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ABSTRACT

Changes in cellular chromatin states fine-tune tran-
scriptional output and ultimately lead to phenotypic
changes. Here we propose a novel application of
our reproducibility-optimized test statistics (ROTS)
to detect differential chromatin states (ATAC-seq) or
differential chromatin modification states (ChIP-seq)
between conditions. We compare the performance
of ROTS to existing and widely used methods for
ATAC-seq and ChIP-seq data using both synthetic
and real datasets. Our results show that ROTS out-
performed other commonly used methods when ana-
lyzing ATAC-seq data. ROTS also displayed the most
accurate detection of small differences when model-
ing with synthetic data. We observed that two-step
methods that require the use of a separate peak
caller often more accurately called enrichment bor-
ders, whereas one-step methods without a separate
peak calling step were more versatile in calling sub-
peaks. The top ranked differential regions detected
by the methods had marked correlation with tran-
scriptional differences of the closest genes. Over-
all, our study provides evidence that ROTS is a use-
ful addition to the available differential peak detec-
tion methods to study chromatin and performs es-
pecially well when applied to study differential chro-
matin states in ATAC-seq data.

INTRODUCTION

Chromatin states can be seen as the collection of proteins
or histone modifications that regulate the openness and ac-
tivity of a given chromatin region (1,2). Dynamic regula-
tion of chromatin states drives changes in gene transcrip-

tion and consequently in cellular phenotypes (3), and pro-
ceeds largely through modification of chromatin-associated
histone proteins to open or close chromatin access (4–6).
These histone modifications can be studied with chromatin
immunoprecipitation followed by sequencing (ChIP-seq)
(6) that has provided substantial insights on gene regu-
lation. Other methods have been developed to reveal the
open or closed chromatin states, such as DNase I hyper-
sensitive sites sequencing (DNase-seq) (7), formaldehyde-
assisted isolation of regulatory elements (FAIRE-seq) (8)
and assay for transposase accessible chromatin followed
by high-throughput sequencing (ATAC-seq) (9). ATAC-seq
has gained popularity due to the fact that it requires consid-
erably less genetic material than previous methods (10).

The output of both ChIP-seq and ATAC-seq analysis
consists of reads enriched in genomic locations (also called
peaks) representing the presence of a protein in the case of
ChIP-seq or open chromatin state in the case of ATAC-seq.
Thus, methods first developed for ChIP-seq data analysis,
such as MACS2 (11) and HOMER (12), have also been used
to identify open chromatin regions from ATAC-seq data
(13,14).

In addition to peak calling, it is of specific importance
to find significant differences in chromatin states between
the biological conditions or groups of interest from the
ChIP-seq and ATAC-seq data. A major challenge in such
differential ChIP-seq and ATAC-seq data analysis is the
large search space, as it is not limited only to, e.g. pro-
tein coding genes as in gene expression analysis, but in the-
ory, open chromatin and protein binding events take place
across most of the genome. Additionally, the range of the
signal does not have intrinsic boundaries like the 0 to 100%
in DNA methylation, as there is no theoretical upper limit
for the read enrichments. An additional challenge in detect-
ing the differential states in the context of ChIP-seq also lies
in the amount of noise generated by the immunoprecipita-
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tion step, which makes it difficult to detect subtle changes
between conditions (15,16). Several methods have been de-
veloped to solve such challenges and to detect differential
enrichment in reads (also called differential peaks) (17–19).

The existing methods for differential peak calling can be
classified into one-step methods that inherently include the
initial peak calling, and two-step methods that require the
prior use of a separate peak caller to produce the peaks
for differential analysis. The one-step methods can be fur-
ther separated into sliding window methods (e.g. DiffReps
(19) or PePr (18)), and segmentation methods such as Hid-
den Markov Models (HMM) [e.g. THOR (17)]. The slid-
ing window approaches use a user-defined window to scan
the genome for enrichment. These approaches can be sensi-
tive to the window size selected; a too wide window might
miss local changes and a too narrow window might miss
global scale changes (15,17). While HMM-based methods
enable flexibility on the size of detected regions, they can
be sensitive to small-scale changes in the signal (15). The
two-step methods [e.g. DiffBind (20)] require the candidate
peaks to be defined by an external peak calling software,
such as MACS2 (11), HOMER (12) or SICER (21). Con-
cordantly, they are restricted to the search-space defined by
the candidate peaks with the chosen peak caller. While sev-
eral methods have been developed to tackle the differential
peak calling problem, the challenge remains that the over-
lap between the results from different methods is often small
and it is difficult to evaluate the true positives (15,16).

ATAC-seq is intensively applied in the chromatin stud-
ies because of its ease of use (no antibody steps and small
sample quantities), but the differential peak calling meth-
ods have been previously compared only using ChIP-seq
data (15–20), constituting a specific need for a comparison
that also applies these methods to ATAC-seq data. The ease
of use combined with decreasing sequencing cost has al-
lowed inclusion of growing numbers of experimental repli-
cates especially in ATAC-seq studies. While the early ChIP-
seq studies often included only two or even just one repli-
cate, nowadays the need for at least three replicates in ChIP-
seq (and ATAC-seq) studies is widely recognized (22). In
addition to enabling better separation of consistent biolog-
ical occurrences from random events, a higher number of
biological replicates helps to mitigate the effect of back-
ground noise which is often high in ChIP-seq studies due
to the non-specific binding. While some of the early differ-
ential peak callers allowed only two replicates, e.g. ODIN
(23) and MAnorm (24), later iterations are not limited to a
certain number of replicates.

Here, we introduce the application of reproducibility op-
timized test statistic (ROTS) (25) for robust differential peak
calling on chromatin data with multiple replicates. A ma-
jor advantage of ROTS is its efficient use of replicates to
optimize the reproducibility of the results by bootstrapping
the data. Previously ROTS has shown good performance in
the context of differential gene expression (26), differential
DNA methylation sequencing (27) and mass spectrometry
proteomics (28). Here we apply ROTS to differential peak
calling in ChIP-seq and ATAC-seq data and systematically
compare its performance to five commonly used methods
DiffBind (20), DiffReps (19), MAnorm2 (29), PePr (18) and
THOR (17) using both ChIP-seq and ATAC-seq datasets.

We rigorously investigate the intensity and breadth of the
called differential peaks and also estimate the performance
of the methods by correlating the fold-changes of the differ-
ential chromatin states with the differential gene expression
fold-changes of the nearest genes. Importantly, our study is
the first to compare the differential peak calling methods
simultaneously with both ChIP-seq and ATAC-seq data.

MATERIALS AND METHODS

General description of ROTS

The ROTS is an approach that is based on investigating the
inherent characteristics of the data and thus is able to free
itself from any distributional assumptions (25). Specifically,
ROTS maximizes the reproducibility z-statistic Zk(dα)over
parameters α and the top list size k by considering the repro-
ducibility of the k top-ranked features Rk(dα) using a family
of t-type statistics dα, in pairs of bootstrapped dataset:

Zk (dα) = Rk (dα) − R0
k (dα)

sk (dα)

Rk(dα) and R0
k(dα) are respectively the reproducibility

of the bootstrapped and randomized data and sk(dα) is
the estimated standard deviation of the bootstrap distri-
bution. Rk(dα)represents the average overlap of the k top-
ranked features over B pairs of bootstrap datasets. The re-
producibility for each pair b of bootstrap data matrices
(D(b)
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i ) denotes the rank of feature g in data D(b)

i
with the statistic dα and #S is the cardinality of set S.

The test statistics dα for a genomic feature of interest g
(here chromatin region) is defined as:

dα (g) =

∣∣∣x̄i
g − x̄ j

g

∣∣∣
α1 + α2sg

,

where x̄i
g and x̄ j

g are the average number of reads of feature
g in the experimental conditions i and j and sg represents
the estimated standard error.

The input required by ROTS is a matrix of preprocessed
and normalized read counts with columns constituting the
samples and rows constituting the enriched peak regions
determined using a peak caller. ROTS R package and a
thorough manual are available through Bioconductor at
https://bioconductor.org/packages/ROTS.

Differential peak calling workflow for ROTS

Before the differential peak calling with ROTS, we first
performed the initial peak calling for each sample using
MACS2 (11), which is widely used and has shown good
performance in independent comparisons (30). As recom-
mended in (31), we performed the peak calling for each con-
dition on the pooled reads of the available samples. Next, a
candidate peak list was compiled based on the sample-level

https://bioconductor.org/packages/ROTS
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peak calls by taking the union of the peaks present across
the sample set and merging the overlapping peaks together.
After this, a count matrix was produced that contained the
read count of each candidate peak for each sample. To nor-
malize the reads, we used the median of ratios available in
the DESeq2 R/Bioconductor package (32), as it is robust in
the case of outliers, but also in the case of imbalance in the
number of peaks between conditions.

Overview of the compared methods

We selected five differential peak calling methods to be
compared to our proposed ROTS-based approach (Table
1): DiffBind (20), MAnorm2 (29), diffReps (19), PePr (18)
and THOR (17). The methods were selected according to
their popularity, their support for the use of replicates,
and their ability to detect differences in signal associated
to chromatin state which are known to be characteristi-
cally broad genomic regions. When comparing the meth-
ods, we put ourselves in the place of a typical user that uses
the methods ‘out of the box’, with the parameters recom-
mended by the developers. DiffBind is a two-step method
that uses an external peak caller (in our study MACS2) and
the R/Bioconductor package DEseq2 (33) to normalize the
data with the median of ratios method (32) and to perform
the statistical testing. MAnorm2 is a two-step method that
uses an external peak caller (in our study MACS2), nor-
malises the data based on a linear fit of M- and A-values (re-
spectively log2 fold change and mean log2 read count), and
performs statistical testing by adopting the modeling strat-
egy of limma (34). DiffReps is a one-step method that uses
a sliding window to scan the genome for differences, a lin-
ear method for normalization, and an exact negative bino-
mial test for determining the differences. PePr is a one-step
method that uses a sliding window to find genomic regions
with differences, TMM for normalization, and negative bi-
nomial distribution for read modeling. THOR is a one-step
method that normalizes the data using the Trimmed Mean
of M-values (TMM) (35) and uses an HMM with three hid-
den states to find regions with differences between condi-
tions.

Overview of the datasets

We selected five datasets for our study: two biological
datasets were based on ATAC-seq [Interferon response
(IFN) and Yellow Fever vaccine (YF)], two were from
ChIP-seq studies (Rheumatoid Arthritis H3K4me3 and
H3K36me3), while the fifth was a synthetic dataset. The
four biological datasets (Table 2) were selected for their rel-
atively high number of replicates (>5) and for the presence
of matching RNA-seq data. The synthetic dataset was from
an earlier differential peak detection tool comparison that
modeled H3K36me3 binding (15). It was generated on the
basis of top 20 000 detected peaks from a reference sample
using MACS2, which were then divided into two groups for
further simulation: 10 000 true differential peaks and 10 000
non-differential peaks. Using the reads within these peaks,
a treatment sample was simulated based on the reference
sample by downsampling the reads of the true differential
peaks across 10 different intensity categories (from 100% in-
tensity to 10% intensity, 1000 peaks per intensity category).

For both the treatment and the reference samples, another
layer of variation was finally added by simulating biological
noise (15). For our comparison study, we further downsam-
pled the reference and treatment samples five times by a ran-
dom percentage between 10 and 30% to create five simulated
biological replicates per condition. The statistical compari-
son was always done for the same peak region between the
sample groups and as such was not affected by the size of
the peak.

ChIP-seq and ATAC-seq pre-processing, peak calling and dif-
ferential peak calling

All biological datasets were downloaded as sra files from the
Sequence Read Archive (SRA) and converted to fastq for-
mat with fastq-dump tool from the SRA Toolkit (36). Reads
were aligned to human hg19 reference genome (37) derived
from UCSC Genome Browser using Bowtie2 (38) with de-
fault settings. Reads with mapping quality below 15 and the
reads in the regions of low complexity or high repeatabil-
ity on the genome, as listed by the ENCODE consortium
hg19 (39), were removed with samtools 1.2 (40). For the
two-step methods, we pooled the reads across the samples
for each condition as recommended in (31). Peak calling
was performed using MACS2 (11) with significance cut-off
‘-q 0.01’, and for ATAC-seq option -f BAMPE was defined.
We chose to use the ‘narrow’ peak calling option for three
datasets (YF ATAC-seq, IFN ATAC-seq and H3K4me3
ChIP-seq) and the ‘broad’ option for H3K36me3 ChIP-
seq in accordance with the ENCODE guidelines (https://
www.encodeproject.org/chip-seq/histone). For the compar-
ative purpose of this study, the ChIP-seq datasets were com-
pared without subtracting the input chromatin sample, be-
cause as such the detection of differential binding between
two conditions does not require an input ChIP-seq control
(31,41). The differential peak calling was run with each tool
according to the settings recommended by the developers in
either publication, vignette or tutorial. The samples from
the synthetic data were all created using the same set of
reads and normalization for sequencing depth was not re-
quired. Hence, for synthetic data we ran ROTS, MAnorm2,
PePr and THOR without normalization, whereas diffReps,
and DiffBind were run with their default normalization. We
initially tested the DiffBind method with both DESeq2 and
edgeR and observed that edgeR introduced a marked num-
ber of false positives. Based on this we continued running
DiffBind with DESeq2.

Evaluation of differential peak calling on synthetic data

We used the GenomicRanges R/Bioconductor package (42)
to detect the overlap between the significant peaks (FDR <
0.05) called by the different methods and the true differen-
tial and non-differential peaks. An overlap of 1 bp and an
overlap of at least 25% of the true peaks were tested and
produced similar results.

Differential gene expression in RNA-seq data

Each of the biological ATAC-seq/ChIP-seq datasets in-
cluded in our study contained matching gene expression
data. For ATAC-seq datasets, we used the normalized gene

https://www.encodeproject.org/chip-seq/histone
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Table 1. Overview of the methods compared in the study

Tool Language Input Peak calling
Default
normalization Statistical test Reference

one-step
THOR Python Reads (*.bam) Not required TMM HMM with a three

state topology
Allhoff, M. et al.
(2014)

diffReps Perl Reads (*.bam) Sliding window
approach

Linear
normalization

Exact negative
binomial test

Shen, L. et al. (2013)

PePr Python Reads (*.bam) Sliding window
approach

TMM Binomial distribution Zhang, Y. et al.
(2014)

two-step
DiffBind R Reads (*.bam)

Peaks (*.bed)
Peak caller required
(e.g. MACS2)

DEseq2 DEseq2 (default)
DEseq
edgeR

R. Stark, G. B.
(2011)

ROTS R Reads (*.bam)
Peaks (*.bed)

Peak caller required
(e.g. MACS2)

DEseq2 differential analysis
performed with
ROTS

Suomi, T et al.
(2017)

MAnorm2 R Reads (*.bam)
Peaks (*.bed)

Peak caller required
(e.g. MACS2)

Remove MA trend
from common peaks

Differential analysis
adapted from limma

Tu, S et al. (2020)

Table 2. Overview of the biological datasets used in the study

Epigenetic
mark Condition Subject

Replicates per
condition Reference

GEO
accession
number

Open
chromatin

Yellow fever (YF) CD8 Tcells 8 Akondy etal.,
2017 (52)

GSE101609

Open
chromatin

Interferon response (IFN) CD14+ monocyte derived
macrophages

6 Park et al., 2017 (53) GSE100383

H3K4me3 Rheumatoid arthritis (RA) Fibroblast like synoviocytes 10 Ai et al., 2018 GSE112655
H3K36me3 Rheumatoid arthritis (RA) Fibroblast like synoviocytes 10 Ai et al., 2018 (54) GSE112655

expression data available from the original studies; in the
YF dataset the available read counts had been corrected
for batch effect with ComBat (43), and in the IFN dataset
the raw counts had been normalized by means of frag-
ments per kilobase of exon per million fragments mapped
(FPKM). For the rheumatoid arthritis (RA) datasets, only
raw read counts were available, so we normalized them with
TMM and converted them to counts per million. We used
ROTS (44) to perform the differential expression analysis
and calculated the differential expression fold-change for
each dataset from the difference in means of read count val-
ues.

Evaluation of differential peak calling on biological data

Evaluation of differential peak calling in real biological data
is challenging, as there is no existing biological gold stan-
dard. To circumvent this, we used the correlation to gene
expression data as suggested previously (23,45–48). This ap-
proach is based on the assumption that open chromatin and
activating histone binding domains correlate with expres-
sion levels of the surrounding genes. By looking at the cor-
relation of fold-changes in differential chromatin states and
fold-changes in transcription of the closest gene, the perfor-
mance of the differential peak calling can then be approxi-
mated. For this, we first ranked the differential peaks from
each method according to their FDR. Peaks were then an-
notated to their nearest genes. If multiple peaks were anno-
tated to one gene, the fold-change of differential peaks for

the gene was calculated by taking the average fold-change
of all the peaks annotated to the gene. The Pearson corre-
lation between the log10 fold-change of differential bind-
ing and log10 fold-change of the differential gene expres-
sion was then calculated iteratively using an increasing num-
ber of top ranked differential peaks. Our decision to focus
on 2000 top peaks was a compromise considering both the
number of called peaks, placing emphasis on the most sig-
nificantly detected peaks (Table 3), as well as on the num-
ber of differentially regulated genes (FDR < 0.05 and FC
> 2) in the corresponding gene expression data that varied
in the range of 325–3186. The median breadth of the peaks
between one-step methods and two-step methods was com-
pared with Wilcoxon test.

RESULTS

Comparing differential peak calling methods in synthetic
data

We compared the performance of ROTS with five popu-
lar differential peak detection methods; DiffBind, diffReps,
MAnorm2, PePr and THOR, on a synthetic dataset
adapted from a previous study (15), containing a mixture
of true differential and non-differential peaks, 10 000 of
each, across 10 different intensity categories. When com-
paring the overlap between the significant peaks (FDR <
0.05) called by the different methods and the true differ-
ential and non-differential peaks, all the methods detected
differential peaks well when the simulated differences were
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Table 3. The number of significant differential peaks (FDR < 0.05) detected by the methods

Two-step One-step

ROTS DiffBind MAnorm2 diffReps PePr THOR

YF ATAC-seq 2017 8736 3816 9168 1955 36 009
IFN ATAC-seq 37 630 40 001 32 362 57 209 44 143 91 118
RA H3K4me3 1913 3111 10 21 443 1072 17 343
RA H3k36me3 11 25 0 27 549 1077 17 483

considerable, i.e. between 60 and 100% difference in signal
intensity between the conditions (Figure 1A). With smaller
differences, THOR, PePr and especially ROTS were able to
recover larger proportions of the true peaks compared to
the other methods, which detected few or no peaks with dif-
ferences in signal intensity below 30%. Overall, the methods
reported very few of the non-differential peaks as signifi-
cant, with the exception of diffReps which called a relatively
large number of false positive peaks (1178 false positives).
The sensitivity and specificity are also illustrated across the
methods as receiver operating characteristic curves (Supple-
mentary Figure S1), highlighting the good accuracy of es-
pecially ROTS, MAnorm2 and THOR.

We also tested the speed and the memory consumption
of the methods when run on a modern computer cluster
managed by the open-source Simple Linux Utility for Re-
source Management. In our inspection, ROTS was by far
the fastest and the most memory efficient method (Figure
1B). DiffBind on the other hand showed particularly large
memory consumption, followed by MAnorm2. MAnorm2
was the second slowest and diffReps the slowest of the com-
pared methods, the latter being more than 20 times slower
than ROTS.

Number of differentially called peaks and overlap between
methods in real ATAC-seq and ChIP-seq data

The number of significant peaks (FDR < 0.05) reported
varied considerably between the different methods within
each dataset (Table 3). THOR and diffReps overall reported
many more differential peaks than the other methods across
the datasets, typically in the order of tens of thousands.
With PePr the number of detections varied greatly across
the datasets; it reported a relatively high number of dif-
ferential peaks with IFN ATAC-seq dataset (44143 peaks),
while for the other datasets it called a relatively lower num-
ber of differential peaks (<2000 peaks). The two two-step
methods, ROTS, DiffBind and MAnorm2 reported com-
parable numbers of differential peaks, with the exception
that in H3K4me3 data MAnorm2 detected only 10 peaks
with FDR < 0.05 (versus ROTS 1913 peaks and Diff-
Bind 3111 peaks). The one-step methods diffReps and es-
pecially THOR reported a significantly larger number of
differential peaks across the datasets compared to the two-
step methods. Largest number of differential peaks were
consistently detected in the IFN ATAC-seq by all meth-
ods, while especially the two-step methods showed only
very few differential peaks in the RA H3K36me3 ChIP-seq
dataset.

Next, we compared the overlap of the most significant
differential peaks between the methods across each of the
biological datasets, with focus on top 2000 peaks (Fig-

ure 2). Overlap between the methods was generally higher
in the two ATAC-seq datasets compared to the ChIP-seq
datasets where poor overall overlap was observed especially
in the H3K36me3 dataset. The two-step methods ROTS
and especially DiffBind and MAnorm2 showed a significant
overlap with each other across the four datasets (32–80%
in ATAC-seq datasets and 21–60% in ChIP-seq datasets).
Compared to two-step methods the one-step methods in
general showed lower overlap across the datasets (26–56%
in ATAC-seq datasets and <17% in ChIP-seq datasets).
Overall, the two-step methods correlated best with other
methods of the same type, while with one-step methods
the correlation pattern varied more across the datasets. For
complementarity, similar correlation plots were also made
available based on all significant differential peaks (FDR <
0.05) (Supplementary Figure S2).

Comparison of width and intensity of the differential peaks

In order to compare the shape of the peaks detected by the
different methods, we assessed the intensity and width of the
most significant differential peaks called by each method.
We used heatmaps, average read counts across the peak re-
gions and average peak widths to evaluate the 2000 most
significant differential peaks (Figure 3 and Supplementary
Figure S3). Additionally, we provide detailed visual exam-
ples of the detected differential peaks in the genomic context
(Figure 4 and Supplementary Figure S4).

In the ATAC-seq datasets, all methods detected peaks
with clear differences in read count values between the con-
ditions (Figure 3A and B), while the detected differences
were subtler in the histone modification ChIP-seq datasets
(Figure 3C and D), especially in the RA H3K36me3
dataset. The heatmaps across the datasets generally depict
that the top peaks of ROTS were most evenly distributed
to increased or decreased intensity changes whereas the top
peaks of diffReps and PePr included mostly unidirectional
changes (Figure 3).

In the ATAC-seq datasets, the two-step methods (ROTS,
DiffBind and MAnorm2) overall detected narrower peaks
than the one-step methods (THOR, PePr and diffReps) (P
< 2.2×10–16 for the top 2000 peaks) (Supplementary Fig-
ure S3). In the H3K36me3 dataset specifically PePr detected
exceptionally broad peaks. With THOR and diffReps many
of the detected peak regions in the ATAC-seq datasets con-
sisted of a segment with higher intensity in the middle sur-
rounded by much lower intensity segments on both sides,
and some regions showed a bimodal peak pattern where
two summits were observed on the two sides of the peak
center (Figure 3A and B). In the RA H3K36me3 ChIP-
seq dataset, ROTS, DiffBind and Manorm2 detected more
tightly defined peaks than PePr and THOR which detected
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A B

Figure 1. Performance on synthetic data. (A) The number of significant differential peaks detected by each method compared to the theoretical ideal. The
colors represent the different intensity categories from 100% intensity to 10% intensity, reflecting the differences between the sample groups. The gray color
denotes false positive peaks. Ideally, 1000 differential peaks are detected per intensity category. (B) The computing time and the memory consumption
across the methods.

A

C

B

D

Figure 2. Overlap of the top 2000 detected significant differential peaks across the methods and biological datasets. Proportion of detected peaks overlap-
ping between each pair of methods in (A) Yellow Fever ATAC-seq, (B) IFN ATAC-seq, (C) RA H3K4me3 ChIP-seq and (D) RA H3K36me3 ChIP-seq
dataset.
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A B C D

Figure 3. Width and enrichment intensity difference for the top 2000 differential peaks across the methods (rows) and datasets (columns). (A) Yellow fever
ATAC-seq, (B) IFN ATAC-seq, (C) RA H3K4me3 ChIP-seq and (D) RA H3K36me3 ChIP-seq dataset. Panels on the first row display the absolute mean
difference in read counts for the detected differential peaks with each method and dataset. The heatmaps display the difference in read counts and the
direction of the change for each individual differential peak. Signal over the biological replicates per condition were averaged and the figures display a
range of −2 kb and +2 kb from the center of the peak.
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A

B

C

Figure 4. Selected representative examples of detected differential peaks in the genomic context. (A) and (B) IFN ATAC-seq, and (C) RA H3K4me3
dataset. The top panels display the average read count over each biological condition and the bottom panels mark the detected differential peak regions
with each method.
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very broad peak domains with constant intensity and no
clear borders (Figure 3D).

Visual inspection of the example loci further illustrates
that results of diffReps, PePr and THOR, based on inbuilt
candidate peak identification, included many lower inten-
sity segments on both sides of the peak summit (Figure 4
and Supplementary Figure S4). THOR and diffReps espe-
cially reported many differential peaks that were typically
detected as two separate peaks with ROTS and DiffBind
(Figure 4B). In contrast, there were also examples of dif-
ferential peaks with contiguous intensity summits reported
as one differential peak by the two-step methods but sev-
eral sub-peaks by THOR. Curiously, we also found specific
cases where THOR did not report difference at the intensity
summit of the actual peak but instead called two separate
differential peaks on the two sides of the peak summit (Sup-
plementary Figure S4B). In general, the sliding-window-
based one-step methods (diffReps and PePr) tended to call
regions broader than the visually apparent enrichment in
reads (Figure 4 and Supplementary Figure S4), whereas
THOR showed examples of both apparently over-extended
calls (Figure 4A) and apparently accurate calls (Figure
4C). As expected, the two-step methods ROTS, DiffBind
and MAnorm2 focused on identical peak regions identified
based on the common set of initial candidate peaks from the
MACS2 peak caller, with the exception that in H3K4me3
data MAnorm2 detected much less significant differential
peaks compared to ROTS and DiffBind.

Evaluation of the differential peaks using their correlation to
gene transcription

In order to have experiment-specific external evaluation cri-
teria, we used the closest phenotypic data, the transcrip-
tomic data, available for each of the studied chromatin
datasets as conceived previously (23). The underlining as-
sumption with this approach is that both open chromatin
detected by ATAC-seq and activating histone modifica-
tion markers detected by ChIP-seq positively correlate with
transcription of the nearest gene (45–48). Thus, we calcu-
lated the correlation between the fold-changes in chromatin
states of the top significant peaks and the matching fold-
changes in transcription of the closest gene and used this
correlation as an approximation of the differential peak
calling performance.

Differential peaks detected by ROTS consistently had
a high overall correlation with differential transcription
across the four datasets while the behavior of the other
methods was more variable between the datasets (Figure
5A–D and Supplementary Figure S5A–D). Among the top
500 significant peaks, ROTS markedly showed the highest
correlation in YF ATAC-seq and H3K4me3 datasets (Fig-
ure 5A and C). The sliding-window-based one-step meth-
ods PePr and diffReps showed the lowest overall corre-
lation in other datasets, except in YF ATAC-seq (Figure
5A) where they had a high correlation close to that of
ROTS. The two-step methods DiffBind and MAnorm2 had
a similar performance with moderate correlations across the
datasets, exceeding ROTS in only the H3K36me3 dataset
(Figure 5D). THOR performed well with ChIP-seq data
(Figures 5C and D), especially with H3K4me3.

DISCUSSION

Accurate differential peak calling remains a challenge in the
study of chromatin and histone modification states despite
recent methodological advancements. ROTS is a computa-
tional tool that has been shown to work well in the sta-
tistical analysis of several types of high-throughput omics
data by bootstrapping over the data to improve the re-
producibility of the results and adapting the statistical test
according to the intrinsic properties of the data (44). In
this study, we applied ROTS for differential peak calling in
two types of chromatin data, ChIP-seq and ATAC-seq, and
compared it with five other widely used methods DiffBind
(20), MAnorm2 (29), DiffReps (19), PePr (18) and THOR
(17). Our results show that ROTS performed well both with
synthetic data and biological data [two ATAC-seq datasets,
two histone modification ChIP-seq datasets (H3K36me3
and H3K4me3)]. In the tested synthetic data, ROTS de-
tected a larger portion of true differential peaks than the
other methods, especially when the differences between the
sample groups were relatively small (Figure 1). With the bio-
logical datasets, the two-step methods ROTS, DiffBind and
MAnorm2 detected the enrichment boundaries more accu-
rately than the one-step methods (Figures 3 and 4), while
the differential chromatin states detected by ROTS showed
higher correlations than DiffBind and MAnorm2 with the
corresponding transcriptomic changes of the nearest genes
(Figure 5), indicating detection of potentially biologically
relevant differential chromatin states.

The differential peak detection software compared in
this study can be defined as one-step methods that in-
clude the peak calling step as part of the method, and
two-step methods that use a separate peak caller to pro-
duce the initial peaks for the differential analysis. By vi-
sual inspection of the mean signals (Figure 3) and exam-
ples of individual peaks (Figure 4) we observed that the
two-step methods ROTS, DiffBind and MAnorm2 (with
MACS2 called peaks) more accurately detected the appar-
ent most differential enrichment than the one-step meth-
ods, which often detected broader peaks than the actual
apparent read enrichments. The three one-step methods
(diffReps, PePr and THOR) showed globally lower agree-
ment between each other regarding the top significant peaks
which is likely partially due to the fundamentally different
underlying peak calling models, including HMM in THOR
(17) or sliding window-based approaches in diffReps and
PePr (18,19). We observed that the sliding window-based
one-step methods (diffReps and PePr) detected broader re-
gions than the visually inspected enrichment, which is con-
cordant with previous notations (15,16). However, also the
HMM-based THOR, allowing more flexibility in the se-
lected window size, tended to call broader differential peak
regions than visually evaluated enrichment boundaries in
ATAC-seq datasets (Figure 3). This suggests that also one-
step methods using HMMs can be sensitive to noise.

Based on our results, the two-steps methods relying on
MACS2 input peaks were more consistent in finding the
peaks with high-intensity enrichment in the middle of the
peak than the one-step methods considered in this study.
For instance, many of the THOR and diffReps (one-step
methods) ATAC-seq peak regions showed a pattern where
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Figure 5. Pearson correlation between differential peak fold-change and gene expression fold-change for each method across an increasing number of top
significant differential peaks in (A) Yellow Fever ATAC-seq, (B) IFN ATAC-seq, (C) RA H3K4me3 and (D) RA H3K36me3 dataset. The plot represents
the correlation values with cut-offs starting from 100 peaks with increments of 100 peaks.

the highest signal of the broadest peaks was not in the mid-
dle of the peak but on the two sides of the peak centre
(Figure 3), suggesting that a considerable proportion of the
peaks detected by these methods are a composite of two
summits. On the other hand, we also found examples of dif-
ferential peaks with contiguous intensity summits reported
as one differential peak by the two-step methods but as
two separate peaks by the one-step methods. Interestingly,
THOR also recovered cases of more complex patterns of
differential sub-peaks inside a differential peak region (Fig-
ure 4C), suggesting that THOR could be useful in sepa-
rating subpeaks reflecting, for example, sense versus anti-
sense transcripts or alternative transcripts (49–51). Overall
our findings extend the previous notion that MACS2 peak
caller accurately detects peaks (30) in the context of differ-

ential peak calling by showing that it tends to detect peak
borders more accurately compared to the peak calling steps
by the one-step methods.

Finally, we extended our comparison to correlations be-
tween the fold-changes in chromatin state signals and fold-
changes in transcription of the closest gene in each matched
dataset. We used this correlation as an approximation of dif-
ferential peak calling performance as previously conceived
(23). The limitation of this approach is that it informs on
the correlation to the most proximal phenotype (45–48), but
not directly on the accuracy of the calling on differential
chromatin states per se. However, we observed that ROTS
consistently appeared among the methods reporting highest
correlations across the datasets and especially in ATAC-seq
data the differential peaks detected by ROTS had stronger
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correlation with differential transcription compared to the
other methods (Figure 5). ROTS also showed higher cor-
relations across all datasets compared to the other two-
step methods DiffBind and MAnorm2 with the exception
of H3K36me3 dataset, suggesting its potential advantage
over DiffBind and MAnorm2 to detect functionally rele-
vant changes. Of the one-step methods THOR displayed
stronger correlations than diffReps and PePr. The low cor-
relations shown especially by diffReps were consistent with
the observation that the method detected too broad chro-
matin regions, likely making the fold-change values impre-
cise. Overall, our analysis suggests that the more accurate
detection of peak borders by the two-step methods (with
MACS2) was linked to a stronger correlation of the de-
tected differential peaks with differential gene expression
levels.

In summary, our study provides evidence that ROTS is a
useful addition to the available ChIP-seq differential chro-
matin modification analysis methods and shows its poten-
tial in improving the analysis of differential chromatin states
in ATAC-seq data over the currently widely used methods.
Moreover, to our knowledge this study is the first compari-
son that simultaneously tested the differential peak detec-
tion methods using both ChIP-seq and ATAC-seq data,
serving as a useful reference for the research community in-
creasingly inclined to use ATAC-seq for its ease of use and
applicability. The results described here are also of relevance
in the analysis of single cell ATAC-seq (scATAC-seq) data
where cell type or condition specific clusters may be pooled
and analyzed in a similar manner as the bulk ATAC-seq
data.

DATA AVAILABILITY

ROTS (1.16.0) is a Bioconductor R package for differential
testing in omics data (https://bioconductor.org/packages/
release/bioc/html/ROTS.html).

THOR is part of the regulatory genomic toolbox
(0.11.4) software for differential peak calling (https://www.
regulatory-genomics.org/rgt/download-installation/)

diffReps (1.55.6) is a software for differential peak calling
(https://github.com/shenlab-sinai/diffreps)

PePr (1.1.10) is a software for differential peak calling
(https://github.com/shawnzhangyx/PePr)

DiffBind (3.0.15) is a software for differential peak
calling (https://bioconductor.org/packages/release/bioc/
html/DiffBind.html)

MAnorm2 (1.0.0) is a software for differential peak call-
ing (https://github.com/tushiqi/MAnorm2)

The code used to produce the figures in this study
and to perform the differential peak calling with the
different methods is available at: https://github/elolab/
Faux et al NARGAB2021

The ATAC-seq Yellow-Fever dataset is available on the
GEO accession number GSE101609; updated 15 May
2019.

The ATAC-seq IFN dataset is available on the GEO ac-
cession number GSE100383; updated 15 May 2019.

The ChIP-seq RA dataset for H3K4me3 and H3K36me3
is available on the GEO accession number GSE112655; up-
dated 19 March 2019.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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