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Interactions of Boron Clusters 
and their Derivatives with Serum 
Albumin
Tomasz M. Goszczyński   1, Krzysztof Fink1, Konrad Kowalski1, Zbigniew J. Leśnikowski2 & 
Janusz Boratyński1

Boron clusters are polyhedral boron hydrides with unique properties, and they are becoming 
increasingly widely used in biology and medicine, including for boron neutron capture therapy (BNCT) of 
cancers and in the design of novel bioactive molecules and potential drugs. Among boron cluster types, 
icosahedral boranes, carboranes, and metallacarboranes are particularly interesting, and there is a need 
for basic studies on their interaction with biologically important molecules, such as proteins. Herein, we 
report studies on the interaction of selected boron clusters and their derivatives with serum albumin, 
the most abundant protein in mammalian blood. The interaction of boron clusters with albumin 
was examined by fluorescence quenching, circular dichroism, dynamic and static light scattering 
measurements and MALDI-TOF mass spectrometry. Our results showed that metallacarboranes have 
the strongest interaction with albumin among the tested clusters. The observed strength of boron 
cluster interactions with albumin decreases in order: metallacarboranes [M(C2B9H11)2]− > carboranes 
(C2B10H12) >> dodecaborate anion [B12H12]2−. Metallacarboranes first specifically interact with the 
binding cavity of albumin and then, with increasing compound concentrations, interact non-specifically 
with the protein surface. These findings can be of importance and are useful in the development of new 
bioactive compounds that contain boron clusters.

There is a growing interest among researchers and in the pharmaceutical industry in the use of boron as a com-
ponent of bioactive molecules. An important class of boron compounds is polyhedral boron hydrides (boron 
clusters), which have a non-planar, cage-like structure. Boron clusters are man-made molecules with remarkable 
properties, such as chemical, biological and thermal stability; low toxicity; high (depending on the structure) 
hydrophilicity, hydrophobicity or amphiphilicity; three-dimensional delocalization of cluster electrons; high 
skeleton rigidity; and the ability to form dihydrogen σ-hole bonding1–3. Boron clusters have been introduced to 
molecules with diverse biological activity, where they serve as pharmacophores or modulators of the physico-
chemical and biological properties of the mother compounds4. Furthermore, they can be used as physiologically 
inert boron carriers in boron neutron capture therapy (BNCT) and diagnostics5–7. The boron clusters that are the 
most commonly used in medicinal chemistry are as follows: negatively charged 3-cobalt-bis(1,2-dicarbollide)
ate [Co(C2B9H11)2

−], neutral dicarba-closo-dodecaboranes (C2B10H12), and double charged dodecaborate 
([B12H12]2−)4.

Metallacarborane clusters are built from two dicarbollide subclusters that sandwich a central metal atom. The 
best known example of this group of compounds, cobalt bisdicarbollide, [3,3′-Co(1,2-C2B9H11)2]−, [CoD]−, is 
a boron-based anion consisting of a central cobalt atom placed between two carboranyl clusters8. [CoD]−, as a 
result of its dispersed net negative charge and hydrophobic surface, possesses amphiphilic characteristics and is 
soluble in both water and organic solvents. In addition, its weakly polarized B-H and C-H bonds9 are responsi-
ble for the intermolecular interactions of [CoD]−, which lead to aggregation and micelle formation in aqueous 
solutions10–12. It has been reported that [CoD]− behaves similarly to anionic surfactants in aqueous solutions13 
and can form well organized, fairly monodisperse structures10. Studies performed by Rak et al., designed to iden-
tify agents that would stabilize [CoD]− in water, found that human serum albumin (HSA) is one of the best 
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excipients14. NMR studies showed the formation of complexes with high stoichiometry caused by nonspecific 
binding of the metallacarborane on surface of HSA15. The interaction between [CoD]− and HSA is mainly driven 
by hydrophobic forces because the strength of this interaction is correlated with the lipophilicity (log POW) of 
the metallacarborane derivatives16. [CoD]− also binds to the hydrophobic pocket of HIV protease and acts as a 
potent, specific and selective inhibitor of that enzyme17, 18.

The dicarba-closo-dodecaboranes (carboranes) are hydrophobic, icosahedral carbon-containing boron 
clusters with an approximate volume occupied by carbaboranes about 40% larger than that of rotating benzene 
ring. They exist in the following three isomeric forms: closo-1,2-C2B10H12 (ortho-carborane), closo-1,7-C2B10H12 
(meta-carborane) and closo-1,12-C2B10H12 (para-carborane). Carboranes introduced into the structures of 
bioactive compounds usually replace hydrophobic components, such as a phenyl ring or adamantane, and 
enhance hydrophobic interactions with the receptors of those compounds19, 20. Furthermore, biomolecules 
modified with boron clusters are often more resistant to degradation, increasing the stability and bioavailabil-
ity of bioactive molecules21. Due to these advantages, carboranes have been used as pharmacophores in non-
steroidal anti-inflammatory drugs22; anti-folates23; carbonic anhydrase inhibitors24; thrombin inhibitors25; 
hypoxia-inducible factor (HIF) inhibitors20, 26; purinergic receptor ligands27–29; analogues of a local anesthetic, 
lidocaine30; antiviral drugs31, 32 and other bioactive molecules.

Dodecaborate is an icosahedral, dianionic, highly water soluble boron cluster. Although hydrophilic, dode-
caborate forms strong inclusion complexes with γ-cyclodextrin33. The interaction with the hydrophobic cavity of 
cyclodextrin is driven by a chaotropic effect and not by hydrophobic forces. Derivatives of dodecaborate inter-
act with lipid membranes34. Due to its high boron content, dodecaborate is commonly used as a boron carrier 
for BNCT.10B-sodium-mercaptoundecahydrododecaborate (BSH)35 and 10B-L-borophenylalanine36 are used as 
boron carriers in BNCT35.

Almost every drug, theranostic or diagnostic agent interacts with albumin, the most abundant protein in 
mammalian blood. Serum albumin (SA) possesses binding ability for a broad spectrum of compounds, either 
endogenous and exogenous, due to the numerous binding regions and diverse specificity37. Bovine serum albu-
min (BSA) has three primary binding sites for long-chain fatty acids (one site in domain I and two sites in domain 
III) and two secondary sites38–40. With respect to exogenous compounds, BSA has two high affinity binding sites 
for drugs, known as the Sudlow’s sites I and II, which are located in domains II and III41. Binding with serum pro-
teins influences the pharmacokinetics and pharmacodynamics of these compounds42, 43. Hence, investigation of 
the binding affinity of boron clusters to SA may provide useful information for designing novel boron-containing, 
biologically active molecules.

To the best of our knowledge, except for the use of HSA as a solubilizing agent for metallacarboranes14, 15, there 
are no studies describing the interactions of boron clusters (and molecules containing these compounds) with 
serum proteins. The aim of this research is to address this gap and to characterize interactions between bovine 
serum albumin and various boron clusters. Boron clusters of three different types were selected for the study due 
to differences in their physicochemical properties and applications in medicinal chemistry.

Herein, the interactions of boron clusters and hybrid organic-boron cluster conjugates with BSA were inves-
tigated with fluorescence, absorption and circular dichroism spectroscopy as well as dynamic and static light 
scattering and mass spectrometry techniques. The pattern of the interactions with BSA and an effect of the boron 
clusters type on binding to the BSA molecule were established.

Results and Discussion
Fluorescence quenching mechanism.  BSA, because of its structural homology to human serum albumin 
(HSA), is often used to study interactions with drugs37. No major differences between HSA and BSA have been 
observed in terms of the binding constant or binding mode44, 45. The intrinsic fluorescence of BSA comes from 
tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) residues. However, the Trp residue has the strongest 
fluorescence intensity and is the most sensitive to changes in the microenvironment; therefore, it is indicative of 
the protein conformational alterations with binding. BSA has two Trp residues (Trp134 and Trp212), which are 
located within hydrophobic pockets in the first and second domains of BSA molecule46. Upon binding of a ligand 
in these pockets, the Trp environment changes, quenching the fluorescence.

In the first step, we measured the fluorescence intensity of BSA in the presence of boron clusters of three 
different types, metallacarborane (1); para-carborane derivative (7) and dodecaborate (11) (Fig. 1). The BSA: 
boron clusters molar ratio was 1 : 1. The parameter degree of quenching was calculated (Table S1). Based on 
these results, we decided to perform further measurements of the fluorescence intensity of BSA in the presence of 
metallacarboranes (compounds 1 to 6) with a maximum BSA : boron cluster molar ratio of 1 : 1 and to increase 
the ratio of the other boron clusters (7 to 11) to 1 : 10 (Fig. 2, Fig. S1).

The fluorescence quenching mechanism can be divided into the following two mechanisms: dynamic quench-
ing, caused by collisional encounters of fluorophores and quenchers, or static quenching, caused by ground-state 
complex formation between fluorophores and quenchers47. Dynamic and static quenching can be distinguished 
by their dependence on temperature and excited-state lifetime. If the value of the quenching constant (KSV) 
decreases with the increasing temperature, the mechanism is usually static because the higher temperature is 
likely to decrease the stability of the complex. If KSV increases with increasing temperature, the mechanism is 
likely dynamic because the higher temperature results in a larger diffusion coefficient and promotes electron 
transfer. The quenching constant (KSV) was calculated using the Stern-Volmer equation (1)47:
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where F0 and F are the steady-state fluorescence intensities in the absence and presence of quencher, respectively, 
and [Q] denotes the initial concentration of quencher. kq is the quenching rate constant of BSA and τ0 is the 
fluorescence lifetime of BSA in the excited state without any quencher, and its value is 6×10−9 s48. KSV can be 
calculated from the slope of the Stern-Volmer equation (Fig. S2).

To determine the mechanism of fluorescence quenching in the case of boron clusters and BSA, the measure-
ments of fluorescence quenching were performed at three temperatures (25, 31 and 37 °C). We observed differ-
ences among different types of boron clusters. Hydrophobic metallacarboranes (1 to 6) were characterized by 
the highest value of KSV on the order of 104 to 105 (Table S2). For doubly negatively charged dodecaborate 11, the 
fluorescence quenching was not observed. For neutral para-carborane derivatives (7 to 9), nonlinear dependence 
of quencher concentration and fluorescence quenching were observed, except for the conjugate of carborane and 
adenosine, where the correlation was linear. Therefore, the KSV value could not be calculated for the last two boron 

Figure 1.  Structures of boron clusters and their derivatives.

http://S2
http://S2


www.nature.com/scientificreports/

4SCIEntIfIC REPOrTS | 7: 9800  | DOI:10.1038/s41598-017-10314-0

cluster types. For metallacarboranes (1 to 6), we observed an increase of the KSV value with increasing tempera-
ture, which indicates a dynamic mechanism of quenching. However, the values of the quenching rate constants 
(kq) are 2- to 3-fold higher than the maximum scatter collision quenching constant for various quenchers with 
biopolymers (1010 L mol−1 s−1)49, suggesting that static quenching also occurs.

Binding constant and binding modes.  For the boron cluster – BSA interaction, the binding constant (Kb) 
and number of binding sites (n) of the complexes can be calculated by the equation (2), under assumption that 
BSA has independent binding sites47.

−
= +

F F
F

K n Qlog log log[ ] (2)b
0

The Kb and n values can be calculated by the intercept and slope of the regression curve (Fig. S3). The esti-
mated Kb values were on the order of 105 M−1 (Table S3) for metallacarboranes (1 to 6), which is similar to the 
values of the binding constant for small organic drugs that have a strong binding force with BSA, such as aspirin41. 
The values of n were approximately equal to 1 in the studied temperature range, indicating the existence of a single 
binding site of boron clusters on BSA.

In the binding process for drugs with proteins, several binding forces can be engaged, including hydrogen 
bonding interaction, van der Waals forces, electrostatic interaction and hydrophobic interaction. The distinction 
between those forces can be made based on the signs and magnitudes of the thermodynamic parameters, such 
as the Gibbs free energy change (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0). The thermodynamic 
parameters can be calculated by the equations (3) and (4).

∆ ∆
= − +K H
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S

R
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∆ = −G RT KIn (4)b
0

where R is the gas constant and Kb is the binding constant at corresponding temperatures (Fig. S4). Based on the 
thermodynamic view point50, the following three possible scenarios can be envisioned: (I) positive values of both 
ΔH0 and ΔS0 for the hydrophobic interaction, (II) negative values of both ΔH0 and ΔS0 for the van der Waals 

Figure 2.  Fluorescence emission spectra of BSA (10.5 μM) in the presence of: [CoD]− – 1 (A), 4 (B), 7 (C) and 
10 (D) in 0.10 M sodium bicarbonate (pH 8.4) with 2% DMSO, λex = 280 nm, 298 K. The concentration of 1 
and 4 was 0 to 10.5 μM with 1.05 μM intervals; the concentration of 7 and 10 was 0 to 105 μM with 17.5 μM 
intervals. Detailed molar excess of boron cluster is described in the legend. Inset: Stern-Volmer plots for BSA – 
boron cluster complexes.
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and/or hydrogen bonding interaction, and (III) ΔH0 close to 0 and positive value of ΔS0 for the electrostatic 
interaction.

The positive values of both ΔH0 and ΔS0 for 1 to 6 (Table S3) suggest that the interaction mode for metal-
lacarboranes binding on BSA is mainly a hydrophobic interaction. This result is in agreement with studies by Rak 
et al. in which the strength of the interaction with BSA was correlated with the lipophilicity of metallacarborane 
derivatives, suggesting the hydrophobic nature of the interaction16. Moreover, the negative value of ΔG0 suggests 
that binding of the boron clusters with BSA is a spontaneous process.

Rak et al. reported a non-specific interaction of (1) derivatives with HSA for complexes with high stoichiom-
etry15. Our studies supplement those observations with studies of complexes that have low stoichiometry with 
a maximum ratio of metallacarborane : BSA set to 1 : 1. In contrast to the previous report, we have found that 
under low stoichiometry conditions, metallacarboranes have a specific interaction with BSA by binding in the 
hydrophobic cavity of the protein. These observations lead to hypothesis that at low stoichiometry, metallacarbo-
ranes interact specifically with the hydrophobic cavity of albumin, while at high stoichiometry, they also interact 
non-specifically with the protein surface.

For further studies, we have chosen [CoD]− (1) and [B12H12]2− (11) as compounds with the strongest and 
weakest interactions with BSA, respectively. In that way, we could study the influence of the boron cluster types on 
the interaction with BSA in two extreme cases. Incorporation of [CoD]− into the structure of bioactive molecule 
can significantly affect its interactions with serum albumin. By contrast, [B12H12]2− does not seem to affect the 
affinity of the conjugate towards albumin. Furthermore, in contrast to the other two types of boron clusters, the 
number of studies on the interaction of [B12H12]2− with proteins is very limited. Considering that derivatives of 
this boron cluster are used as boron carrier in BNCT, there is a gap in our knowledge that needs to be addressed.

Conformational changes of BSA induced by boron clusters.  The CD spectrum of native BSA (25 °C, 
NaHCO3 10 mM) exhibited two negative minima at 208 and 222 nm and a maximum at 192 nm, which is in good 
agreement with previous studies51 and characteristic for proteins with high helical content. The CD spectra of 
native BSA in the presence of an increasing concentration of selected boron cluster (from 0 to 1000 molar excess) 
are represented in Fig. 3. The influence of [B12H12]2− on the BSA structure revealed in the far UV CD spectra is 
negligible. No essential conformational changes were observed for BSA in the presence of [B12H12]2− (0 to 1000 
molar excess), indicating that the presence of the boron cluster cage did not significantly alter the tertiary struc-
ture of BSA (Fig. 3A).

The obtained data show that the portion of α-helices in the secondary structure of BSA is equal to 59% and 
increasing the concentration of [CoD]− in the BSA environment leads to a slight decrease in the number of 
α-helices (up to 54% for 512 molar excess of the boron cluster – Fig. 3B). The observed changes in the content 
of α-helices caused by [CoD]− are noticeable, but they seem to be negligible compared with changes in the BSA 
α-helix content caused by ionic surfactants such as SDS51, 52. This observation is of interest because [CoD]− may 
behave like a classical ionic surfactant in selected cases, and it is able to form complexes with polyelectrolytes12. 
Features of near-UV CD spectra are more interesting. First, the presence of [B12H12]2− (0 to 100 molar excess) 
does not disturb the CD spectrum (Fig. 3C). In the case of [CoD]−, the situation is radically different. The pres-
ence of a metallacarborane cluster (0–8 molar excess) leads to formation of two new CD signals (Fig. 3D). Two 
positive Cotton effects at 350 nm and 309 nm are directly connected with complex formation between [CoD]− 
and the hydrophobic pocket of BSA. Slight changes in the CD spectrum below 300 nm suggest that this process 
does not significantly alter the tertiary structure of BSA. In addition, the formation of the [CoD]− : BSA complex 
is shown in the absorption spectrum (Fig. 3F) where increasing the concentration of [CoD]− causes the formation 
of two new absorption spectra (with a maximum at 350 nm and 302 nm) as well as the simultaneous decrease in 
the characteristic band for BSA at 278 nm and an isosbestic point at 291 nm.

Hydrodynamic changes of BSA induced by boron clusters.  The weak protein–protein interactions, 
i.e., non-specific interactions, were studied using a combination of DLS and SLS techniques. Here we used two 
parameters to describe the BSA-BSA interactions in the presence of selected boron clusters, i.e., diffusion inter-
action parameter (kD) and second virial coefficient (B22), both of which are first-order coefficients of protein 
interactions. The diffusion interaction parameter (kD) is a useful factor to study weak protein interactions and 
is connected to specific biophysical properties, such as the aggregation propensity. The diffusion coefficient (D) 
was measured as a function of the BSA concentration in the presence of a defined boron cluster using the DLS 
protocol. The value of kD (mL g−1) was determined from the slope of a plot of D vs. the BSA concentration, where 
D0 is the extrapolated intercept (single particle diffusivity) and the slope is D0kD (equation 5).

= +D D k C(1 ) (5)D BSA
0

The second virial coefficient (B22), is another parameter for studying weak protein interactions. Positive B22 is 
interpreted as indicative of the presence of weak, net-repulsive forces between protein molecules, while negative 
B22 is considered to reflect net-attractive forces. The normalized Rayleigh ratio Rθ from the SLS measurement is 
related to the properties of the protein solution (equation 6).

= +
θ

−KC
R
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(6)BSA

1
22

The value of B22 was determined from the slope of a plot of KC/R vs. the BSA concentration.
Combining SLS and DLS techniques, we determined the boron cluster-specific effects on BSA hydration and 

on the hydrodynamic interactions among the BSA molecules. The DLS measurements at finite protein concentra-
tions (15.1–197 μM) using both cluster types, [CoD]− and [B12H12]2−, showed that the diffusion coefficient was 
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affected by both direct and hydrodynamic interactions53. The presence of positive slopes in both DLS and SLS data 
in the case of two distinct boron clusters, together with the linear behavior of both data, support that the poten-
tial contributions of these boron clusters to protein aggregation are negligible (Fig. 4). In addition, in the case of 
[CoD]−: BSA, the intercepts in the DLS and SLS data indicate the hydrodynamic size and total molecular weight 
of the protein increases with increasing [CoD]− concentration (unlike for [B12H12]2−), suggesting the formation 
of [CoD]−: BSA complexes with increasing numbers of attached metallacarborane clusters. The hydrodynamic 
diameter of BSA was independent of the [B12H12]2− concentration (Fig. 4A), but [CoD]− exerted a pronounced 
influence on the hydrodynamic size of BSA, as observed in Fig. 4B for a [CoD]−: BSA molar ratio higher than 
10 for which the hydrodynamic diameter of BSA (or [CoD]− : BSA complex) slightly increased up to 9.5 nm. 
Next, despite the increase in the concentration of metallacarborane, we observed a fixed hydrodynamic size. 
Subsequently, for molar ratios higher than 100, the hydrodynamic size of BSA again starts to increase, suggesting 
the appearance of second generation complexes. Considering the shape and dimensions of [CoD]− (0.6×1.1 nm 
peanut shape), we can interpret these data as indicative of a non-specific interaction of [CoD]− with the BSA 
surface, which gives rise to a first interaction layer followed by an increasing [CoD]−: BSA molar ratio over 100; 
then, metallacarborane clusters begin to form the second interaction layer.

Figure 3.  Circular dichroism and absorption spectra of BSA in the presence of increasing concentration 
of selected boron clusters. Far UV CD spectra, C(BSA) = 1.5 μM, C([B12H12]2−) in the range 0–1.5 mM 
(A), C(BSA) = 1.5 μM, C([CoD]−) in the range 0–1.5 mM (B); near UV CD spectra, C(BSA) = 150 μM, 
C([B12H12]2−) in the range 0–15 mM (C), C(BSA) = 150 μM, C([CoD]−) in the range 0–1.2 mM (D); UV 
absorption spectra, C(BSA) = 12.6 μM, C([B12H12]2−) in the range 0–12.6 mM (E), C(BSA) = 9.79 μM, 
C([CoD]−) in the range 0–58.7 μM (F). Detailed molar excess of boron cluster is described in the legend. Far 
UV CD spectra were measured in NaHCO3 0.01 M and near UV CD and absorption spectra were measured in 
NaHCO3 0.1 M.
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Additional information on the behavior of BSA in the presence of boron clusters was obtained by DLS in the 
heat-treating experiment (Fig. S5). This method allows for registration of changes in the hydrodynamic size of 

Figure 4.  Boron cluster-specific effects on hydrodynamic parameters of BSA determined by the DLS method. 
Hydrodynamic diameter of BSA as a function of concentration of [B12H12]2− (A) and [CoD]− (B), there was 
constant concentration of BSA (15 μM) and boron clusters concentration were in the range 0–7.7 mM. Plot of 
diffusion coefficient of BSA as function of protein concentration, in the presence of [B12H12]2− (C) and [CoD]− 
(D), the value of diffusion interaction parameter (kD, g mL−1) was determined from the slope of the plot. Plot 
of the Debye ratios KC/Rθ of BSA as function of protein concentration, in the presence of [B12H12]2− (E) and 
[CoD]− (F), the value of second virial coefficient (B22, mL mol g−2) was determined from the slope of the plot.

http://S5


www.nature.com/scientificreports/

8SCIEntIfIC REPOrTS | 7: 9800  | DOI:10.1038/s41598-017-10314-0

the protein to detect aggregation. According to the literature reports54, 55, the hydrodynamic size of BSA should 
significantly increase for temperatures higher than 60 °C. For BSA in the absence of the boron clusters as well as 
for BSA in the presence of [B12H12]2−, our results are in good agreement with these reports. Sodium dodecaborate 
did not influence the hydrodynamic behavior of BSA during thermal treatment (Fig. S5C). A different situation 
was observed in the case of [CoD]−. Metallacarborane exerted a profound influence on BSA during heating when 
the temperature ranged from 25 °C to 85 °C, and this process depends on the [CoD]− concentration (Fig. S5D). 
[CoD]− can limit thermal-induced BSA aggregation and the resulting aggregates are much smaller than native 
BSA, which is also noticeable after cooling to room temperature. In addition, [CoD]− influences the aggrega-
tion kinetics at a constant temperature of 60 °C (Fig. S5F). Selected cases have inhibition of aggregation at that 
temperature.

MALDI-MS.  We also demonstrated the interactions of boron clusters with BSA using the MALDI-MS tech-
nique. A molecular mass measurement was made as a function of the boron cluster concentration and the stoi-
chiometry of the protein : boron cluster complex was calculated from these data. The results of the formation of 
non-covalent binding complexes between [CoD]− or [B12H12]2− and BSA are summarized in Fig. 5. Both types of 
boron clusters can form non-covalent complexes with BSA. Moreover, the measured molecular weight increased 
linearly with the boron cluster concentration, allowing for the calculation of the stoichiometry of complexes 
formed. It is noteworthy that the measurement was made in acidic MALDI matrix, in the presence of organic 
solvent and that the conditions did not cause dissociation of the complexes. Changes in the molecular weight are 
even significant at a [CoD]−: BSA molar ratio of 2 : 1. This observation suggests that complex formation between 
[CoD]− and BSA is very efficient and the resulting complexes very stable. In contrast, the interaction of [B12H12]2− 
with BSA is much weaker (cf. experimental) and only visible at higher molar ratios.

Conclusions
The interaction between BSA and three types of boron clusters (metallacarboranes, para-carboranes and dode-
caborates) and their derivatives was studied using measurements of fluorescence quenching of BSA in increasing 
concentrations of the boron clusters and their derivatives. The observed strength of boron cluster interactions 
with BSA decreases in order: metallacarboranes [M(C2B9H11)2]− > carboranes (C2B10H12) >> dodecaborate 
anion [B12H12]2−. Metallacarboranes and their derivatives (1 to 6) strongly interact with BSA. The strongest bind-
ing constant was obtained for [CoD]−. Covalent attachment of organic component to metallacarboranes does 
not significantly reduce the strength of the interaction with BSA. The conjugates of [CoD]− and [FeD]− with 
adenosine (4 and 6, respectively) interact with the hydrophobic cavity of albumin and have a similar strength as 
for metallacarboranes alone (1 and 5), which suggests that metallacarboranes can serve as anchors to albumin 
for drugs, prolonging their half-life. In addition, binding constants (Kb) for metallacarborane with cobalt atom 
([CoD]−, 1) and metallacarborane with iron atom ([FeD]−, 5) are similar, which suggests that coordinated metal 
atom does not significantly affect the affinity of metallacarboranes towards albumin.

Figure 5.  Mass spectrometry results of nonconvalent binding complexes of BSA and [B12H12]2− (A) and 
[CoD]− (B). aMolar ratio of BSA (15 μM) and boron cluster placed on the MALDI plate, bMolecular weight 
found in maldi, ccalculated complex stechiometry.
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Carboranes (7 to 10) also interact with BSA; however, the relationship between the boron cluster concen-
tration and fluorescence quenching of BSA does not follow a linear correlation, except for the conjugates of 
carborane and adenosine (10). The results for [B12H12]2− show no interaction of this boron cluster with BSA. 
The measurements of fluorescence quenching were performed at a low stoichiometry of BSA and studied com-
pounds, which was a maximum 1 : 1 for metallacarboranes and their derivatives (1 to 6) and 1 : 10 for other 
boron cluster compounds (7 to 11). Further studies with [CoD]− and [B12H12]2−, using CD, DLS and SLS meas-
urements as well as the MALDI-MS technique, were performed at a high stoichiometry up to 1: 1000. The results 
of these studies showed the non-specific binding of selected boron clusters with the BSA surface. Interactions of 
BSA with [CoD]− are much stronger and have a bigger influence on the conformation of the protein than with 
[B12H12]2−. [CoD]− specifically binds to the hydrophobic cavity of BSA at low stoichiometry and non-specifically 
binds with the surface of the protein at high stoichiometry. [B12H12]2− interacts very weakly with BSA and only in 
the non-specific way at a high stoichiometry.

Methods
Materials and equipment.  Cs[3-cobalt bis(1,2-dicarbollide)] and sodium dodecaborate, Na2[B12H12] (11), 
were purchased from Katchem (Prague, Czech Republic). Cs[3-iron bis(1,2-dicarbollide)] (5) was a kind gift from 
Prof. Jaromir Plešek (1927–2010). Fatty acid free BSA was purchased from Sigma-Aldrich (US), and dialysis tubes 
(Visking, MWCO 12–14 kDa) were from Serva GmbH, Germany. Sodium bicarbonate, analytical grade, was 
obtained from Avantor Performance Materials (Poland). All other chemicals were purchased from Sigma-Aldrich 
(US) and used without further purification. All solutions were prepared in Milli-Q water (18.2 M cm−1) produced 
by a Direct-Q3 UV system (Millipore, US). Absorption, fluorescence and circular dichroism (CD) spectra were 
recorded at 25 °C on J-1500 spectropolarimeter (Jasco, Japan) equipped with thermostated cell holder, FDT-538 
fluorescence emission detector and PML-534 FDCD detector. For thermodynamic studies, fluorescence spectra 
were also recorded at 31 and 37 °C. Measurements were performed in rectangular quartz cuvettes with 5 mm and 
1 mm optical path lengths for fluorescence and circular dichroism, respectively. UV-Vis spectra were recorded 
on a Specord 250 (Analytic Jena, Germany) spectrophotometer at ambient temperature. UV-Vis spectra were 
recorded in the range 250–500 nm with a slit width of 1 nm and scan speed of 10 nm s–1 in quartz cuvettes with 
a 5-mm optical path length. Dynamic and static light scattering (DLS and SLS) measurements were conducted 
on Zetasizer Nano ZS (Malvern Instruments, UK) with a 633-nm laser in a 12-μL quartz cuvette at a constant 
scattering angle of 173° in 0.1 M NaHCO3. MALDI-TOF MS analysis were performed on the ultrafleXtreme 
(Bruker Daltonics, Germany) in the linear positive ion mode at the laser frequency of 200 Hz. Calibrations were 
performed on protein calibration standard II from Bruker company.

Chemistry.  Cesium salt of Cs[3-cobalt bis(1,2-dicarbollide)] was converted to sodium salt (1) according the 
published procedure56 using the cationic exchange resin (Amberlite IR120, Acros Organics, US). Compounds 2–4 
and 6–10 were obtained according to literature methods, as follows: 3-O-{{5-[3-cobalt-bis(1,2-dicarbollide)-8-yl]-
3-oxa-pentoxy}-propyne (2)57, 58; 2-O-{{5-[3-cobalt-bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-N-methylamine 
(3) synthetized via ring opening reaction of 8-dioxane-3-cobalt bis(1,2-dicarbollide) with CH3NH2

17, 59. 
2′-O{5-[3-Cobalt bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1N-1,2,3-triazole-4-yl}(4-propan-1-yl) adeno-
sine (4) and 2′-O-{{5-[3-iron bis(1,2-dicarbollide)-8-yl]-3-oxa-pentoxy}-1N-1,2,3-triazole-4-yl}methyladeno-
sine (6) were obtained according to previously published methods60; detailed experimental procedures will be 
described elsewhere. 1-(3-Bromopropanyl)-1,12-dicarba-closo-dodecaborane (7) and 1-(3-aminopropanyl)-1,
12-dicarba-closo-dodecaborane (9) were synthesized following the method described earlier for the analo-
gous derivatives of 1,7-dicarba-closo-dodecaborane61. 1-Carboxyl-1,12-dicarba-closo-dodecaborane (8) was 
obtained as described62 as was 2′-O-{[3-propyl-(1,12-dicarba-closo-dodecaboran-1-yl)]-1-N-1,2,3-triazol-4-yl} 
propyladenosine (10)63.

Sample preparation.  The stock solutions of the compounds 1–11 (10 mg mL−1) were prepared by dissolv-
ing the exact amounts in DMSO (compounds 2–10) or 0.1 M NaHCO3 solution (compounds 1 and 11). The 
stock solution of BSA (0.67 mM) was prepared using dialysis with 0.1 M sodium bicarbonate (pH 8.4), and its 
concentration was determined by the measurement of the absorbance at λ = 278 nm using ε = 44300 M−1cm−1 64. 
The BSA samples with boron clusters for fluorescence, UV-Vis, CD and light scattering analysis were prepared 
as follows: the stock solution of selected boron clusters was added to the BSA solutions in the desired molar ratio 
and measurements were taken immediately after mixing.

Experimental procedure
UV-Vis measurements.  In all measured samples, BSA was diluted with 0.10 M sodium bicarbonate (pH 
8.4) to a final concentration 10.5 × 10−6 M. Boron clusters 1 to 6 were added to the samples so the final concen-
tration was 0 to 10.5 × 10−6 M. Boron clusters 7 to 11 were added to the sample so the final concentration was 0 
to 10.5 × 10−5 M. In all samples, the concentration of DMSO was 2%. Absorption spectra were recorded from 250 
to 500 nm. Each spectrum was corrected by the corresponding buffer blank.

Fluorescence measurements.  For fluorescence measurements, the samples were prepared in the same 
way as for UV-Vis measurements. Fluorescence emission spectra were recorded from 300 to 500 nm at three 
different temperatures (25, 31 and 37 °C with 3 min equilibrium time at each measurement temperature). The 
excitation wavelength was set at 280 nm. The data integration time was set to 1 s and HT to 600 V. An appropriate 
buffer blank spectrum was subtracted from the measured spectra for fluorescence background correction. The 
fluorescence intensity was corrected using the following equation:
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where Fcorr and Fobs are the corrected and observed fluorescence intensities, respectively and Aex and Aem are the 
absorbances at the excitation and emission wavelengths, respectively. The emission wavelength was 355 nm at 
the maximum of the fluorescence intensity spectrum. All fluorescence intensities used for the calculations were 
corrected in this work.

Circular dichroism measurements.  The BSA concentration was 1.5 μM for far UV measurements and 
150 μM for near UV, and the final concentration of NaHCO3 was 10 mM for all CD measurements. Six spectra 
(recorded with a data pitch of 0.2 nm, band width of 1 nm, and data integration time of 2 sec at 50 nm min−1) 
were averaged for each sample. Each measurement was subtracted by NaHCO3 (10 mM) supplemented with a 
suitable amount of selected boron cluster. Therefore, the emerging spectrum is due to the BSA contribution alone. 
The CD signals were converted to the mean residue molar ellipticities using the mean residue weight of 114.2. The 
fractional contents of α-helices were calculated from far-UV CD spectra by the Dichroweb platform (CDSSTR 
with dataset 6).

Dynamic and static light scattering measurements (DLS and SLS).  The final protein concentration 
was in the range 15.1–197 μM. The following parameters were used: protein refractive index (1.450) and solvent 
viscosity (NaHCO3, 0.1 M, 0.909 10−4 Pa×s). From three to six consecutive measurements of each sample were 
performed with an acquisition time of 30 s per correlation function. Scattering intensities for SLS analysis were 
derived from the average count rate of the samples and were calibrated against toluene using the Rayleigh ratio of 
R = 1.35 × 10−5cm−1. The refractive index increment with the BSA concentration at λ = 633 nm dn/dcBSA = 0.185 
was used. Data were analysed using dts 6.10 software (Malvern Instruments, orcestershire, UK). Particle-size 
distributions were obtained using the General Purpose algorithm included in the DTS software. In addition, the 
effect of temperature on the hydrodynamic parameters of BSA in the presence of boron clusters was estimated by 
DLS at 5 °C intervals from 25 to 85 °C and a 3-min equilibrium time at each measurement temperature.

MALDI-TOF MS.  The matrix, 2,5-dihydroxybenzoic acid (DHB, Sigma), was dissolved in CH3CN : H2O : 
CF3COOH (50 : 50 : 0.1) to a final concentration of 50 mg mL−1. Protein samples containing 15 μM BSA and 
selected boron clusters in 0.1 M NaHCO3 solution were diluted with equal volumes of matrix solution and were 
evaporated (0.5 μL) on a steel plate at room temperature.

Data Availability.  All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files).
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