug (the cargo) will be delivered 
at the desired site; the vehicle may be designed as per need.

CONCLUSION

REMS is a complex behavioral phenomenon and its loss 
affects various psycho–patho-physio-logical processes. NA 
level is elevated in the brain upon REMS-loss, which has been 
reported to be responsible for inducing several REMS loss-
associated symptoms. We propose that reduction of  NA-
release either by modulating the NA-ergic neuronal fi ring 
rate alone or in combination with activating the presynaptic 
α2-ARs is likely to be preferred and promising strategies 
for treating REMS loss-associated symptoms. Subject to 
confi rmation, as a proof  of  principle, we have also proposed 
a possible approach for targeted drug delivery. 
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