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ABSTRACT: Neuromorphic computing is an emerging area with Weight

prospects to break the energy efficiency bottleneck of artificial Pre-synaptic
intelligence (AI). A crucial challenge for neuromorphic computing et
is understanding the working principles of artificial synaptic
devices. As an emerging class of synaptic devices, organic
electrochemical transistors (OECTs) have attracted significant
interest due to ultralow voltage operation, analog conductance
tuning, mechanical flexibility, and biocompatibility. However, little
work has been focused on the first-principal modeling of the
synaptic behaviors of OECTs. The simulation of OECT synaptic behaviors is of great importance to understanding the OECT
working principles as neuromorphic devices and optimizing ultralow power consumption neuromorphic computing devices. Here,
we develop a two-dimensional transient drift—diffusion model based on modified Shockley equations for poly(3,4-
ethylenedioxythiophene) (PEDOT)-based OECTs. We reproduced the typical transistor characteristics of these OECTs including
the unique non-monotonic transconductance—gate bias curve and frequency dependency of transconductance. Furthermore, typical
synaptic phenomena, such as excitatory/inhibitory postsynaptic current (EPSC/IPSC), paired-pulse facilitation/depression (PPF/
PPD), and short-term plasticity (STP), are also demonstrated. This work is crucial in guiding the experimental exploration of
neuromorphic computing devices and has the potential to serve as a platform for future OECT device simulation based on a wide
range of semiconducting materials.

H INTRODUCTION tures,'”~** three-dimensional (3D) architectures,”> > tran-
sition-metal oxide,”° ferroelectric materials,>”*® alloy,29 mixed
structure,”*™** and organic materials.*>** Among the artificial
synaptic devices, synapses based on organic electrochemical
transistors (OECTs, Figure 1A—C) have emerged as attractive
alternatives to inorganic counterparts owing to their fast
response speed,”> high transconductance,® less stochastic
writing,” continuous conductance tuning,”” and low driving
voltage comparable to biological synapses.”® A schematic
representation of an OECT synapse is shown in Figure 1D.
The phosphate-buffered saline (PBS) electrolyte together with
a gold gate electrode of an OECT transmits a presynaptic
signal, while the PEDOT: polystyrene sulfonate (PSS) channel
together with the source and drain electrodes transmits a
postsynaptic output signal in the form of source—drain current
(I4)- The experimental work has demonstrated that OECTs
have synaptic functionalities like spike-timing-dependent

The rapidly developing artificial intelligence (AI) is pushing
the traditional von Neumann computational architecture to its
energy efficiency limit." In the von Neumann architecture, the
dynamic random access memory (DRAM) and the processing
units are separated physically, resulting in immense energy
consumption associated with data movement.”” On the
contrary, in human brains, massive information can be
processed in parallel in memory at an extremely fast speed
with a super low power consumption of merely 1-100 f] per
synapse.” Inspired by human brains, the emerging neuro-
morphic computing has attracted massive research interest. A
key component for neuromorphic computing and artificial
neural networks is artificial synapses.” Emulating biological
synapses, an artificial synapse responds to stimuli of action
potential spikes with programmed postsynaptic current by
modulating the device conductance.” Recently, different
synaptic functions such as short-term plasticity (STP),” long-
term potentiation,”' and spike-timing-dependent plasticity
(STDP)'' have been achieved by organic and inorganic
artificial synaptic devices. Massive research effort are put into
the materials selection for synaptic transistors, including zero-
dimensional (0D) quantum dots,'”~"* one-dimensional (1D)
nanostructure,ls_18 two-dimensional (2D) nanostruc-
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Figure 1. Device apparatuses and phase separation. (A) Sketch of an electrolyte-gated PEDOT:PSS OECT. Adapted from ref 19. (B) 2D overview
of the synaptic OECT. The essential components are a PEDOT:PSS channel with gold source and drain contact, an electrolyte, and an Ag/AgCl
gate electrode. (C) Schematic demonstration of phase separation in PEDOT:PSS. The blue part stands for the PEDOT phase, while the gray parts
stand for the PSS phase. When V.. = 0, PEDOT:PSS is doped, I;, > 0, when Vi, > 0, OECT is in depletion mode, PEDOT:PSS is de-doped,
carrier density in the polymer film decreases, Iy, = 0. The polarons in the PEDOT phase are stabilized by immobilized counterions in the PSS
phase. (D) Schematic representation of the synaptic OECT in analogy to a biological synapse.

plasticity and homeostatic plasticity.””*" However, theoretical

understanding of the working principles of OECT-type
artificial synapses is still in its very early stage.

Theoretical modeling of OECT synaptic performances is
crucial since it does not only allow us to understand the
working principles of OECT as neuromorphic devices but also
guides future experiments. In an OECT (Figure 1A), an
applied potential on the gate drives ions from the electrolyte
into the polymer channel, changing its redox state and
conductivity as a result. Typically, there are two types of
device modes for OECTs: the depletion mode and the
accumulation mode.”' In the depletion mode, the channel
material is fully oxidized (heavily p-doped) such as
PEDOT:PSS (the case illustrated in Figure 1A,B). When a
positive gate potential is applied, cations are injected from the
electrolyte into the channel; as a result, the holes in the
channel are depleted and the conductance of the channel is
dropped (Figure 1C). In the accumulation mode, the channel
materials are usually nearly intrinsic semiconducting polymers
with a very small number of mobile holes. When a negative
gate potential is applied, anions are injected into the channel
and electrochemical doping is induced. Therefore, the channel
conductance increases. The change in channel conductance is
typically transient or volatile in OECTSs, meaning that the
conductance returns to its initial value after the applied gate
voltage is removed. The volatile conductance tuning is
essential for short-term synaptic behaviors in OECT-based
artificial synapses. The short-term synaptic behaviors are
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essential for critical computational functions such as signal
transmission, encoding, and filtering of neuronal signals.3’
Modeling the synaptic behaviors of OECT-based artificial
synapses has been a crucial yet long existing challenge for the
field of neuromorphic computing. The fundamental equations
used to describe the charge-carrier and ion transport process in
OECTs include the Poisson equation, the drift—diffusion
equation for electronic charge-carrier transport, and the drift—
diffusion equation for ion transport. These equations are
analogous to the well-known Shockley equations*” for
modeling electron and hole transport in semiconductor devices
such as p—n junction diodes and metal-oxide semiconductor
field-effect transistors (MOSFETs). Efforts have been put into
modifying and solving the Shockley equations, which would
provide physical insight into the system. Shirinskaya et al.
described the doping—de-doping interface as the moving front,
based on which a numerical model for the current—voltage
characteristics of OECTs was developed.” Tybrandt et al.
proposed a time-dependent approach based on the drift—
diffusion—Poisson equation and phase separation. Their model
successfully describes the experimental data. The model
though is limited to one-dimensional (1D) across channel
and electrolyte and does not reflect neuromorphic behavior.
The frequency dependency of transconductance and the
unique bell-shaped transconductance—gate bias curve are
also not reproduced by their model.”* The experimental and
modeling results of Volkov et al. provide a solid argument that
the major contribution to the capacitance of the two-phase

https://doi.org/10.1021/acsomega.1c06864
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PEDOT:PSS originates from electric double layers (EDLs)
formed along the interfaces between the PEDOT-rich region
and the PSS-rich region.45 However, limited work has been
done on modeling the artificial synaptic behaviors of OECTs.
The key challenge of this task is that there is still a lack of 2D
dynamic models of the cross section of OECT describing the
complex electrochemical processes in OECT synaptic tuning,
which provides a deeper perspective on the working principles
of OECTs. At the same time, understanding the electronic
structure of semiconducting polymers is also essential for
modeling key synaptic behaviors of OECTs.

To address this key challenge, we adopted the concept of
PEDOT and PSS phase separation and built a 2D transient
model for the prototype depletion-mode OECT and
demonstrated OECT transistor characteristics and synaptic
behaviors with a modified Shockley equation model for the
first time. Typical OECT transistor behaviors such as transfer
characteristics, output characteristics, and a small signal
transconductance are reproduced. In addition, the bell-shaped
transconductance—gate bias curve is reproduced by assuming a
Gaussian-shaped density of states (DOS) in the organic
semiconductor.***® The frequency dependency of trans-
conductance is also studied using our 2D dynamic model,
demonstrating the physical validity of our model.*’~*
Moreover, synaptic behaviors, such as excitatory/inhibitory
postsynaptic current (EPSC/IPSC), paired-pulse facilitation/
depression (PPF/PPD), short-term plasticity (STP), spike-
amplitude-dependent plasticity (SADP), spike-duration-de-
pendent plasticity (SDDP), are achieved. This work lays the
foundations for the simulation of large-scale programmable
and functional neuromorphic arrays for energy-efficient
computing. In addition, this work will provide a modular
platform for the design of novel OECT synaptic devices.

B RESULTS AND DISCUSSION

Model Description. In the Bernards model,” the OECTs
are considered as consisting of two circuits: the ionic circuit,
where ions are transported in the polyelectrolyte blends, and
the electronic circuit, where holes are transported on the
conjugated polymer backbone. Based on this idea, Tybrandt et
al.*" treated these two phases distinctively in a classic
PEDOT:PSS system: the electronic conjugated polymer
(PEDOT, CP) phase and the ionic polyelectrolyte (PSS, PE)
phase (Figure 1C). Typical OECT characteristics such as
transfer characteristics and output characteristics, along with
charging characteristics, are reproduced by considering the
drift—diffusion for both electronic and ionic carriers and the
effect of EDL capacitance between these two phases in a 1D
model. Recently, Paulsen et al.’' brought up the concept of
organic mixed ionic—electronic conductors (OMIEC) for an
efficient description of not only ionic and electronic transport
but more importantly ionic—electronic coupling. PEDOT:PSS,
as the OMIEC, and OECTs, as a typical configuration of
OMIEC devices, allows the adaption of the OMIEC concept in
our model.

In our work, we extended the prototypical model based on
the Shockley equations to two dimensions with a focus on
transient behaviors. PEDOT:PSS is a classic two-component
OMIEC with anions chemically linked to the PSS component.
The electronic transport mechanism in the PEDOT phase
should contain both thermally activated hopping and band-like
transport, depending on its crystallinity.”> In our model, it is
described by a classical drift—diffusion equation modified by

electrochemical potential with the unit of energy (,Ltp) (eq 1),
where p is the hole concentration, D, is the diffusion
coeflicient of holes in PEDOT, and f is F/RT, which is the
ratio between Faraday’s constant and RT according to the

Einstein relation, and }; is the flux of holes. By assuming

Gaussian density of states (DOS), the chemical potential can
be modified as eq 2, where Epqg is the center energy of the
Gaussian DOS, o is the standard deviation of the DOS and is a
measure of the energetic disorder, p, is the total available hole
density, and B is defined as eq 3.

Jy, = —D(Tp + V(Y + /o) W
W, = kyT In(p) + ¢B @)

2
o
B = |Epoc——— — kpT1 /
pos 2kyT nTin(g)/e (3)

Similarly, the ionic transport in the PE phase follows a hopping
mechanism, which is described by the classic drift—diffusion

=
equation (eq 4), where j. is the flux of cations and anions,

respectively. ¢, is the concentration of cations and anions,
respectively. Because of phase separation, the electrostatic
potential in these two phases is distinctly labeled as V), for the
CP phase and V_ for the PE phase.

- - -

jc+ = _D:i(vci ifciv‘/c) (4)
At the interface between phase separating regions, the spatial
separation between the electronic and ionic charge carriers
causes the formation of EDLs. This process exists throughout
the system, which enables us to consider this process as a
volumetric property when viewed from a macroscopic level.
This volumetric capacitance of EDL is labeled as Ci.
Continuity equations (eqs S and 6) and Poisson’s equation
(eq 7) are implemented to relate charge-carrier concentration
to flux densities. It is assumed that holes that compensate for
negative ionic charges in EDL do not contribute to Poisson’s
equation (eq 8).

V]_': +0c, /ot =0 ©)
—e%zVC/F =p+oc —c_— Ch (7)
—eVV,/E=p — (V,=V)Cy (8)

Boundary conditions are adapted from Tybrandts’ model
considering the continuity of Fermi level and charge neutrality
at the PEDOT—electrode interface. Full sets of the drift—
diffusion equations and boundary conditions are shown in
Figure SI1. The presence of net ionic charge in the PE phase
leads to the presence of electronic charge in an OMIEC of the
opposite sign. The balancing process of excess ionic charge
with electronic charge is called electrochemical doping as it
causes an increase in the electrical conductivity in the OMIEC.
In PEDOT:PSS, stabilizing ionic charge is immobilized in the
PE phase, thus it is inherently doped.

Transistor Characteristics. Unless specified otherwise, the
parameters used in all of the calculations are shown in Table

https://doi.org/10.1021/acsomega.1c06864
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Figure 2. Simulation results of transistor characteristics. (A) Output characteristics of Viate vary from —0.5 V (top curve) to 0.3 V (bottom curve).
(B) Transfer characteristics and the associated transconductance for Vg, = —0.5 V. (C) Steady-state transconductance. (D) Frequency response

of the transconductance.

S1. One can refer to Figure S3 for the dimensions and mesh in
the simulations for a single transistor with channel length L =
200 um and channel thickness W = 10 ym. The current density
is obtained by integrating all charge-carrier species flux
throughout the channel on the cross-sectional area. Similarly,
the current density in the electrolyte (I,) can also be calculated
by integrating ionic carriers throughout the cross-sectional area
in the electrolyte.

As shown in Figure 2, typical transistor characteristics of
OECTs are qualitatively reproduced.”® The output character-
istics in Figure 2A are qualitatively in good agreement with
typical PEDOT:PSS-based OECTs, where Iy initially increases
as Vin decreases and then reaches a plateau. Higher Vi,
requires less negative Vg, to reach a plateau and results in a
lower drain current. The transfer characteristics and the
associated transconductance (g,) in Figure 2B also align with
the typical PEDOT:PSS-based OECTs."” Iy reaches a
maximum plateau as Vg, decreases and a minimum plateau
as Vg, increases. The transconductance has a non-monotonic
dependence on gate voltage,”>** which is a unique character-
istic for OECTs and agrees with the convex-shaped trans-
conductance curve in Figure 2B,C. The non-monotonic
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transconductance is an intrinsic property of OECTSs. This
happens because of the behavior of holes filling the DOS in
PEDOT as the gate voltage gets lower, assuming a Gaussian
DOS. When the DOS is much less than half-full, both hole
concentration and hole mobility increase with increasing holes,
thus transconductance increases as gate voltage becomes more
negative. When the DOS is nearly half-full, the rate of increase
of hole concentration and hole mobility slows with increasing
holes. As a result, transconductance decreases with a more
negative gate voltage. When DOS is more than half-full, adding
holes leads to a decrease in hole mobility, resulting in a
negative transconductance.”’

The frequency response in Figure 2D is obtained by
measuring the small signal transconductance. A 100 mV
oscillation is applied on the gate electrode and the trans-
conductance is determined by the amplitude ratio between
output Iy oscillation and the corresponding gate bias. This
behavior is in agreement with the fact that typical OECTs have
higher transconductances, in the range of millisiemens, and can
only operate at lower frequencies compared to organic field-
effect transistors (OFETs)."!
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Figure 3. Simulation results of typical OECT synaptic behaviors. (A) EPSC triggered by a postsynaptic pulse (V. = 0.5V, Vo =0V, t5 = 2 ms,

Virain = —0.3 V). (B) IPSC triggered by a presynaptic pulse (Vpre =0V,
presynaptic pulses (V. = 0.5V, Vi = 0V, £y = 2 ms, At = 2 ms). (D) PPD triggered by a pair of presynaptic pulses (V. =0V, V,

V,

post

=0.5V, ty =2 ms, Vg, = —0.3 V). (C) PPF triggered by a pair of
=05V, t,=

post

2 ms, At = 2 ms). (E) EPSC respond to a train of 1 kHz presynaptic pulses (Vpre =0V, V,ou = —0.5 V). (F) IPSC respond to a train of 1 kHz

p

presynaptic pulses (V,,. = 0V, Vo = 0.5 V). (G) PPD and PPF ratio (4,/A,) as a function of spike interval time (At).

Synaptic Behavior. Synapses are the connections between
the neuron circuits that dominate the architecture of animal
brains. Each neuron has over 1000 synapse connections with
other neurons. Artificial synapse devices with similar physical
properties, such as OECTs, would enable board applications to
neuromorphic computing.> Modeling of OECT synaptic
behaviors is a crucial step toward an improved perspective
on synaptic behaviors. The phosphate-buffered saline (PBS)
electrolyte with an Au electrode receives a presynaptic input
signal (in the form of gate voltage) and passes the signal to the
channel. The PEDOT:PSS channel responds to the pre-
synaptic signal and transmits a postsynaptic output signal in
the form of a source—drain current (I;,). For our simulation,
the amplitude of the presynaptic spike is set to be 0.5 V. V. =
0, 0.5 V are chosen as input baselines. The choice of these two
conditions ensures intense initial doped and de-doped states of
polymer, respectively, which leads to better comparison.

When a positive voltage V. with a duration t, is applied at
the gate electrode, cations in PBS electrolyte (mostly Na*) are
driven to penetrate into the PEDOT:PSS channel and de-dope
PEDOT from PSS, therefore lowering the conductance of the
channel. In Figure 3B, upon the application of a single positive
presynaptic spike with an amplitude of 0.5 V and a duration of
2 ms, the postsynaptic current (PSC) decreases immediately
by around 1/3. Because of the positive spike applied, cations in
the electrolyte are driven into the polymer channel and
compensate for holes in hole/PSS pairs. As a result, originally
positively charged PEDOT is reduced, and the channel
conductance decreases. This is analogous to IPSC in biological
inhibitory synapses. After the removal of the spike, injected
cations return to the electrolyte, PEDOT:PSS gets reversibly
doped, and PSC gradually recovers to its original state.

In contrast, when a negative presynaptic spike with the same
amplitude and duration is applied, PSC is boosted due to
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cations extracted from polymer while also recovering a little
after. This process reproduces EPSC in biological neurons
(Figure 3A). Temporally correlated behaviors between
presynapse and postsynapse are important as it contains
short-term memristive behavior. The process of synaptic
facilitation and depression both occur and decay within a
short period of time after being simulated. A Spaired-pulse study
is used to analyze the temporal correlation.”® A pair of pulses
with identical amplitude and duration is applied successively
with a certain time interval as a presynaptic signal. The
resulting postsynaptic current is recorded simultaneously as a
function of time. A typical time interval of 2 ms is used to
reproduce paired-pulse facilitation (PPF) and paired-pulse
depression (PPD). PPF and PPD are forms of short-term
synaptic plasticity and are reported to be essential for decoding
temporal information in biological systems. Such behaviors can
be mimicked by synaptic transistors and thus our simulation."'
When a pair of negative pulses is applied, since the time
interval is short, ions are not completely transported and
PEDOT is still relatively highly doped, which results in a
stronger second current compared to the first one as in Figure
3C. The second postsynaptic current is facilitated, which
means the maximum drain current difference A (Figure S4) of
the second postsynaptic current (A,) is greater than that of the
first pulse (A,/A; > 1). This behavior is analogous to PPF in
biological synapses. On the contrary, with a pair of positive
pulses applied, the second postsynaptic current is depressed
(A,/A; < 1) as PPD in biological synapses.”’

The ratio of A,/A, represents the information processing
ability of the synapse.”® Figure 3G shows the PPD and PPF
ratio as a function of spike interval time (At). With a longer
At, the injected ions have more time to return to the
electrolyte and the PPD/PPF values increase/decrease
exponentially to approach the value of 1 with a critical value
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around 40 ms. For At longer than the critical value, ions have
sufficient time to return and the channel recovers to its original
state after the first pulse. The information between spikes is
lost and the synaptic OECT runs in the information
nonprocessing mode.

The temporal correlation effect was further validated by
synaptic facilitation (Figure 3E) and depression (Figure 3F).>®
Both results are produced by applying a 1 kHz train of pulses
of an amplitude of 0.5 V. The spike-amplitude-dependent
plasticity (SADP) is also a typical postsynaptic behavior of the
STP effect. As presented in Figure S6, the value difference
between baseline and result PSC (APSC) for IPSC decreases
with V. in a significant linear manner. However, for EPSC,
APSC decreases with V.. nonlinearly while approaching zero,
as one can predict with increasing gate voltage. The behavior
agrees well with previous experimental results. Postsynaptic
behavior is further demonstrated by the spike-duration-
dependent plasticity (SDDP) (Figure S5); APSC decreases
in the IPSC mode but increases in the EPSC mode, both
synchronously with duration time #;. It can be explained by the
fact that more cations are injected/extracted in/from the
polymer for a longer duration of time of the applied gate
voltage. At a certain point when cations can no longer keep
injecting/extracting, the system saturates, which leads to the
plateau at ~15 ms for IPSC and ~28 ms for EPSC.

B CONCLUSIONS

We present a robust simulation platform for 2D time-
dependent PEDOT:PSS-based OECTs. Applying the concept
of phase separation in the semiconductor material and ion
injection physics, we are able to reproduce lots of experimental
ion transport and charging data of OECTs. Moreover, we
demonstrate different typical synaptic phenomena of OECTs
under both inhibitory and excitatory modes. Our model is very
effective for the simulation of synaptic behaviors of OECTs. At
the same time, our platform enables the simulation of tailored
OECTs with a fast response speed, high transconductance, and
low power consumption, opening a new paradigm for energy-
efficient neuromorphic computing platforms. High tunability
and applicability to a wide range of semiconductor materials
make our platform crucial for developing future organic-based
neuromorphic devices.

B MATERIALS AND METHODS

Finite-element calculations were carried out with the
COMSOL Multiphysics S.5 software on a standard laptop.
Steady-state simulation results were used as input values for
time-dependent simulations.
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