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Abstract: Job automation and associated psychosocial hazards are emerging workplace challenges.
This study examined the trends in work conditions and associations with workers’ health over
time in jobs with different automation probabilities. We utilized data from six waves of national
questionnaire surveys of randomly selected 95,762 employees between 2001 and 2016. The Job
Content Questionnaire, the Copenhagen Burnout Inventory, and the Self-Rated Health Scale were
applied, and working time was self-reported. Automation probability was derived for 38 occupations
and then categorized into three groups. Trends in work conditions and the associations between
automation probability, work conditions and health were examined. We observed a 7% decrease in
high automation probability jobs, an overall increase in job demands for and prevalence of shift work,
and a decrease in job control. Workers with high automation probability jobs had low job demands,
low job control and high job insecurity. Low automation probability was associated with burnout
in logistic regression models. The odds ratio of job insecurity, long working hours, and shift work
relating to health was higher in the later years of the surveys. In conclusion, there has been a decrease
in high automation probability jobs. Workers employed in jobs with different levels of automation
probability encountered different work condition challenges.

Keywords: job automation; psychosocial work conditions; burnout; self-rated health; trend analysis

1. Introduction

Large scale epidemiological studies have tested models and established associations between
adverse psychosocial work conditions and stress-related health [1]. Numerous studies have also
examined changes in psychosocial work conditions, and some of them have indicated deteriorating
trends in work quality over time. For instance, studies from western societies have reported rising
precarious employment [2,3], increasing work demands, decreasing job control [4–7] and increasing
prevalence of long working hours and irregular work shift [8]. Cheng and her colleagues have
documented deteriorating trends in psychosocial work conditions among general workers in Taiwan
during the period from 2001 to 2010, including a rising prevalence of long working hours and shift
work and increasing trends in reduced job control levels [9]. On the contrary, some studies have
indicated improvement in psychosocial work conditions. For example, a study from Denmark showed
improvement in job security, job control and work shift arrangements and decline in low-skilled jobs
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between 1990 and 2000 [10], and a study from Canada showed improvement in workplace support,
job security, regular work shifts, working hours and work demands during the period from 2002 to
2012 [11]. However, while the rise of automation in the workplace has been a worldwide phenomenon,
few studies have been carried out to examine the trend in job automation probability and how such a
trend might affect employment and workers’ psychosocial health risks.

Automation is eminent in Taiwan as well as in many other East Asian countries where
labor-intensive manufacturing industries conglomerate. According to a report by the International
Federation of Robotics, Taiwan ranks as the 10th most automated country in the world, with a robot
installation rate increasing by 26% per year between 2012 and 2017 [12]. There are pros and cons of job
automation. On the one hand, automation could help improve work efficiency and reduce workers’
exposure to unsafe or unpleasant work conditions. On the other hand, automation has the capability
to decimate low-skilled jobs by replacing humans with robots, especially in regions with rising labor
costs [13].

With regard to the assessment of automation probability, the measure developed by Frey and
Osborne has been widely cited [14]. The scale was constructed to measure automation probability
for each occupation based on three dimensions, including the degree of utilizing perceptive and
manipulative abilities, the degree of creativity, and the level of social intelligence. These three
dimensions were assessed by nine variables, which are thought to be the bottlenecks to automation,
namely: finger dexterity, manual dexterity, cramped work space and awkward positions, originality,
fine arts, social perceptiveness, negotiation, persuasion, and assisting and caring for others. Using this
measure, Patel et al. found that USA workers in jobs with higher automation probability had greater job
insecurity, which in turn was associated with poorer health [15]. This study supported the hypothesis
that expectations of unemployment and reduced wages brought about by work automation increase
workers’ perception of job insecurity. Reciprocally, a Norwegian study observed that employees
with poor health were more likely to lose jobs due to job automation [16]. However, in these studies
psychosocial conditions at work were not investigated, and their relationship with job automation has
not been not examined.

Job automation is expected to replace human labor in routine tasks and increase job insecurity and
workers’ psychological health risks. Yet, to our knowledge, the impacts of automation on employment
and workers’ health risks have rarely been studied in East Asian working populations, and psychosocial
work conditions have not been considered in this relationship. In this study, we utilized data from six
waves of national surveys over 15 years and derived automation probability for each occupation based
on the methods developed by Frey and Osborne. The aims of this study were to examine: (1) changes
in work and health conditions by the level of automation probability over time, and (2) associations
between automation probability and workers’ health status by survey year. As the negative impacts
of automation on workers’ health have been increasingly noticed, we hypothesized that work and
health conditions in jobs with high automation probability might deteriorate and the associations of
job automation probability with workers’ health might be stronger in more recent years.

2. Methods

2.1. Study Populations

The Ministry of Labor of Taiwan has conducted nationwide surveys of the working population
every 3–5 years since 1988 to understand safety and health conditions in the workplace. For each survey,
participants were selected through a two-stage random sampling process. In the first stage, all districts
and villages throughout Taiwan were grouped into strata according to their levels of urbanization.
A random sample of districts and villages was chosen from each stratum. In the second stage, a random
sample of households was selected within each district or village, and residents of the sampled
households who were employed at the time of the survey were identified and invited to participate.
Subjects who were not economically active were not eligible. Self-administered questionnaires were
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delivered to the selected households by trained interviewers. After one week, completed questionnaires
were collected and on-site inspection was performed by the same interviewer. The response rates
for the six waves of survey were 82%, 81%, 86%, 87%, 89%, and 78%, respectively. In this study,
we utilized survey data collected in 2001, 2004, 2007, 2010, 2013, and 2016. We excluded employers,
the self-employed, and people aged <25 or >65 years. A total of 95,762 participants were included in
the study and it was carried out following the rules of the Declaration of Helsinki.

2.2. Measurements

Frey and Osborne derived automation probabilities for 702 occupations classified by the Standard
Occupational Classification (SOC) of the United States Department of Labor [14]. In our study,
participants’ occupations were coded and classified into 38 occupational groups according to the sixth
edition of the Standard Occupational Classification by the Taiwan Ministry of Labor. This classification
corresponds to the International Standard Classification of Occupations (ISCO-08) two-digit major
and sub-major groups. For each of these occupational groups, an average automation probability was
derived by matching the ICSO-08 occupational classification with the SOC. Occupations were then
ranked and categorized into terciles of high, median and low automation probability groups.

Study participants were asked to provide information regarding their total working hours one
week prior to the survey. These working hours were categorized into three groups: ≤40, 41–48,
and >48 h per week. We defined long weekly working hours as >48 h per week. Participants
self-reported their work time arrangement, with a response chosen from fixed work shift, rotating work
shift and irregular work shift. Those who chose fixed shift were further asked if they worked in the late
evening or nighttime. Shift work was defined as having a work shift other than fixed daytime work.

Job control and psychosocial job demands were assessed using the validated Chinese version of the
Job Content Questionnaire (JCQ) based on the job strain model by Karasek and Theorell [17,18]. Due to
the space limitation of the questionnaire, items were selected from the JCQ, and this measurement
of job control and job demands with partial items has been proven to be valid [19]. Four items
(work is fast, work is hectic, work is hard, must concentrate on the job for a long time) from the
original five-item questionnaire for the demands scale and a seven-item subscale (learning new
things, non-repetitive work, creative work, various tasks, can develop one’s abilities, freedom to
make decisions, opinion is influential) from the original nine-item questionnaire for the control scale
were included in the questionnaires in year 2004, 2007, 2013, and 2016. The items were listed as a
statement with the response recorded on a four-point Likert scale ranging from 1 (strongly disagree)
to 4 (strongly agree). The internal consistency for the seven-item job control scale and four-item
demands scale were acceptable for 2004 (standardized Cronbach’s α = 0.75 and 0.74, respectively), 2007
(standardized Cronbach’s α = 0.72 and 0.73, respectively), 2013 (standardized Cronbach’s α = 0.70
and 0.79, respectively), and 2016 (standardized Cronbach’s α = 0.73 and 0.83, respectively) surveys.
The mean scores for job control and demands were then ranked and divided into terciles (low, medium
and high). One item for job insecurity (“my job is secure”) was assessed using a four-point Likert scale
and its response was coded dichotomously (agree/disagree). Age, gender, and educational level were
also included in the self-reported questionnaire.

Two health outcomes were assessed by the questionnaire. Self-rated health (SRH) is a composite
indicator for universal dimensions of health and has been found to predict mortality [20]. SRH was
assessed by a single-item question, “In general, how is your health?”, which had five possible
answers: “very good”, “good”, “moderate”, “poor” and “very poor”. In this study, the responses
were dichotomized into poor SRH (poor or very poor) or good SRH (very good, good, or moderate).
Burnout is conceptualized as an affective reaction to prolonged work stress [21] and has been found to
be associated with sickness absence, physical diseases and mental illnesses [22–24]. Burnout status
was assessed by the five-item scale for personal burnout from the Copenhagen Burnout Inventory [25],
which has been validated and used worldwide [26–29] to evaluate employees’ health status related
to long-term involvement in emotionally demanding work [30]. The responses for five items were
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recorded on a five-point scale: “always” (score 100), “often” (75), “at times” (50), “not often” (25),
and “never” (0), and a mean score >50 was classified as having burnout. However, the burnout scale
was not included in the questionnaires used for the surveys of 2001 and 2010.

2.3. Statistical Analysis

Age, gender, educational level, work conditions and health indicators were examined for each of
the job automation probability group by survey years. A linear-by-linear association test and general
linear models were used to examine the trend of categorical variables and continuous variables of
work conditions, respectively, over the studied period. Trend analysis was performed with IBM SPSS
Statistics for Windows, Version 24.0 (Armonk, NY, USA). Logistic regression analysis was used to
examine the associations between job automation probability and health, adjusting for work conditions
for 2004, 2007, 2013, and 2016 separately. SAS 9.4 (SAS Institute, Cary, NC, USA) was used for the
analyses. The significance level was set at p < 0.001.

3. Results

Table 1 shows the demographic characteristics of the three automation probability groups.
Common job types of the high automation probability group were machine operators, assemblers,
salespersons and metal operators; common job types of the medium automation probability group
were business and administrative associates, construction workers and vehicle operators; and common
job types of the low automation probability group were professionals and higher education teachers.
Women and less educated workers were more prevalent in the high automation probability group as
compared to those in the medium and low automation probability groups.

Table 1. Demographic characteristics of employees of high, median, and low automation probability
jobs in all six waves of survey (n = 95,762).

High Automation
Probability Jobs

(n of Jobs = 13, n of
Workers = 41,199)

Median Automation
Probability Jobs

(n of Jobs = 13, n of
Workers = 36,705)

Low Automation
Probability Jobs

(n of Jobs = 12, n of
Workers = 17,858)

Examples of Jobs

Machine operator and
assemblers (23%)

Salespersons (14%)
Metal operators and

preparers (13%)

Business and administrative
associates (29%)

Construction workers (12%)
Vehicle operators (12%)

Science and engineer
professionals (25%)
Higher education

teachers (18%)
Medical service

professionals (14%)

Age (years) 39.74 ± 9.83 40.51 ± 9.86 39.66 ± 9 ± 46

Gender (Female) 57.62% 27.53% 42.03%

Education

Primary Education 10.96% 8.42% 0.55%
Secondary Education 72.33% 72.79% 31.30%
University and Above 16.71% 18.80% 68.14%

As shown in Figure 1, the percentage of workers with high automation probability jobs decreased
by 7.2% (from 45.64% to 38.48%), while those with medium automation probability jobs increased by
7.4% (from 36.26% to 43.67%) over the studied period (details shown in the Supplementary Table S1).
Overall, the average age of workers over the studied period increased by 3.3 years and the percentage
of female workers increased by 2.7%. In trend analysis, we found significantly decreased total working
hours and percentage of job insecurity, poor SRH and burnout, but increased percentage of long
working hours (>48 per week) and shift work, and decreased job control scores (please refer to data
shown in the Supplementary Table S1).
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Figure 1. Temporal trends in number of workers in three levels of automation probability jobs.
Number of participants in the six waves of survey were 14,691, 15,288, 17,042, 17,263, 16,530,
and 14,948, respectively.

Figure 2 shows that working hours decreased slightly in all of the three groups, but the decrease
was most prominent in workers with high automation probability jobs. However, trend analysis
showed the number of workers with long working hours significantly increased in high and low
probability groups. Overall, the percentage of shift workers increased by 6.8%, and the increase was
most prominent in workers with low probability jobs, in which the percentage doubled from 10.33% in
2000 to 20.95% in 2016. Between 2004 and 2016, the average job demand scores increased significantly
in low automation probability jobs, but no significant trend was observed in workers with median
and high automation probability jobs. Job control scores decreased steadily and significantly in all the
three groups. A significant trend of decreasing job insecurity was observed in the high and median
probability groups but not in the low automation probability group.

As to health outcome, the percentage of workers who reported poor SRH significantly decreased
in workers with low and high automation probability jobs, and the percentage of workers who reported
burnout significantly decreased in all groups but remained higher in the low probability group than in
the other two groups.

Multiple logistic regression models showed that, as compared with workers with low automation
probability jobs, those with high automation probability jobs had higher risks of poor SRH in 2016
(Table 2) and had lower risks of burnout in all the survey years (Table 3). High job demands and job
insecurity were associated with poor SRH and burnout in all the survey years. The odds ratio of long
working hours for burnout increased over the survey years (from 1.09 to 1.76). Job insecurity was
associated with poor SRH and the odds ratio increased from 2004 to 2016 (1.76 and 2.25, respectively).
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Table 2. Odds ratio and 95% confidence interval (95% CI) for poor self-rated health in the survey years,
n = 15,288, 17,042, 16,530, and 14,948, respectively.

2004 (Case = 608) 2007 (Case = 544) 2013 (Case = 576) 2016 (Case = 618)

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Age >55 1.26 (0.87, 1.83) 1.91 (1.43, 2.54) * 1.91 (1.51, 2.41) * 1.80 (1.45, 2.24) *

Gender (reference: female) 1.11 (0.93, 1.32) 1.07 (0.89, 1.29) 1.05 (0.89, 1.25) 1.09 (0.92, 1.28)

Automation probability

Low 1 1 1 1
Median 0.84 (0.66, 1.07) 1.06 (0.81, 1.40) 1.09 (0.84, 1.42) 1.45 (1.10, 1.91) *

High 0.91 (0.72, 1.16) 1.11 (0.85, 1.46) 0.92 (0.70, 1.21) 1.34 (1.01, 1.77) *

Working hours

≤40 1 1 1 1
40 < hours ≤ 48 0.79 (0.66, 0.95) * 0.69 (0.52, 0.92) * 0.86 (0.70, 1.05) 0.92 (0.75, 1.12)

>48 1.03 (0.79, 1.33) 0.90 (0.63, 1.25) 1.20 (0.95, 1.52) 1.38 (1.09, 1.76) *

Shift work 1.16 (0.95, 1.41) 1.22 (0.99, 1.50) 1.42 (1.17, 1.73) * 1.41 (1.17, 1.69) *

Job demand

Low 1 1 1 1
Median 1.22 (0.95, 1.57) 0.99 (0.77, 1.29) 1.18 (0.90, 1.55) 0.98 (0.73, 1.31)

High 1.94 (1.60, 2.35) * 1.48 (1.22, 1.79) * 2.01 (1.67, 2.43) * 1.98 (1.64, 2.39) *

Job Control

High 1 1 1 1
Median 1.25 (1.00, 1.56) * 1.18 (0.93, 1.49) 1.55 (1.22, 1.97) * 1.33 (1.05, 1.69) *

Low 1.05 (0.86, 1.29) 1.06 (0.85, 1.32) 1.03 (0.82, 1.31) 1.18 (0.93, 1.48)

Job insecurity 1.76 (1.46, 2.11) * 1.89 (1.56, 2.30) * 1.92 (1.59, 2.33) * 2.25 (1.88, 2.70) *

* p < 0.001.

Table 3. Odds ratio and 95% confidence interval (95% CI) for burnout in the survey years, n = 15,288,
17,042, 16,530, and 14,948, respectively.

2004 (Case = 2341) 2007 (Case = 2399) 2013 (Case = 1910) 2016 (Case = 1854)

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Age >55 0.70 (0.54, 0.92) * 0.77 (0.62, 0.96) * 0.92 (0.77, 1.11) 1.00 (0.84, 1.18)

Gender (reference: female) 1.56 (1.42, 1.72) * 1.49 (1.36, 1.64) * 1.45 (1.31, 1.60) * 1.43 (1.29, 1.59) *

Automation probability

Low 1 1 1 1
Median 0.85 (0.75, 0.97) * 0.82 (0.72, 0.93) * 0.91 (0.79, 1.04) 0.83 (0.72, 0.96) *

High 0.83 (0.73, 0.95) * 0.82 (0.72, 0.93) * 0.77 (0.66, 0.89) * 0.7 (0.68, 0.92) *

Working hours

≤40 1 1 1 1
40 < hours ≤ 48 0.93 (0.84, 1.02) 1.02 (0.85, 1.22) 1.09 (0.98, 1.23) 1.03 (0.91, 1.16)

>48 1.09 (0.95, 1.27) 1.22 (1.00, 1.50) * 1.31 (1.14, 1.51) * 1.76 (1.52, 2.03) *

Shift work 1.19 (1.06, 1.33) * 1.33 (1.20, 1.48) * 1.24 (1.10, 1.40) * 1.29 (1.15, 1.45) *

Job demand

Low 1 1 1 1
Median 1.93 (1.66, 2.23) * 1.81 (1.57, 2.08) * 1.96 (1.66, 2.31) * 1.98 (1.65, 2.38) *

High 4.09 (3.65, 4.60) * 3.50 (3.13, 3.90) * 4.19 (3.71, 4.74) * 4.47 (3.90, 5.12) *

Job Control

High 1 1 1 1
Median 0.79 (0.70, 0.90) * 0.99 (0.87, 1.12) 1.04 (0.91, 1.20) 0.89 (0.78, 1.03)

Low 0.87 (0.78, 0.97) * 1.04 (0.93, 1.16) 1.04 (0.91, 1.17) 0.96 (0.85, 1.09)

Job insecurity 1.89 (1.71, 2.09) * 1.63 (1.48, 1.80) * 1.54 (1.38, 1.71) * 1.80 (1.62, 2.00) *

* p < 0.001.
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4. Discussion

This is the first study to examine the trend in psychosocial work conditions and worker’s health
over the past 15 years according to automation probability. We observed a significant decrease in
high automation probability jobs. Workers in low automation probability jobs reported doubled shift
work prevalence, decreased job control, and increased job demands. High automation probability jobs
were associated with poor self-rated health while low probability jobs were associated with burnout.
The odds ratio of job insecurity for poor health, and long working hours for burnout, increased over
the study period.

Studies from both the European Union and the United States indicated that there had been
a reallocation of middling manufacturing and routine office workers into either low-paid service
occupations or high-paid professionals and managers in recent years, a process known as job
polarization [31,32]. Yet our findings indicated that in Taiwan employment in high automation
probability jobs had shrunk. However, while the growth of high-skilled jobs was observed in
other studies, we did not observe an increase in low automation probability occupations. Such an
inconsistency might be explained by the existence of a skill barrier or educational gap, barring
low-skilled workers from moving upward to high-skilled jobs. This could also be explained by a
mismatch between skills demanded in the labor market and skills acquired through higher education
in Taiwan, as the rapid expansion of higher education has not contributed to industrial upgrading
and greater demands for a high-skilled workforce, but has instead led to greater uncertainty in
wage prospects [33]. The stagnation of growth in the high-skilled workforce could also be a result
of labor market globalization, as observed in Latin American countries [34]. In the context of job
automation, labor market globalization, job content changes, continuous on-site training of employees,
and education renovation according to the demands of the workforce market are needed.

In addition, this study showed that psychosocial work conditions had deteriorated over time in all
of the three automation probability groups, as working hours had decreased only minimally, but the
prevalence of workers with prolonged working hours and non-standard work shifts had increased
and the level of psychosocial job demands had increased substantially. Furthermore, deteriorating
trends appeared to be more apparent in the low automation probability group, with the prevalence of
shift work increased by two-fold. These findings suggested that while high automation probability
jobs were likely to be decimated and replaced by robots, those with low automation probability jobs
could also be affected in the process of technological innovation. One of the possibilities of such trends
is the emergence of emotional aspects of psychological job demands, which are more prevalent in
jobs involving more human interactions. These psychosocial stressors, including psychological and
verbal violence [35], emotional demands and role conflicts originating from the interactions with
clients [36,37], correspond closely to one of the three constructs of automation probability, i.e., the use
of social intelligence. The development of an information-based economy may also contribute to the
sharp increase in short-duration shift work and round-the-clock service, especially in human service
sectors [38].

Another novel finding of the present study was that, along with a slight decrease in average
working hours, the prevalence of workers with prolonged working hours had increased and the
associations of prolonged working hours with poor health and burnout had become greater over time.
These observations suggested a polarizing distribution of working hours, which was also observed in
Taiwan [9] and in the United States [39]. Long working hours are known to contribute to work stress
and stress-related health risks. Nevertheless, it is worth noticing that long working hours per se may
not necessarily be associated with adverse health risks, because workers’ motives and self-control in
working hours arrangement may differ greatly by social context [40,41]. The increasing association
between long working hours and burnout over time may also be explained by these changes in social
context including perceived economic uncertainty and social norms of ideal worker type or ideal
working hours.



Int. J. Environ. Res. Public Health 2020, 17, 5499 9 of 12

However, high automation probability jobs were associated with poor SRH only in 2016 but not
in earlier surveys. We also observed an increase in the prevalence of poor SRH after 2010 among
employees with high and median automation probability jobs. These findings were probably due
to a selection effect as workers with ill health were more likely to have drifted to insecure and
low-skilled jobs in more recent years. Poor health was found to be a predicting factor for working
in high automation probability jobs in a Norwegian study [16]. It can also be anticipated that along
with the trends in job automation, workers with poor health are exposed to an additional risk of job
insecurity and unemployment. It is worth noticing that in our study job insecurity was found to have
an increasing odds ratio for poor SRH over time, while workers in high automation probability jobs
reported the highest percentage of job insecurity. The overall improvement of SRH and burnout scores
in our study may also be a result of healthy worker selection on a larger scale, while workers with
existing health problems had difficulties in staying active in the labor market.

This study has several limitations. First, although all the six waves of surveys consisted of a
representative sample of employees, these participants were independently recruited for each survey
and were not followed in succeeding surveys. Therefore, participants who had left work or the
labor market due to health problems were not considered. This may contribute to a healthy worker
effect leading to a healthier working population and attenuated associations between adverse work
conditions and poor health in later years. Other unobserved changes in characteristics of workers in
each occupational group may also lead to selection bias. Secondly, the automation probability of jobs
may not be the same in the United States as in Taiwan. The skills needed in specific jobs and the level
of automation in specific industries differ worldwide. Furthermore, we had access only to the first two
digits of occupational code of the classification system for each participant; therefore, the averaged
automation probability for two-digit occupational groups from the probability estimated for six-digit
occupations by Frey ad Osborne [14] may not be representative for the identified 38 occupational groups.
Furthermore, heterogeneity in each of the 38 occupational groups has been neglected. For example,
salespersons were classified as a high-automation probability job, but the requirement for social
perceptiveness, negotiation, and persuasion differs between different types of salesperson. The survey
participants did not include foreign workers, and studies concerning work conditions and health
and safety of foreign workers were limited to occupational injuries [42]. Nevertheless, a substantial
proportion of foreign workers worked in the service sector, e.g., as caregivers [43]. Future studies should
include the growing foreign worker population. Thirdly, health conditions and work characteristics
measurements were based on self-report and were subject to recall bias or social desirability bias.

5. Conclusions

The findings of this study showed that jobs with high automation probability had decreased
over the studied period, and workers employed in jobs with different levels of automation probability
encountered different types of psychosocial work hazards and health risk. For workers whose
employment is vulnerable to automation, employment policies should be improved to ensure
continuous on-job training and skill development according to the demands of the workforce market.
Along with the trend towards automation, social policies should also be improved to ensure more
equal distribution of economic gains, in order to protect workers whose health status makes them less
competitive in the current labor market.

Furthermore, the fact that all workers are likely to be affected by the trend towards job automation
deserves further investigation. Especially for workers who have to engage in intense social interactions
with clients, workplace policies should be developed to reduce the impacts of emotional demands and
human-machine interactions on workers’ burnout. For instance, abundant studies have found that an
increase in job resources and work engagement help attenuate burnout [44–47], and an improvement
in organizational psychosocial climate has been found to help decrease modern psychosocial stressors
and negative health consequences [48–50]. The increasing demand for shift workers should also be
reexamined, and extremely irregular or long/short shift work contracts should be regulated by the
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government. Economic studies are needed to seek a balance between 24-h service utility and the cost
to shift workers’ health. The increasing association between long working hours and burnout over
time may have reflected a changing social norm of work-life balance. With higher working hours
compared to other industrialized countries, the organizational culture of overtime work should be
challenged in Taiwan.
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