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Trauma in the adult mammalian central nervous system leads to irreversible structural
and functional impairment due to failed regeneration attempts. In contrast, neurons in
the peripheral nervous system exhibit a greater regenerative ability. It has been proposed
that an orchestrated sequence of transcriptional events controlling the expression of spe-
cific sets of genes may be the underlying basis of an early cell-autonomous regenerative
response. Understanding whether transcriptional fine tuning, in parallel with strategies
aimed at counteracting extrinsic impediments promotes axon re-growth following central
nervous system injuries represents an exciting challenge for future studies.Transcriptional
pathways controlling axon regeneration are presented and discussed in this review.
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INTRODUCTION
In addition to controlling a wide variety of cellular functions, evi-
dence has shown that gene transcription acts as an important
regulator of axon growth during development (Butler and Tear,
2007) and in response to axonal injury (Goldberg et al., 2002;
Raivich et al., 2004; Moore et al., 2009). During neuronal develop-
ment, transcriptional pathways regulating genes that control axon
growth are particularly dynamic. Notably, this correlates with the
ability of immature neurons to synthesize cytoskeletal elements
and growth cone components, in addition to integrating extracel-
lular guidance cues required during axonal elongation (Butler and
Tear, 2007). Once axons reach their target, however, growth cones
develop into a pre-synaptic terminal, turning off the transcrip-
tional machinery controlling intrinsic growth programs (Baizer
and Fishman, 1987; Caroni and Becker, 1992).

In contrast to immature neurons, adult CNS neurons are
growth-incompetent and do not spontaneously regenerate injured
axons. Is this developmental decline reversible? If so, is activa-
tion of pro-regenerative transcriptional events sufficient to regain
growth abilities in adult CNS neurons? Early work done by
Smith and Skene (1997) has demonstrated the presence of a

Abbreviations: AAV, adeno associated virus; AP-1, activator protein 1; ATF3, acti-
vating transcription factor 3; BMP, bone morphogenetic protein; cAMP, cyclic
adenosine monophosphate; CAP-23, cytoskeleton-associated protein 23; CBP, CREB
binding protein; cGKIα, cGMP-dependent protein kinase 1α; CNS, central nervous
system; CREB, cyclic-AMP–response–element-binding protein; GAP-43, growth
associated protein 43; HDAC, histone deacetylase; Hsp27, heat shock protein 27;
JAK, janus kinase; JNKs, Jun N-terminal kinases; KLF, Krüppel-like factor; NF-
κB, nuclear factor kappa-light-chain-enhancer of activated B cells; p21Cip1/Waf1,
cyclin-dependent kinase-interacting protein 1; p300, E1A-binding protein p300;
PCAF, CBP-associated factor; PKA, protein kinase A; PNS, peripheral nervous sys-
tem; PTMs, post translational modifications; RAGs, regenerative-associated genes;
ROCK, Rho kinase; SH2, src-homology 2; Smad1, mothers against decapentaplegic
homolog 1; Sox11, SRY-box containing gene 11; Sp1, specificity protein 1; SPRR1,
small proline-rich repeat protein 1A; STAT3, signal transducer and activator of
transcription 3; TFs, transcription factors; TNFα, tumor necrosis factor alpha.

transcription-dependent switch controlling growth competence
in adult sensory neurons.

Primary sensory neurons with cell bodies in the DRG develop
a bipolar axon that divides into two branches: one innervating
peripheral targets (peripheral branch) and the other projecting
into the spinal cord (central branch). Although peripheral and
central axons originate from the same cell body, their respec-
tive injury-related responses differ. While the peripheral axon
can regenerate and successfully re-innervate its targets, the cen-
tral axon fails to attain successful regeneration within the CNS.
The presence of a hostile environment encountered in the CNS
partially explains this failure (Filbin, 2003; Schwab, 2004; Sil-
ver and Miller, 2004). However, neutralization of extracellular
molecules that inhibit axon growth by itself has yielded lim-
ited axon regeneration (Case and Tessier-Lavigne, 2005; Harel
and Strittmatter, 2006; Yiu and He, 2006; Lee et al., 2010),
suggesting that removal of these inhibitory influences may not
be sufficient to promote axon regeneration in the adult CNS.
These studies have also highlighted the importance of overcom-
ing the intrinsic impediments to axon re-growth as a strategy
for inducing regeneration in the adult CNS (Goldberg et al.,
2002; Benowitz and Yin, 2007; Di Giovanni, 2009; Liu et al.,
2011).

In the last decade, the preconditioning lesion of DRG neurons
has been used extensively to elucidate transcriptional pathways
regulating regeneration in the adult nervous system. Importantly,
this preconditioning lesion dramatically increases the intrinsic
growth state, thus allowing adult sensory neurons to mount a suc-
cessful regenerative response to a second lesion occurring at either
the peripheral or the central branches (Richardson and Issa, 1984;
Neumann and Woolf, 1999). By using a reversible inhibitor of RNA
polymerase II, early work has shown that a discrete period of new
transcription is essential to gain growth competence during the
first hours after axotomy (Smith and Skene, 1997). Generation and
shuttling of posttraumatic signals contribute to the activation of
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TFs through specific PTMs, and consequent nuclear translocation
activates transcription of downstream targets.

In regenerating neurons, injury-induced gene transcription is
the first step leading to the expression of regenerative-associated
genes such as CAP-23, GAP-43, SPRR1A (Skene and Willard, 1981;
Bosse et al., 2001, 2006; Schmitt et al., 2003). In addition, pro-
found transcription-dependent changes in gene expression have
been found only after severing the peripheral but not the central
branch of sensory neurons (Costigan et al., 2002; Xiao et al., 2002;
Bareyre and Schwab, 2003; Hoffman, 2010). Initiation of tran-
scription is tightly controlled by a collection of TFs and co-factors
that mediate the binding of RNA polymerase to specific DNA reg-
ulatory regions upstream to the transcription start site (Figure 1).
Importantly, the expression of several of these TFs and co-factors
changes after peripheral nerve injury, likely underlying a role in
orchestrating a regenerative cell body response (Schwaiger et al.,
2000; Makwana and Raivich, 2005; Qiu et al., 2005; Chen et al.,
2007; Raivich and Makwana, 2007; Stam et al., 2007; Tedeschi
et al., 2009a; Smith et al., 2011). It is becoming apparent that early
activation of specific transcriptional pathways is likely to be one of
the first steps required to mount a cell-autonomous regenerative
response.

CREB-MEDIATED TRANSCRIPTIONAL PATHWAY
In addition to controlling cellular metabolism, growth factor
dependent cell survival, development and plasticity of neurons,

CREB-dependent transcription has been shown to control axon
regeneration in both the PNS and CNS (Cai et al., 2002; Gao et al.,
2004; Figure 2).

Upon peripheral lesion, adult DRG neurons experience a tran-
sient increase in cAMP levels with consequent activation of PKA,
which in turn phosphorylates CREB (Qiu et al., 2002; Gao et al.,
2004; Teng and Tang, 2006; Hannila and Filbin, 2008). Over-
expression of constitutively active CREB promotes regeneration
of ascending dorsal column axons after spinal cord injury (Gao
et al., 2004). CREB upregulates Arginase I, which in turn pro-
motes polyamines synthesis. Polyamines are thought to influence
axon growth by interacting with cytoskeletal elements like tubulin.
A recent screening has identified daidzein as novel transcriptional
activator of Arginase I capable of promoting some extent of CNS
regeneration in a cAMP/CREB independent manner (Ma et al.,
2010).

Overexpression of a dominant negative CREB results in
decreased neurite outgrowth in vitro with consequent failure
of cAMP to overcome growth inhibition in the presence of an
inhibitory substrate (Redmond et al., 2002).

CREB functions in a stimulus and cellular context-dependent
manner. Multiple PTMs lead to conformational changes that
ultimately affect protein–protein interactions with co-factors.
Nerve injury triggers calcium influx that eventually leads to
phosphorylation of CREB at Ser-133, Ser-142, and Ser-143,
which figures prominently in CREB-dependent transcription

FIGURE 1 | Gene transcription is a highly regulated process. DNA
is wrapped around histones in chromatin (upper box). Several
modifying complexes remodel chromatin and modify histones. Both
DNA and histone tails undergo post translational modifications (Ac,
acetylation; Me, methylation; P, phosphorylation) that ultimately

shape chromatin architecture in a more or less favorable environment
promoting or inhibiting transcription respectively. Transcription starts
when TFs and co-activators bind to specific DNA regulatory elements
upstream to the transcriptional start site (TSS) and recruit RNA
polymerase II.
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FIGURE 2 | Schematic diagram summarizing transcriptional pathways

involved in peripheral nerve regeneration. After peripheral nerve injury,
activation of early clusters of TFs occurs through coordinated sequences of
intracellular cascades. Upon activation, TFs and co-activators translocate to

the nucleus where they bind to regulatory regions of regenerative-associated
genes to drive their expression as part of an early pro-regenerative program (P,
phosphorylation; Ac, acetylation; ERK, extracellular-signal-regulated kinase;
p38, p38-mitogen-activated protein kinase).

(Sun et al., 1994; Kornhauser et al., 2002). In addition, neu-
rotrophin dependent phosphorylation on Ser-133 (Riccio et al.,
1997, 2006; Watson et al., 1999, 2001; Lonze and Ginty, 2002;
Arthur et al., 2004; Spencer et al., 2008) is required for recruit-
ment of the co-activator CBP (Chrivia et al., 1993; Kwok et al.,
1994; Figure 2). Of note, the assembly of a proper transcrip-
tional module is necessary for recruitment of RNA polymerase
II holoenzyme and dictates promoter occupancy of specific set
of genes. Using a genome-wide approach, CREB-mediated pro-
moter occupancy has been found to depend on the presence
and methylation state of consensus cAMP response elements
upstream to the transcription start site (Zhang et al., 2005).
Acetyltransferases like CBP may be responsible for a methyl-
acetylation switch, allowing CREB-transcription module to access
repressed chromatin. So far, the language of the crosstalk between
CREB PTMs and context-dependent histone/DNA modifications
has not been deciphered yet and deserves attention for future
studies.

c-JUN-MEDIATED TRANSCRIPTIONAL PATHWAY
As a component of the heterodimeric AP-1 transcription fac-
tor (Jochum et al., 2001), c-Jun activity is strongly induced in
response to numerous signals such as growth factors, cytokines
and injury-related stress (Herdegen et al., 1997).

Upregulation of c-Jun is consistently accompanied by a suc-
cessful regeneration response in several injury models (Herdegen
et al., 1991; Jenkins and Hunt, 1991; Lindwall and Kanje, 2005).
Thus far, the effects of c-Jun-mediated transcription in promot-
ing nerve regeneration are well characterized (Raivich et al., 2004;
Makwana and Raivich, 2005).

C-Jun activity is controlled by JNKs which are responsible
for c-Jun N-terminal phosphorylation within its transactivation
domain (Angel et al., 1988; Figure 2). Importantly, the JNK/c-Jun
transcriptional pathway is thought to act as a sensor in response to
nerve injury (Herdegen et al., 1997; Raivich et al., 2004; Makwana
and Raivich, 2005). In this regard, JNKs can be rapidly activated
and retrogradely transported following nerve injury, inducing
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c-Jun activation in the nucleus. In the presence of JNKs inhibitors
and blockage of retrograde transport, peripheral nerve injury fails
to induce c-Jun activation (Lindwall and Kanje, 2005). In addi-
tion, absence of c-Jun impairs the expression of genes associated
with PNS regeneration such as CD44, Galanin, and a7b-1 integrin
(Herdegen et al., 1997; Raivich et al., 2004; Lindwall and Kanje,
2005; Teng and Tang, 2006) ultimately affecting proper target
reinnervation and functional recovery (Raivich et al., 2004).

After c-Jun overexpression, however, Purkinje cells fail to regen-
erate into a permissive graft, suggesting that c-Jun’s role in pro-
moting regeneration is highly dependent on the cellular context
(Carulli et al., 2002). Given the limitation of the cellular context,
it is important to find alternatives that incorporate other TFs such
as ATF3 and STAT3 to condition injured neurons to regenerate.

ATF3-MEDIATED TRANSCRIPTIONAL PATHWAY
As a member of the ATF/CREB family of basic leucine zipper
domains, ATF3 can establish functional interactions with both
leucine zipper (CREB and c-Jun) and non-leucine zipper TFs
(NF-κB, STAT3, and p53). Observations suggest that ATF3 and
c-Jun protein–protein interaction (through heterodimerization)
may synergistically regulate transcription to promote axon growth.

Similarly to c-Jun, peripheral but not central axonal injury
induces early ATF3 activation (Tsujino et al., 2000; Figure 2).
This strongly supports a role for ATF3 in neuronal regeneration
(Pearson et al., 2003; Seijffers et al., 2007). Transgenic mice that
constitutively express ATF3 in adult DRG neurons show enhanced
peripheral nerve regeneration comparable to that induced by pre-
conditioning lesion (Seijffers et al., 2007). On the other hand, con-
stitutive ATF3 overexpression is not sufficient to overcome myelin
inhibition or to promote CNS regeneration in vivo (Seijffers et al.,
2007). These observations suggest that ATF3 likely contributes
in promoting PNS regeneration when acting synergistically with
other TFs and/or co-factors.

Several ATF3 target genes have been identified in non-neuronal
cells. However, Hsp27 is the only identified ATF3 target gene
in neurons so far. Peripheral nerve injury triggers robust Hsp27
expression in DRG, dorsal horn, and motor neurons in the spinal
cord (Costigan et al., 1998). Through its leucine zipper DNA bind-
ing domain, ATF3 directly binds to Hsp27 promoter. In addition
to increasing survival of sensory and sympathetic neurons after
NGF withdrawal (Lewis et al., 1999), Hsp27 has been reported to
enhance neurite outgrowth in vitro (Williams et al., 2005, 2006),
and more recently to accelerate both axonal regeneration and func-
tional recovery in vivo (Ma et al., 2011a). Whether Hsp27 also
promotes CNS axon regeneration (e.g., corticospinal tract) is not
known yet, and deserves further investigation.

Besides increased Hsp27 expression, ATF3 transgenic mice
show enhanced SPRR1A expression in non-injured DRG neurons
(Seijffers et al., 2007). Notably, SPRR1A is highly induced (>60-
fold increase) by peripheral nerve injury, and its expression pattern
is similar to Hsp27 (Bonilla et al., 2002; Huebner and Strittmatter,
2009). Moreover, SPRR1A is expressed at the growth cone, where
it binds actin-associated proteins (Bonilla et al., 2002). Although
SPRR1A overexpression enhances axonal outgrowth on permis-
sive as well as non-permissive substrates, its functional role in
promoting CNS regeneration is still lacking (Bonilla et al., 2002).

Taken together, these data suggest that ATF3 may be a point
of convergence for multiple transcriptional pathways, signals, and
regulators of axon growth and regeneration. Little is known about
the components of the ATF3 regulatory complex in neurons.

Computational network analysis has predicted ATF3 to inter-
act with transcriptional complexes already known to have roles in
axon regeneration such as AP-1 (c-Jun, JunB, Jund1, and Fos)
and NF-κB (p50; Gilchrist et al., 2006). Such interactions are
tightly regulated by specific PTMs, leading to either activation
or repression of transcription. The PTMs required for ATF3-
dependent transcriptional changes after peripheral nerve injury
are still unknown.

Nerve injury triggers ATF3 as well as c-Jun activation (Herdegen
et al., 1991; Jenkins and Hunt, 1991; Tsujino et al., 2000; Pear-
son et al., 2003; Raivich et al., 2004; Lindwall and Kanje, 2005;
Makwana and Raivich, 2005; Seijffers et al., 2007). Interestingly,
both ATF3 and c-Jun promoters contain AP-1 sites (Morooka
et al., 1995; Cai et al., 2000), thus supporting the idea that ATF3
and c-Jun may regulate each other’s expression. These observa-
tions suggest that coincident upregulation of ATF3 and c-Jun
may act synergistically to promote axon growth after peripheral
nerve injury. It is far from understood how conditional deletion
of ATF3 in neurons may affect c-Jun-mediated transcription, and
finally peripheral nerve regeneration. Interestingly, ATF3 can also
affect gene transcription by simply sequestering repressors from
specific regulatory domains, avoiding direct binding to consensus
sequences (Chen et al., 1994).

In addition to TFs, gene transcription is also regulated through
chromatin remodeling complexes (Figure 1) that allow or prevent
access of transcription modules to DNA responsive elements. In
this regard, it has been shown that ATF3 can interact “in silico”
with HDAC via the NF-κB complex (Gilchrist et al., 2006). By
controlling acetylation/deacetylation of histones, HDACs play a
crucial role in chromatin remodeling. Histone acetylation relaxes
chromatin structure (euchromatin), allowing access of transcrip-
tion modules to DNA. In contrast, deacetylation limits access to
DNA by condensing chromatin (heterochromatin). In neurons,
the description of a functional ATF3–HDAC transcription module
is still lacking.

JAK/STAT3-MEDIATED TRANSCRIPTIONAL PATHWAY
In mammals there are seven STAT genes. In the nervous system,
much attention has focused on STAT3 family member. By inte-
grating information received from extracellular signals (growth
factors and cytokines) through a transmembrane receptor, STAT3
transcriptional pathways directly target gene promoters, thereby
regulating transcription without second messengers (Aaronson
and Horvath, 2002). Often associated with transcriptional acti-
vation, STAT-transcription modules are also capable of repressing
transcription (Ivanov et al., 2002; Ramana et al., 2002).

In the absence of stimuli, inactive STAT3 is localized in the cyto-
plasm. Receptor–ligand coupling rapidly activates STAT3, which
is recruited to the intracellular domain of the receptor via spe-
cific binding between SH2 domains and receptor phosphotyrosine
residues (Figure 2). The mammalian JAK family of proteins, con-
sisting of JAK1, JAK2, JAK3, and TYK2, provides the tyrosine
kinase activity required for STAT-activating cytokine receptors.
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Upon binding to intracellular cytokine receptor domains, JAKs
phosphorylate themselves and tyrosine residues on receptor tails,
creating STAT3“hub stations.” Phosphorylated STATs form homo,
hetero, and tetradimers (Vinkemeier et al., 1996; John et al., 1999;
Zhang and Darnell, 2001) with DNA binding ability. Transcrip-
tionally active STAT3 dimers are rapidly transported into the
nucleus via importins (Levy and Darnell, 2002; Liu et al., 2005)
where they bind an 8–10 bp inverted repeat DNA responsive ele-
ment. Peripheral nerve injury triggers STAT3 activation within
15 min after severing (Lee et al., 2004). Studies have shown that
peripheral nerve injuries result in time-dependent activation of
STAT3 (Schwaiger et al., 2000; Qiu et al., 2005; Bareyre et al., 2011).

Similarly to c-Jun and ATF3, STAT3 activation appears to be
restricted to peripheral and not central branch injuries, under-
scoring its critical role in mounting a successful peripheral regen-
erative response (Schwaiger et al., 2000). In fact, in the absence
of STAT3, peripheral nerve regeneration is impaired in DRG neu-
rons (Bareyre et al., 2011). Interestingly, sustained STAT3 expres-
sion promotes terminal and collateral sprouting by controlling
initiation of axon growth after dorsal columns injury (Bareyre
et al., 2011). However, the molecular basis that governs STAT3-
mediated gene activation responsible for early axonal growth is
still unknown. Future studies should aim at investigating whether
these findings can be extended to other CNS axonal tracts.

TFs drive gene expression by binding to DNA responsive
elements and recruiting both co-activators that remodel chro-
matin architecture of target promoters, and RNA polymerase II
holoenzyme. Nucleosome positioning is influenced by ISWI and
SWI/SNF-containing complexes (Figure 1). In addition, HATs like
CBP/p300, P/CAF, and TAF250 are required for their ability to
acetylate histones and other non-histone proteins such as TFs.
Increased acetylation of histone and non-histone proteins facilitate
access of transcription modules to core promoters, which in turn
activates gene transcription. In this regard, the STAT3-mediated
transcriptional pathway requires the recruitment of nuclear co-
factors like CBP/p300 that are tightly associated with the RNA
polymerase II holoenzyme (Paulson et al., 1999; Wang et al.,
2005) and serve as connectors to the transcriptional machinery
(Figure 2).

Studies in non-neuronal cells have demonstrated an uncon-
ventional nuclear function for JAK2 in phosphorylating the highly
conserved tyrosine residue 41 on histone H3 (Dawson et al., 2009).
Importantly, H3Y41 lies within a region known to perturb nucle-
osome mobility and stability (Ferreira et al., 2007). Therefore, it
is likely that JAK2-mediated phosphorylation of H3Y41 regulates
chromatin structure around core promoters (Dawson et al., 2009).
Its involvement in disrupting heterochromatic domains further
supports the JAK/STAT pathway’s role in regulating cellular epige-
netic status in non-neuronal cells (Shi et al., 2006). To date, there is
no evidence that peripheral and not central DRG branch injuries
alter chromatin architecture to create a favorable environment
driving transcription of RAGs.

In addition to SPRR1A (Wu et al., 2007) and p21/Cip1/Waf1
(Chin et al., 1996; Bellido et al., 1998), a recent high content
transcriptional screen has identified several STAT3 target genes
in DRG neurons that may be associated with the intrinsic ability
of PNS neurons to regenerate (Smith et al., 2011). Altogether, these

observations suggest that STAT3-mediated transcription is part of
an early regenerative response.

CBP/p300/PCAF–p53-MEDIATED TRANSCRIPTIONAL
PATHWAY
The transcription factor and tumor suppressor p53 functions as a
decision maker that contributes to directing cells toward a specific
phenotype during development and following cellular damage
(Jacobs et al., 2006; Helton and Chen, 2007; Tedeschi and Di
Giovanni, 2009).

Following peripheral injury transcriptionally active p53 under-
goes a series of acetylation events on its C-terminal domain (Di
Giovanni et al., 2006; Tedeschi et al., 2009a). This acetylation
leads to conformational changes that affect protein–protein inter-
action with transcriptional co-factors in a stimulus and cellular
context-dependent manner. In this regard, overexpression of spe-
cific p53 mutants that mimic C-terminus acetylation at several
lysine residues has been found to promote neurite outgrowth and
neuronal maturation in vitro without affecting cell survival (Di
Giovanni et al., 2006; Tedeschi et al., 2009a). Interestingly, p53’s C-
terminus acetylation leads to apoptosis in cell lines (Knights et al.,
2006; Tang et al., 2008; Yamaguchi et al., 2009). There has been
evidence showing acetylated transcriptional modules increase the
ability of p53 to both bind specific DNA elements and to activate
transcription, compared with the ability shown by the total pool
of p53.

After injury, active gene transcription is necessary to synthesize
new proteins needed for axon growth. Acetylated-p53, together
with CBP/p300 and PCAF, selectively occupies regulatory regions
upstream to the TSS of pro-neurite and axon-outgrowth genes
such as Coronin 1b, Rab13, and GAP-43 during an early regenera-
tive response (Di Giovanni et al., 2006; Tedeschi et al., 2009a; Gaub
et al., 2010, 2011; Floriddia et al., 2011; Figure 2). Both Coronin 1b
and Rab13 are part of a gene cluster involved in neuronal plastic-
ity, whose expression increases after traumatic spinal cord injury
(Di Giovanni et al., 2005). Coronin 1b and Rab13 are also found
in axonal sprouts of axotomized facial motor neurons (Di Gio-
vanni et al., 2006). Gap-43 is highly induced after peripheral nerve
injury (Skene and Willard,1981),and when overexpressed together
with CAP-23, it promotes some extent of CNS axon regeneration
(Bomze et al., 2001). Similarly to Gap-43, p21/Waf1’s expression is
upregulated upon peripheral axotomy (Bonilla et al., 2002). PCAF
and CGN5-mediated p53 acetylation at Lys 320 increases tran-
scriptional activation of the p21Cip1/Waf1 promoter (Liu et al.,
1999). Together with p53, KLF4 transactivates the p21Cip1/Waf1
promoter (Zhang et al., 2000). P21Cip1/Waf1 is already known
to influence growth cone navigation by inhibiting ROCK (Tanaka
et al., 2002; Qin et al., 2009). Interestingly, p53 and NFκB com-
pete for binding to CBP. In response to TNFα, IKKα-mediated
phosphorylation of CBP results in switching CBP recruitment
from p53 to NFκB target promoters (Webster and Perkins, 1999;
Perkins, 2007). Absence of p53 impairs peripheral regeneration in
part by affecting the pro-neurite and axon-outgrowth transcrip-
tional program (Di Giovanni et al., 2006; Tedeschi et al., 2009a). In
neurons, however, the balance between survival and axon regen-
eration is difficult to separate (Goldberg and Barres, 2000). Thus,
given p53’s role in DNA repair and the elimination of damaged
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neurons, it is important to keep in mind that the impairment in
axonal regeneration may also be influenced by the lack of removal
of damaged cells that occurs in the absence of p53. Nevertheless,
more recent observations provide further evidence that acetylated-
p53 may have a critical role in modulating different transcriptional
responses during axonal regeneration (Gaub et al., 2011).

KLF4-MEDIATED TRANSCRIPTIONAL PATHWAY
The KLF family of transcription factors includes 17 members char-
acterized by the presence of three Cys2 His2 zinc fingers located at
the C-terminus. In addition to controlling cell cycle, proliferation,
and cell death (Black et al., 2001), developmentally regulated KLF4
has been recently reported to affect axon growth and regeneration
in vivo (Moore et al., 2009).

In the adult CNS, KLF4 restricts the intrinsic regenerative
ability of certain neurons. In fact, KLF4 overexpression results
in reduced axonal length in vitro and consequent KLF4 targeted
deletion enhances CNS regeneration in vivo (Moore et al., 2009).
The series of transcriptional events underlying KLF4-mediated
regenerative response in neurons are not known (Moore et al.,
2011). Depending on the promoter context and the recruitment
of co-activators/co-repressors, KLFs can either activate or repress
transcription. KLF4 has been reported to interact with co-factors
such as CBP/p300 (Geiman et al., 2000; Evans et al., 2007) and
HDAC3 (Evans et al., 2007). In cooperation with p53, KLF4 trans-
activates p21Cip1/Waf1 promoter (Zhang et al., 2000) which in
turn influences neurite outgrowth by inhibiting ROCK (Tanaka
et al., 2002). KLF4 also transactivates cGKIα, already known as
p53’s transcriptional target in counteracting Semaphorin induced
growth cone collapse (Tedeschi et al., 2009b). Interestingly, KLF4
directly suppresses p53, thus reflecting its anti-apoptotic proper-
ties (Rowland et al., 2005). Although speculative, suppression of
p53 may be one of the underlying mechanisms for KLF4-mediated
suppression of axonal growth (Subang and Richardson, 2009).

KLF4 inhibits ornithine decarboxylase activity by competing
with Sp1 (Chen et al., 2002). By catalyzing the reaction from
arginine to ornithine, Arginase I has been proposed as an impor-
tant downstream mediator of the cAMP–PKA–CREB-dependent
regenerative program (Cai et al., 2002; Gao et al., 2004; Deng
et al., 2009). Finally, absence of KLF4 results in activation of
genes such as SPRR1A (Bonilla et al., 2002) and ATF3 (Mason
et al., 2003; Pearson et al., 2003; Campbell et al., 2005; Seijffers
et al., 2007; Swamynathan et al., 2008), both of them already
known to be upregulated during PNS regeneration. Nevertheless,
it is unclear whether KLF4-mediated CNS regenerative response
requires expression of these genes. Future work should aim to
provide a better understanding of the molecular mechanisms
underlying the role of KLF4 in post-axonal injury models.

BMP4/Smad1 TRANSCRIPTIONAL PATHWAY
Members of the Smad family of transcription factors func-
tion as signal transducers and transcriptional modulators of the
TGFβ/BMP signaling pathway, which controls a wide variety of
cellular functions during development and organogenesis (Heldin
et al., 1997; Massague et al., 2005).

By gene expression profile analysis, peripheral (and not central)
branch axotomy has been found to increase Smad1 expression in

adult DRG neurons (Zou et al., 2009). Given that Smad1 integrates
signals from BMP receptors, it is conceivable that BMP signal-
ing triggers receptor-regulated Smad1 activation after peripheral
lesion. Importantly, intraganglionic delivery of BMP2-4 induces
Smad1 phosphorylation and consequent nuclear translocation
(Zou et al., 2009). Together with Smad4, phosphorylated Smad1
assembles a multi-subunits complex that regulates transcription
(Massague and Wotton, 2000; Figure 2). In the absence of Smad1,
conditioned DRG neurons show impairment in axon elongation
in vitro (Parikh et al., 2011). Similarly, blockade of BMP signal-
ing with the BMP antagonist Noggin inhibits axonal growth in
both naïve and preconditioned DRG neurons (Ma et al., 2011b).
Moreover, using an AAV-based approach, activation of Smad1-
dependent BMP signaling has been recently reported to increase
the intrinsic growth ability of adult DRG neurons in vitro, but
also to promote dorsal columns axon regeneration in vivo (Parikh
et al., 2011). These lines of evidence suggest that Smad1-dependent
BMP signaling acts as a key player in an orchestrated transcrip-
tional program, allowing adult sensory neurons to switch into a
“growth mode” after injury.

The composition of the Smad1 transcription module as well as
the identity of the DNA sequences that the module will bind in
response to injury remains to be determined. In the adult nervous
system, axon growth ability requires a discrete period of de novo
transcription (Smith and Skene, 1997). Modules that promote
transcription likely include co-activators that confer high affin-
ity and selective interaction with DNA elements. Thus, nuclear
Smad1 may serve to modulate the activity of an existing transcrip-
tion module rather than assembling de novo a distinct complex.
Evidence has shown that AP-1 and Smads synergistically inter-
act to promote transcription from artificial promoters (Zhang
et al., 1998; Wong et al., 1999). Members of heterodimeric AP-
1 complex, including c-Jun and ATF3, play a role in peripheral
nerve regeneration (Raivich et al., 2004; Seijffers et al., 2007).
Notably, BMP receptor-activated Smad1 and Smad4 are able
to activate transcription in part by their ability to recruit co-
activators like CBP/p300 (Feng et al., 1998; Pouponnot et al., 1998;
Figure 2).

HATs like CBP/p300 are required for their ability to acetylate
histones and other non-histone proteins such as TFs. Increased
acetylation of histone and non-histone proteins promotes chro-
matin remodeling, which facilitates access to core promoters. This
in turn activates gene transcription. Indeed, Smad1 recruitment
to DNA regulatory elements may be a crucial step in determining
which set of RAGs will be activated in response to peripheral injury.
Besides the fact that BMP4 overexpression drives GAP-43 expres-
sion in adult DRG neurons (Parikh et al., 2011), the downstream
target genes that promote axon regeneration via Smad1-dependent
transcription are still unknown.

ORGANIZATION OF A PRO-REGENERATIVE
TRANSCRIPTIONAL NETWORK
Transcriptional regulators do not operate alone. Several TFs,
growth factors, chromatin remodelers, kinases, and acetyltrans-
ferases discussed above are not isolated players. In fact, they
function as part of a multi-nodal transcriptional network
(Figure 3). Numerous studies have reported complex pattern
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FIGURE 3 |Transcriptional network. (A) List of various transcription
regulators, chromatin remodelers, acetyltransferases, kinases, and growth
factors implicated in an early regenerative response after nerve injury.

(B) Ingenuity generated screenshot of a regenerative-associated
transcriptional network. Connecting arrows and lines represent interactions
between nodes.

of transcriptional changes occurring early after axonal injury.
An orchestrated regenerative program requires coordinated gene
expression, as a result of the integration of a large number of
connections within a functional network (Figure 3). Important
nodes (also referred as “hub genes”) consistently experience waves
of perturbation, and are responsible for such complex integra-
tion (van Kesteren et al., 2011). Early activated (e.g., subsequent
to injury) TFs serve as “hubs,” controlling cascades of function-
ally related transcriptional events as well as a plethora of target
genes. Within the same transcriptional network, HATs like CBP

and p300 serve as scaffold for the assembly of multi-components
transcriptional modules. Finally, coupling of signal transduction
pathways and gene regulation is controlled by modifying enzymes.
Thus far, the organization of the entire pro-regenerative transcrip-
tional network is not completely understood. Gene co-expression
network analysis (Zhang and Horvath, 2005) will eventually iden-
tify clusters of tightly co-expressed transcriptional regulators that
could potentially become novel therapeutic targets to promote
plasticity-related structural changes and regeneration following
axonal injuries.
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DISCUSSION
Although progress has been recently made in elucidating the role of
transcriptional pathways in controlling axon regeneration, there is
a bias toward studying gene regulation in the context of PNS regen-
eration (DRG and facial nerve). Indeed, it is difficult to find any
data on transcriptional pathways regulating supraspinal axon (e.g.,
corticospinal tract) regeneration following spinal cord injuries.
This apparent discrepancy can arise for a host of reasons. Due
to their unique anatomical conformation, DRG neurons serve as
ideal model to study the dual regenerative response of PNS and
CNS axons. In contrast to the CNS, the PNS can be easily accessed,
supporting the development of gene therapy applications without
major surgery. The development of minimally invasive surgeries
combined with the efficacy of AAV-mediated gene delivery hold
great promise to study the role of transcriptional regulators in
promoting CNS regeneration.

A discrete period of new transcription is crucial to gain growth
competence after axonal injury (Smith and Skene, 1997). TFs
drive gene expression by binding to DNA responsive elements and
recruiting both co-activators and RNA polymerase II holoenzyme
to core promoters. Nuclear co-activators shape chromatin archi-
tecture into a favorable environment for transcription. Interest-
ingly, recent observations suggest that certain histone modification
patterns are altered in regenerating neurons (Gaub et al., 2011).
These data are intriguing and if widely represented, they sug-
gest the worth of studying axon regeneration from an epigenetic
perspective.

Histone acetyltransferases like CBP/p300, P/CAF, CGN5, and
TAF250 are required for their ability to acetylate histones and
other non-histone proteins such as TFs. Importantly, acetylation of
lysine residues in the N-terminal tails of histones facilitates access
to transcriptionally repressed chromatin. In addition, ISWI and
SWI/SNF-containing complexes are known to influence nucleo-
some positioning. Active transcription modules do not operate
alone. It is likely that several pro-regenerative regulators syn-
ergistically cluster into active transcription factories located in
discrete sites within the nucleus. After peripheral injury, a suc-
cessful regenerative response requires an orchestrated sequence of
transcriptional events.

On the other hand, it is becoming apparent that a silent pro-
regenerative transcriptional program likely restricts the regener-
ative ability of adult CNS neurons. It has been recently reported
that unlocking such a silent transcriptional program may promote
axonal regeneration in the adult CNS (Moore et al., 2009; Bareyre
et al., 2011; Gaub et al., 2011; Parikh et al., 2011).

Identification of early clusters of TFs is particularly impor-
tant because early activated TFs may control subsequent events
of transcriptional activation. The crosstalk between early acti-
vated TFs (few important “nodes”) that sense injury signals
and initiate the cascade of transcriptional events, and the actual
TFs (multiple branches of the transcriptional network) that
directly promote axon regeneration is not completely under-
stood. Notably, several TFs described above share target genes,
further supporting the idea that multiple transcriptional path-
ways are functionally related within the same network (Figure 3).
Cis-regulatory analysis using bioinformatics software tools could
predict representation of specific TFs binding sites in clusters of
gene that are activated/repressed as part of a successful regen-
erative program. In addition, integration of biological networks
and gene expression analysis ultimately identify potential inter-
acting TFs based on protein–protein interaction map (Shannon
et al., 2003; Figure 3). Computational analysis could further
determine the density of selected TFs binding sites in relation
to each other and the transcriptional start site (Shannon et al.,
2003).

Future work should aim to provide a better understand-
ing of the transcriptional outcome of TFs signaling in the
context of different post-translational modification states or
developmental periods behind neurite growth and regeneration.
PTMs induce activation and nuclear translocation of several TFs
(including c-jun, junD, ATF3, P311, Sox11, STAT3, p53, and
Smad1), thus controlling gene expression in axotomized neu-
rons (Herdegen et al., 1991; Jenkins and Hunt, 1991; Schwaiger
et al., 2000; Fujitani et al., 2004; Raivich et al., 2004; Di Gio-
vanni et al., 2006; Seijffers et al., 2007; Bareyre et al., 2011;
Parikh et al., 2011). High-throughput analysis will eventually
produce comprehensive epigenome mapping in regenerating
neurons.

In addition to identify early cluster of TFs, future studies should
aim at understanding whether altered histone modification pro-
files tune transcriptional pathways as part of an active regenerative
program.
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