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Abstract

The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first
responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The
innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been
found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of
the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from
mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune
processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called
bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative
bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and
Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these
targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by
lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study
demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and
highlights that Ifit1 can exert a positive regulatory effect on downstream genes.

Citation: McDermott JE, Vartanian KB, Mitchell H, Stevens SL, Sanfilippo A, et al. (2012) Identification and Validation of Ifit1 as an Important Innate Immune
Bottleneck. PLoS ONE 7(6): e36465. doi:10.1371/journal.pone.0036465

Editor: Alexander Poltorak, Tufts School of Medicine, United States of America

Received September 28, 2011; Accepted April 8, 2012; Published June 20, 2012

Copyright: � 2012 McDermott et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported under National Institutes of Health (NIH), National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS057484-
03. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Jason.McDermott@pnl.gov

. These authors contributed equally to this work.

Introduction

Methods of analyzing high-throughput datasets, such as those

generated from microarray transcriptomic profiling, are generally

targeted at identifying the genes that are most differentially

expressed in response to a stimulus. This approach has proven

extremely useful for identification of genes considered important

for further investigation. However, the important upstream

mediators of responses are not always strongly differentially

regulated, for example in the case of some of the interferon

regulatory factor (IRF) transcription factors that are essential for

the innate immune response but induce large downstream effects

with only minimal changes in their own expression [1] and so

would not be identified by traditional expression analysis

approaches. Additionally, traditional analysis considers the

behavior of each gene independently from all other genes. A

complementary approach that we have developed is to treat multi-

stimulus or time point data as a coexpression network and then use

the topology of the network to identify points of constriction, or

bottlenecks [2,3,4,5,6]. Bottlenecks are predicted to represent

points of control for transitions between system states that are

important to the underlying conditions being studied. Though the

term bottleneck is used in various ways we here define a functional

bottleneck to be a gene whose inactivation causes a measurable

effect in the expression of downstream targets, acting either

directly or indirectly. Identification of and validation of functional

bottlenecks predicted by network analysis should provide insight

into the dynamics of the disease-relevant biological processes and

their regulation, and potentially serve as targets for clinical

intervention.

Neuroprotection against stroke can be induced by precondition-

ing with Toll-like receptor (TLR) ligands that activate the innate

immune system prior to stroke. Preconditioning with systemic

administrations of the TLR4 agonist lipopolysaccharide (LPS) or

the TLR9 agonist CpG-oligonucleotide (CpG-ODN) provides

robust neuroprotection against stroke in mice and nonhuman

primates [7,8,9]. The responses produced by TLR activation

depends on many factors such as the TLR ligand, the cell type,

and the environment [10] and these responses set off complex

signaling cascade that ultimately affect other cell types and

systems. Genomic analysis of the response to preconditioning with

LPS, CpG-ODN, or brief ischemia (which is dependent on TLR4)

shows that TLR signaling pathway is highly regulated [11]. To

identify functional bottlenecks with potential roles in TLR-
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mediated responses and neuroprotection, we have gathered

temporal high-throughput transcriptomic responses in the brain

and blood using microarrays that simultaneously evaluate the

expression of ,40,000 genes [11]. By analyzing these large

datasets together, it is possible to identify genes of regulatory

importance TLR signaling in the system that may be missed by

examining a single dataset individually. Additionally, inferred

networks provide an abstraction of the system in terms of

functional modules that are active at different times and/or under

different conditions, which allows placement of bottlenecks in the

context of the functional dynamics of the system.

Previously several studies have used computational and

experimental approaches to define the regulatory structure of

immune cells responding to TLR stimulus and to identify

important players in these systems. We have used inferred

networks to characterize macrophage response to TLR agonists

[3] and neuroprotection in a stroke model [2]. Ramsey, et al.

used a large set of microarray experiments and bioinformatics

approaches to define functional modules and the regulatory

structure of macrophage response to TLR agonists [12]. Amit, et

al. used a microarray experiments followed by high-throughput

siRNA perturbation of a large panel of regulators to define

a regulatory network in dendritic cells [13]. Finally, Calvano, et

al. constructed networks based on the effect of LPS stimulation

on leukocytes from human patients [14]. These networks were

based on existing knowledge of protein-protein interactions and

regulatory relationships and the authors used these networks to

identify important subnetworks (pathways) using differential

expression overlaid on the network. These and other studies

highlight the power of using approaches that employ network

analysis that considers the system as a whole as opposed to

individual components in isolation. This allows the definition of

important components of the immune response, and provides

a background for interpretation of the results we present in the

current study.

Our goal was to identify topological bottlenecks genes that

are involved in the innate immune response. We utilized

inferred networks derived from transcriptional data from three

different sources, and combined the results to identify candidate

bottleneck genes that might play more important and/or

universal roles in related TLR-mediated neuroprotection and

innate immune processes. The first two sources are blood and

brain genomic responses from a study of neuroprotection

against stroke in mice using the TLR ligands, LPS, CpG-

ODN, or brief middle cerebral artery occlusion (MCAO) to

precondition [11]. The brain dataset has been previously

described [11] and the blood dataset is described for the first

time here. The third source is from a large compendium study

of innate immune response in mouse macrophages [12]. The

first two datasets examine innate immune responses induced by

TLRs in the context of preconditioning-induced neuroprotection

against stroke. The third dataset provides an isolated view of

innate immune responses induced in macrophages by the

administration of TLR ligands. Our hypothesis is that network

analysis of transcriptional data from several systems responding

to stimulation of TLR-mediated response will allow identifica-

tion of key effectors of system function, in this case innate

immune processes.

Our computational analysis identified bottleneck genes for each

dataset analyzed and determined major functional pathways that

may be affected by these genes. When comparing all three

datasets, we found only six conserved bottlenecks including Ifi47,

Axud1, Ppp1r15a, Tgtp, Ifit1, and Oasl2. Ifit1 was further

investigated by examining its conserved network neighborhood,

which had several overlapping genes in each dataset. Finally, we

validated the role of Ifit1 as a functional bottleneck in macro-

phages by showing that blocking expression of Ifit1 using siRNA

dramatically reduced expression of the predicted first-order

network genes Usp18 and M61. This data demonstrates that

Ifit1 exerts a regulatory influence over important downstream

immune genes when stimulated by LPS, though the mechanism of

its action remains unclear. Using our novel approach, network

construction using transcriptional data from multiple time course

studies and identification of key components using topological

analysis, we define six potential key modulators of innate

immunity that may also contribute to the neuroprotective response

produced by preconditioning.

Methods

Datasets used in Computational Analyses
Mouse Neuroprotection Studies. Microarray data were

obtained from a transcriptional study of a mouse model of

neuroprotection during stroke [11]. The datasets used for the

computational analyses are the brain and accompanying blood

samples from previously published experiments [11]. In brief,

groups of C57BL/6 mice (n = 4/treatment/time) received either

preconditioning alone, preconditioning plus injurious ischemia

(45 min middle cerebral artery occlusion (MCAO)), or injurious

ischemia alone. Preconditioning paradigms included: LPS

(0.2 mg/kg; i.p.), CpG (0.8 mg/kg; i.p.), saline (i.p.), short-term

MCAO (12 min), or sham surgery (12 min). For groups receiving

preconditioning alone, mice were euthanized at 3, 24 or 72 hr post

preconditioning. In groups receiving preconditioning plus in-

jurious ischemia, MCAO was performed 72 hr following the

preconditioning stimulus and mice were euthanized at either 3 or

24 hr post occlusion. Six untreated mice were included as

a baseline control group. RNA was isolated from the brain and

blood of individual animals. Microarray assays were performed in

the Affymetrix Microarray Core of the Oregon Health & Science

University Gene Microarray Shared Resource. Labeled cRNA

target was quality-checked based on yield and size distribution.

Quality-tested samples were hybridized to the MOE430 2.0 array.

The array image was processed with Affymetrix GeneChip

Operating Software (GCOS). The original.CEL files have been

deposited in the Gene Expression Omnibus under the accession

number GSE32529. Data was normalized within tissue type (i.e.

blood and brain normalized separately) using the Robust Multi-

chip Average method (RMA) [15]. The normalized data was then

analyzed using a two-way ANOVA model for each gene, using

conditions (LPS, CpG, brief ischemia, saline and sham) and time

(3 h, 24 h, 72 h, 3 h post-ischemic event, and 24 h post-ischemic

event) as groups, treating the blood and brain datasets in-

dependently. Each preconditioning treatment maps to 5 time-

points with 3 of those times being prior to the ischemic event and

the last 2 occurring post ischemic event. Post hoc comparisons

were made using the untreated mice as a control group. P-values

were adjusted for multiple comparisons using the method of

Hochberg and Benjamini [16]. Genes were identified as signifi-

cantly regulated if the adjusted p-value was less than 0.05 and the

fold change in regulation was greater than or equal to 2.0

compared with unhandled control mice. A total of 7352 and 8388

differentially regulated probesets were identified in the blood and

brain analyses respectively and were used for the network

inference below.

Mouse macrophage data. A large compendium of data

from mouse macrophages treated with various innate immune

agonists, and with various genetic deletions of important

Ifit1 Controls Innate Immune Processes
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transcription factors and signal transduction pathway members

[12] was used for the third dataset. This dataset includes multiple

time course studies using 15 different innate immune agonist

treatments (including LPS and CpG) and 9 different genetic

deletions (transcription factors and signal transduction compo-

nents). The Affymetrix MOE430 2.0 array was also used in this

study and samples processed as described in [12] using RMA and

ANOVA with adjusted p-values (p,0.05) and fold change (.2.0)

used for significance filtering. This resulted in 6088 differentially

expressed probesets for the macrophage that were used as input

for network inference below.

Network Inference
To determine high-dimensional relationships between genes in

transcriptomic data we used an approach to infer coexpression

networks. For the purposes of network inference we treated each

probeset from the microarray analysis as an independent entity,

rather than combining expression levels from probesets that

represent the same gene. This means that in some cases multiple

nodes in the network can correspond to a single gene. For

purposes of topological properties, this choice allows determina-

tion of bottlenecks without the added level of uncertainty that can

be introduced by either combining expression values from

different probesets or choosing one probeset as representative of

the behavior of a gene. We used an algorithm called context

likelihood of relatedness (CLR), which determines similarity

between gene expression profiles based on mutual information

between the profiles, and then scored the relationships using a Z-

score [17]. Though the CLR method was developed to infer

regulatory relationships between transcriptional regulators and

their targets, we use it here as a method for inferring more general

relationships between genes in the form of coexpression networks.

For each network we used default parameters for inference using

10 bins for binning data and 3 splines for curve fitting (see [17] for

details).

Thresholds for considering a relationship to be an edge in

a network were chosen to balance precision and recall as

estimated in Faith, et al. [17]. Though the original estimates

were based on an examination of a prokaryotic regulatory

network, this Z-score threshold is reasonably conservative for

determining co-expression networks in our eukaryotic networks.

The brain and macrophage networks were accordingly filtered

with a CLR Z-score of 5.0 (i.e. only edges with a score of 5 or

above were retained). To generate a network with approxi-

mately the same number of nodes the blood network was

filtered with a CLR Z-score of 6.0. Though the Z-score is

a property of the gene-to-gene relationships in the network (as

opposed to a property of the individual genes), increasing the Z-

score threshold in the network increases the number of genes

with no edges in the network, and these are not considered as

part of the new network. Keeping the number of nodes similar

in all networks was important to allow bottlenecks to be more

fairly compared between networks.

The full networks for each of the datasets are provided in a single

XGMML-format file that can be opened with Cytoscape [18]

Supplemental File S1.

Topological Identification of Bottlenecks
To identify potential points of constriction for information

flow in the inferred networks we analyzed each network

topologically. The betweenness centrality topological measure

identifies bottlenecks that are predicted to be important to the

system [3,4,6,19]. Betweenness is a centrality measure calculated

as the percentage of shortest paths between all genes in the

network pass through the gene in question, and so is dependent

on the global structure of the inferred network. We used custom

scripts in the R statistical language [20], using the igraph library

[21] and available on request, to calculate topology of the

networks. Nodes in each network were ranked according to

their network betweenness scores, such that the top bottlenecks

were at the top of each network node list. Probes that were in

the top 20% ranked by betweenness were considered to be

bottlenecks [6,22].

Functional Condensation of Networks to Highlight
Bottlenecks
To determine clusters for the purpose of network summariza-

tion and functional exploration we employed the Louvain method

for optimizing the modularity of clusters (communities) identified

from a network [23]. This approach works by first optimizing

modularity locally in the network, then aggregates nodes from the

same cluster and builds a network in which the nodes are these

clusters. The result is a network partition that provides clusters

with modularity that is close to optimal globally. For each

bottleneck that was present in a given network, cluster member-

ship of all neighboring genes (including the bottleneck itself) was

identified. All clusters with a membership of 10 probes or more

were analyzed for functionality using gene ontology (GO) analysis.

In this way, each bottleneck was associated with functional clusters

to which it was directly linked in the network. These relationships

were visualized using the Cytoscape graph visualization package

[18], in which the relationships between bottlenecks and functional

clusters could be displayed in one condensed graph. All three

branches of GO categorization were used to characterize the

clusters.

Cell Culture and siRNA
RAW 264.7 macrophage cells (obtained from ATCC) were

cultured in high glucose DMEM (Gibco) containing 10% fetal

bovine serum (Hyclone). Cells were sustained using standard tissue

culture techniques in an incubator maintained at 5% CO2 and at

37uC. RAW 264.7 cells were plated at ,30,000 cells/cm2 in 6-

well plates for 24 hrs. RAW 264.7 cells were transfected with

100 nM Stealth Ifit1 siRNA #58 (Invitrogen; MSS205258) or

100 nM LoGC containing Stealth Negative siRNA (Invitrogen;

10620312) using lipofectamine RNAiMAX (Invitrogen) in Opti-

MEM (Gibco) media for 4 hrs. At 24 hr post transfection, RAW

264.7 cells were treated with 1 ng/ml LPS (Sigma) or saline for

3 hr followed by RNA isolation.

RNA Isolation, Reverse Transcription, and qtPCR
RNA was isolated from RAW 264.7 cells using an RNAeasy

Mini Kit (Qiagen). Reverse transcription was performed on 2 ug

RNA using an Ominiscript Reverse Transcription kit (Qiagen).

Quantitative PCR (qtPCR) was performed using Taqman Gene

Expression Assays (Applied Biosystems) for Ifit1

(Mm00515153_m1), Usp18 (Mm01188805_m1), M61

(Mm00487796_m1), and b-Actin (Mm00607939_s1) with Taq-

Man Universal PCR Master mix (Applied Biosystems) on an ABI

Prism 7700. Results were normalized to b-Actin expression and

analyzed relative to untreated controls. The relative quantification

of the gene of interest was determined using the comparative CT

method (22DDCt). Data is represented as mean 6 SEM. The n is

greater than or equal to 3 for each experiment. Statistical analysis

was performed using GraphPad Prism5 software. Two-way

ANOVA with Bonferroni post hoc test was used. Significance

was determined as p,0.05.

Ifit1 Controls Innate Immune Processes
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Results and Discussion

Topological Analysis of Networks Inferred from Disparate
Data Sources
To infer confident coexpression relationships between genes we

used the context likelihood of relatedness (CLR) method [17].

CLR uses the mutual information between the expression profiles

of two genes over all conditions examined to calculate a Z score

based on comparison with all mutual information scores for each

of the two genes, thus providing a network-based mutual

information score. Though it was originally designed to infer

direct relationships between transcriptional regulators and their

targets, we use it here to infer more general coexpression

relationships between genes [6,24]. The resulting networks provide

an abstract representation of the states of the system, in which

groups of coexpressed genes are linked to each other through

coexpression relationships. Supplemental Figure S1 illustrates this

by showing how expression dynamics relate to the network

structure.

We applied CLR to each dataset independently to generate

a matrix of probeset-to-probeset coexpression relationships. To

identify bottlenecks we ranked all genes in the network by their

betweenness centrality and considered the top 20% to be predicted

bottlenecks. We chose to examine the top 20% of nodes based on

previous studies [2,6,22]. Betweenness centrality is calculated as

the fraction of shortest paths between all pairs of nodes in

a network that pass through a particular node. Therefore, nodes

with high betweenness are points of constriction (bottlenecks) in

the network. In coexpression networks the structure of the network

reflects temporal and/or functional progression from one state to

another [19]. We chose to treat probesets as independent entities

in this analysis, rather than choosing one probeset to represent the

behavior of a gene for those cases where more than one probeset

matches a single gene. This choice means that multiple nodes in

the network could represent the same gene.

Context of Bottlenecks in Inferred Networks
We generated condensed graphical representations of the three

networks (macrophage, brain, and blood) that depict the in-

teraction of prominent bottlenecks (circles) with network clusters

(squares) determined using the Louvain [23] community-finding

algorithm (Figure 1). The size of cluster nodes is proportional to

the number of genes residing in that cluster, the functional label

assigned to each cluster are indicated followed by the negative log

of the p-value for enrichment in that function (higher numbers are

more significant). Cluster colors (see Fig. 1 legend) indicate general

functional groups that are shared between the three networks. It

should be noted that not all genes are naturally grouped into large

clusters, thus not all nodes and edges of the network are

represented. The resulting absence of some connections make

some bottlenecks appear to be ‘‘dead ends’’ instead of linking

different regions of the graph, as they do in the complete network.

In addition, since cluster labels were assigned based on the most

prominent ontology grouping (smallest p-value in the hypergeo-

metric enrichment test) associated with each group of genes,

assigned labels should be viewed as approximate; other functional

characterizations may be applicable. We chose to represent the

interactions of genes that were characterized as bottlenecks in at

least two of the three networks.

Conserved Bottlenecks Between Networks
We have previously used the overlap of bottlenecks from

disparate networks to identify conserved bottlenecks [25]. Here we

identified overlapping bottlenecks from each of the networks and

Figure 1. Condensed networks of bottlenecks and functional
clusters. A network was inferred from the macrophage innate immune
compendium (A), or the blood- (B) or brain-(C) derived transcriptome
from the stroke study. Bottlenecks (circles) were identified based on

Ifit1 Controls Innate Immune Processes
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show that there are six bottlenecks in common across all networks

(Table 1). One concern with this analysis is that multiple probesets

might exist for bottleneck genes, calling in to question their role as

functional bottlenecks. However, we note that all of these shared

bottlenecks are represented by one differentially regulated

probeset in these datasets. This amount of overlap between the

three sets is unlikely to occur by chance; the associated p-value is

3e24 relative to randomly chosen gene sets. Two of these genes,

Ifi47 and Tgtp, are members of a family of interferon-induced

GTPases that play important roles in response to various

pathogens [26]. Two other shared bottlenecks, Ifit1 and Oasl2,

are also interferon induced and involved in response to pathogens

[3,27] and were identified as being induced following stroke in

preconditioned animals [11]. Previously, we identified Ifit1 as

a member of a macrophage ‘core response module’ that was

commonly differentially expressed in response to multiple stimu-

latory signals [3]. The two remaining shared bottlenecks are not

known to be interferon induced. Axud1 is an anti-apoptotic factor

that suppresses proliferation [28]. Ppp1r15a, also known as

Gadd34, is expressed in the ischemic brain and reverses protein

synthesis shutdown [29], and can inhibit viral replication [30].

Thus, we postulate that these conserved bottlenecks are important

control points for innate immune response. The network

neighborhoods of the four interferon-stimulated conserved bottle-

necks are shown in Supplemental Figure S2.

Functional Characterization of Ifit1
We had previously identified Ifit1 as a member of the

macrophage core response module [3]. Thus, we selected Ifit1

for further investigation. We examined the network context of Ifit1

in the three networks we had inferred. The first-order network

surrounding Ifit1 (i.e. all of its direct neighbors) was calculated and

the overlapping set of neighbors is listed in Table 2. Because Ifit1

has few neighbors in the blood network, the overlap here was

small. However, two genes, Igtp and Usp18, were shared

neighbors in all the networks examined. Additionally, Ifi47,

already identified as a shared bottleneck, was found to be a shared

neighbor of Ifit1 if the blood network neighborhood was extended

out one link (i.e. to a second-order network of Ifit1). A number of

other genes were shared neighbors in two of the three networks,

including many interferon-stimulated genes. We provide the

shared neighborhoods of the other conserved bottlenecks as

Supplemental File S2.

In a previous study the effects of siRNA knock-downs of 125

regulators had been assessed on a total of 126 target genes after

an initial network-based analysis of TLR stimulation in dendritic

cells was performed [13]. The study focused only on transcrip-

tional regulators and so does not include direct validation of any

of our predicted shared bottlenecks. However, we assessed the

regulatory coherence of the six members of the conserved Ifit1

neighborhood (Table 2) that were assayed in the study: Ifit1,

Ifit3, Oasl1, Rsad2, Iigp2, and Irf7. We therefore assessed the

correlation of expression profiles for each gene in response to the

125 regulator knock-downs inside the neighborhood versus other

genes. This analysis revealed the in-group correlation to be 0.76

while the out-of-group correlation was 0.40 (p-value 2e216 by t

test). This is a slight improvement over the mean correlation of

the neighbor genes that are not common between the networks

(10 genes; in-group correlation 0.70). The profiles of each of the

neighbors is shown as Supplemental Figure S3. These results

provide validation that common neighbors of Ifit1 are indeed

regulated by the same regulators, even when looking in different

cell types. These results show that Ifit1 and its neighbors are

strongly positively regulated by the Stats 1, 2, and 4, Etv6, E2f5,

and Irf8 in dendritic cells.

Examining the context networks described above we found that

in the blood network, Ifit1 links three clusters, one that is strongly

identified as a group of genes that function in mitosis, and the

other two more weakly associated with immunity and nervous

system development. The importance of the nervous system-

associated cluster is unclear but it may suggest a response to

damage signal that originates from the brain during ischemic

stroke. The other two associations suggest that Ifit1 may

participate in regulating proliferation of immune cells during

stroke-related processes. Similarly, the brain network shows that

Ifit1 associates with a cluster of genes related to the innate immune

response, and the macrophage network shows that Ifit1 associates

with viral response genes that overlap with those in the brain

cluster. These are similar groups of genes that demonstrate

a potential role for Ifit1 in regulating the inflammatory response to

innate immune events in all three network types as can be seen in

Table 2.

Ifit1 Controls Response of Downstream Genes to LPS
Stimulation
To test the predicted regulatory function of Ifit1, we suppressed

Ifit1’s gene expression in RAW 264.7 macrophage cells using

topological betweenness and clusters (squares) were assessed for
statistical enrichment in gene ontology functional categories versus
genes in the rest of network using the hypergeometric test. Shared
functions are indicated by cluster color: orange, immune related/stress
response; pink, signaling; green, cell cycle/mitosis. Clusters are labeled
with most enriched functional category followed by the negative
exponent of the p-value for enrichment. Edges are colored red to
indicate that the bottleneck is a member of the cluster that it links to,
and red to indicate that the bottleneck is linked to the cluster. Note that
not all bottlenecks, clusters or relationships between the two are
present in this representation (see text).
doi:10.1371/journal.pone.0036465.g001

Table 1. Shared bottlenecks between three inferred networks.

Symbol ProbeID Description

Ifi47 1417292_at interferon gamma inducible protein 47

Axud1 1434350_at AXIN1 up-regulated 1

Ppp1r15a 1448325_at protein phosphatase 1, regulatory (inhibitor) subunit 15A

Tgtp 1449009_at T-cell specific GTPase

Ifit1 1450783_at interferon-induced protein with tetratricopeptide repeats 1

Oasl2 1453196_a_at 29-59 oligoadenylate synthetase-like 2

doi:10.1371/journal.pone.0036465.t001

Ifit1 Controls Innate Immune Processes
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siRNA (Figure 2). Ifit1 siRNA successfully knocked down baseline

levels of Ifit1 and the induction of Ifit1 via the TLR4 ligand, LPS.

We next determined the effect of knocking down Ifit1 on the

regulation of two genes predicted to be in the Ifit1 first-order

network, Usp18 and M61, in response to LPS. As stated above,

Usp18 is one of the few genes that was identified as a neighbor to

Ifit1 in all three of our networks, and would therefore be predicted

to be regulated by Ifit1. M61 is an Ifit1 neighbor in the

macrophage network and is known to play a critical role in the

innate immune response. As predicted from the modeling, when

Ifit1 is knocked down both Usp18 and M61 are significantly

suppressed in response to LPS (Figure 2). This indicates that Ifit1
is required in the macrophage cell line, for the induction of Usp18

and M61 in response to LPS-mediated innate immune activation,

supporting Ifit1’s role as a functional bottleneck gene, though our

results do not distinguish if this is a direct effect, or requires an

intermediate factor.

Conclusions
In this study we used a network-based approach to define

important players in cellular networks related to stroke and innate

immunity by predicting topological bottlenecks. Bottlenecks, often

defined as genes or proteins with a high degree of betweenness

centrality in a network, are considered key points of potential

biological and functional significance [19,22,31]. Previous re-

search in yeast, worm, and fly protein networks demonstrated that

proteins with the highest levels of betweenness and centrality were

more likely to be evolutionarily conserved and essential to the

viability of the system [32]. Thus, we sought to identify bottleneck

genes in TLR-mediated innate immune responses in three systems.

Two of these systems describe in vivo innate immune responses in

the setting of TLR preconditioning-induced neuroprotection

against stroke in the brain and blood and the third provides an

isolated view of innate immune responses in TLR-ligand

stimulated macrophage cells in vitro. Comparing these three

Table 2. Shared neighbors of Ifit1 in three inferred networks.

Network Neighborhooda

Symbol ProbeID Description Brain Macrophage Blood

Igtp 1417141_at interferon gamma induced GTPase 1 1 1

Usp18 1418191_at ubiquitin specific protease 18 1 1 1

Ifi47 1417292_at interferon gamma inducible protein 47 1 1 2

Parp9 1416897_at poly (ADP-ribose) polymerase family; member 9 1 1

Irf7 1417244_a_at interferon regulatory factor 7 1 1

Iigp2 1417793_at interferon inducible GTPase 2 1 1

Gbp4 1418392_a_at guanylate nucleotide binding protein 4 1 1

–- 1418580_at –- 1 1

Oasl1 1424339_at 29-59 oligoadenylate synthetase-like 1 1 1

Ifih1 1426276_at interferon induced with helicase C domain 1 1 1

–- 1434380_at Diabetic nephropathy-like protein (Dnr12) 1 1

LOC209387 1435665_at Tripartite motif protein 30-like 1 1

Rsad2 1436058_at radical S-adenosyl methionine domain containing 2 1 1

Tgtp 1449009_at T-cell specific GTPase 1 1

Ifit3 1449025_at interferon-induced protein with tetratricopeptide repeats 3 1 1

Parp14 1451564_at poly (ADP-ribose) polymerase family; member 14 1 1

M61 1451905_a_at myxovirus (influenza virus) resistance 1 1 1

Oasl2 1453196_a_at 29-59 oligoadenylate synthetase-like 2 1 1

aNumbers indicate that the indicated gene is in the first order (1) or second order (2) network of Ifit1 for each network.
doi:10.1371/journal.pone.0036465.t002

Figure 2. Silencing Ifit1 suppresses LPS activation of Usp18 and M61. siRNA against Ifit1 or a negative control were introduced into
RAW264.7 macrophages by transfections and the macrophages were treated with 1 ng/mL of LPS. Expression of Ifit1 (A), Usp18 (B) and M61 (C)
were measured by RT-PCR at 3 hours post-LPS treatment. The results show that Ifit1 exerts a positive regulatory effect on Usp18 and M61.
doi:10.1371/journal.pone.0036465.g002
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datasets allows us to identify potential bottleneck genes important

for innate immune activation.

Previously we have described an approach to compare bottle-

necks in networks from proteomics data of HCV-infected cell

culture and patient samples and showed that this highlights a small

number of conserved bottlenecks between the two systems [25].

This analysis identified a conserved bottleneck involved in fatty

acid b-oxidation, DCI, that has been validated as being necessary

for HCV replication in vivo [5]. In the current study we have used

a similar approach in networks inferred from transcriptional data.

The number of overlapping bottlenecks between the three

networks was found to be highly significant and composed of six

genes with some similar functional characteristics. Four of the

common bottlenecks are interferon-stimulated genes (ISGs) in-

cluding Ifi47, Ifit1, Oasl2 and Tgtp and two are members of

a family of GTPases known to have roles in response to various

pathogens, Ifi47 and Tgtp [26]. These six genes may play critical

roles in the regulation of innate immune processes and potentially

are involved in promoting neuroprotection against stroke.

Our network analysis showed that the small set of genes

predicted to be bottlenecks in each of the networks examined had

overlapping neighborhoods, which represent likely targets of

regulation. This suggests that the bottleneck genes may be

members of functional modules that are conserved in different

responses involving innate immune function. For instance, it is

interesting to speculate that the four conserved interferon-

stimulated bottlenecks may jointly control the regulation of

different overlapping aspects of the interferon response, similar

to the complex regulation seen in some pathogens [33]. Further,

the topological properties of the bottleneck genes indicate that they

may drive downstream processes either directly or indirectly, and

that the downstream processes should be represented in their

network neighborhood. Thus abrogating the expression of

a bottleneck gene should have an impact on the expression of

some or all of its neighbors. We showed this to be true in the case

of Ifit1. When the expression of Ifit1 is suppressed using siRNA in

macrophage cells, the expression of downstream genes Usp18 and

M61 were also suppressed in response to LPS. This supports the

relationship between Ifit1 and its predicted first-order network,

implicating Ifit1 as a functional bottleneck that affects downstream

processes.

How Ifit1 exerts its bottleneck functions is currently unclear.

A recent study by Pichlmair, et al. demonstrated that bone

marrow-derived dendritic cells from Ifit1-deficient mice dis-

played reduced interferon stimulated response element (ISRE)

activity when treated with either LPS or CpG; however, type I

interferon was not affected [27]. Importantly, the promoter

regions of both M61 and Usp18 contain ISRE sites, thus the

suppression of ISRE activation in the Ifit1-deficient mice would

likely correlate with a suppression of these genes. This is

consistent with our finding that inhibiting Ifit1 using siRNA

suppressed Usp18 and M61 expression in response to LPS.

TLRs can directly activate interferon regulatory factors (IRFs)

and induce expression of ISRE containing transcripts with out

the induction of type I interferons. Thus, Ifit1 may affect the

expression of the network genes Usp18 and M61 by reducing

TLR-mediated ISRE activity. Ifit1 may also affect gene

expression by interacting with eukaryotic initiation factor 3

(eIF3) to block protein expression [34,35]. Additionally, Ifit1

interacts with and sequester tri-phosphorylated RNA [33],

which are produced during transcription, and the related family

member, Ifit2, degrades TNF mRNA [36], although the

mechanism has not been identified. Thus, it is possible that

Ifit1 may inhibit protein translation or affect mRNA and

therefore alter gene expression. The underlying mechanism of

Ifit1’s bottleneck function will be examined in further studies.

In conclusion, comparing the topology of networks inferred

from three different data sets identified a small set of conserved

putative bottleneck genes. We show that our approach using

topological analysis of inferred networks from datasets related to

TLR-mediated immune response can identify functional bottle-

necks that directly or indirectly control the expression of

downstream genes, as we demonstrate for Ifit1. Thus, our study

shows the utility of analyzing high-throughput data using

network approaches to identify potentially significant genes

and proteins. The genes identified in this study are now being

further investigated to determine their potential functional

impact on innate immune processes and neuroprotection against

stroke.

Supporting Information

Figure S1 Coexpression networks provide an abstrac-
tion of expression dynamics in the system. A portion of the

inferred network from the blood transcriptomic data set is shown

with circles representing probesets and lines the CLR relationships

between them. Each heatmap represents a number of genes

located at the indicated point in the network. The time courses for

each treatment (LPS, CpG, ischemic preconditioning, saline and

sham treatment) are indicated as 3 h, 24 h and 72 h post-

treatment (white bar) and 3 h and 24 h post-stroke (pink bar). In

the heatmaps, green represents downregulation relative to un-

treated controls and red represents upregulation. The figure shows

that different regions of the network represent different distinct

patterns of gene expression, and that no one pattern dominates the

network.

(JPG)

Figure S2 Local networks of conserved IFN-regulated
bottleneck genes. Local networks surrounding conserved

bottlenecks in macrophage (A), blood (B) and brain (C) networks

are shown for the set of four putative interferon-stimulated

conserved bottlenecks (green nodes), Ifi47, Tgtp, Ifit1, and Oasl2.

Neighbors of these bottlenecks are colored according to the

number of bottlenecks they are neighbors of in any of the networks

(tan = 1, yellow= 2, orange = 3, red = 4). This shows that the

neighborhood of these genes is largely conserved, and shared in

each of the networks, though this is especially evident in the

macrophage and brain networks.

(TIF)

Figure S3 Regulation of the conserved Ifit1 neighbor-
hood in dendritic cells. RT-PCR expression of target genes

included in our Ifit1 neighborhood (rows) are shown against

a panel of 125 siRNA knock-downs of regulators (columns) taken

from the study by Amit, et al. [13]. In the heatmap, green

represents downregulation relative to control siRNA treatment

and red represents upregulation. The figure shows that the

common Ifit1 neighborhood identified from our three inferred

networks is regulated by the same sets of regulators.

(PDF)

File S1 Cytoscape file containing annotated macro-
phage, blood and brain networks.

(TAR)

File S2 Network neighborhoods of conserved bottle-
necks in the macrophage, blood and brain networks.

(XLSX)
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