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Metabolism and DNA methylation (DNAm) are closely linked. The value of the metabolism-
DNAm interplay in stratifying glioma patients has not been explored. In the present study,
we aimed to stratify lower-grade glioma (LGG) patients based on the DNAm associated
with metabolic reprogramming. Four data sets of LGGs from three databases (TCGA/
CGGA/GEO) were used in this study. By screening the Kendall’s correlation of DNAm with
87 metabolic processes from KEGG, we identified 391 CpGs with a strong correlation with
metabolism. Based on these metabolism-associated CpGs, we performed consensus
clustering and identified three distinct subgroups of LGGs. These three subgroups were
characterized by distinct molecular features and clinical outcomes. We also constructed a
subgroup-related, quantifiable CpG signature with strong prognostic power to stratify
LGGs. It also serves as a potential biomarker to predict the response to immunotherapy.
Overall, our findings provide new perspectives for the stratification of LGGs and for
understanding the mechanisms driving malignancy.
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1 INTRODUCTION

Lower-grade gliomas (LGGs) are common primary intracranial tumours characterized by inevitable
recurrence, high mortality and substantial heterogeneity (van den Bent, 2010). Due to the substantial
heterogeneity of the tumour, different individuals usually have highly variable prognoses and distinct
responses to various types of treatments. Although the World Health Organization (WHO)
classification has incorporated molecular markers, such as isocitrate dehydrogenase (IDH)
mutation, chromosome 1p/19q codeletion, and TERT promoter mutation, which has greatly
improved the stratification of glioma patients (Louis et al., 2016), the heterogeneity of gliomas
still needs to be further elucidated.

Metabolic reprogramming is a hallmark of cancer (Faubert et al., 2020). It has been proven to
affect cancer cell proliferation, migration and invasion in multiple ways, such as satisfying the
increased energy needs of cancer cells and affecting various biological processes by altering the
level of substrates. Epigenetic modification is a process that regulates gene expression without
altering DNA sequences. It is plastic, inheritable and plays a pivotal role in cell differentiation
and cell function (Bauer et al., 2016; Gu L. et al., 2020; Blanco et al., 2021). Recent studies have
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also found that it plays important roles in disease pathogenesis
and diagnosis (Taby and Issa, 2010; Gu et al., 2015). As an
important form of epigenetic modification, DNA methylation
(DNAm) has been proven to be involved in carcinogenesis
(Hao et al., 2017; Hu et al., 2021). It is a process in which a
methyl group is transferred onto the C5 position of the
cytosine to form 5-methylcytosine (5-mC) (Schübeler,
2015). The methylation process is mediated by DNA
methyltransferases (DNMTs), while the demethylation
process is driven by ten-eleven translocation (TET)
enzymes. In addition to DNMTs and TET enzymes,
methylation can also be regulated by metabolism, and they
are closely interlinked. Recent advances have shed light on the
reciprocal regulatory relationship between metabolism and
DNAm in cancer cells (Lopes, 2020; Sun et al., 2021). On
the one hand, metabolic changes can affect DNAm by altering
the levels of substrates. For example, in IDH-mutant tumours,
the aberrant metabolite 2-hydroxyglutarate (2-HG), produced
in the tricarboxylic acid cycle, can inhibit TET-mediated DNA
demethylation, thus causing genome hypermethylation (Xu
et al., 2011). S-adenosyl methionine (SAM), produced in one-
carbon metabolism processes such as the methionine cycle and
the folate cycle, is the major methyl group donor of DNAm,
and a low-folate diet has been reported to cause DNA
hypomethylation and increase the risk of neoplasia (Crider
et al., 2012). On the other hand, DNAm regulates the
expression of metabolism-associated genes by affecting
chromatin structure and transcription factor binding (Pan
et al., 2018). In recent years, the development of computer
science and omics technology has brought new opportunities
to cancer research, allowing us to use bioinformatic methods,
such as machine learning, to conduct analyses on high-
throughput omics data and perceive disease molecular
differences more comprehensively (Wang et al., 2013; Gu H.
et al., 2020). The aforementioned studies on metabolism and
methylation mainly focused on the regulatory mechanisms of
specific metabolites on DNAm, and much effort has been
devoted to exploring the metabolic heterogeneity of
tumours from the perspective of transcriptomics and
metabolomics (He et al., 2020; Gong et al., 2021). No one
has studied the value of the metabolism-DNAm interplay in
cancer stratification.

In the present study, we aimed to study the value of
metabolism-associated DNAm in the stratification of LGGs.
We conducted an integrated analysis of methylome and
transcriptome data from The Cancer Genome Atlas (TCGA),
Gene Expression Omnibus (GEO) and Chinese Glioma Genome
Atlas (CGGA) databases and an independent cohort (Qilu
cohort). The correlation between DNAm and metabolism was
evaluated. Three biologically discrete subgroups with distinct
metabolism-associated DNAm patterns were identified. In
addition, we constructed a subgroup-related, quantifiable CpG
signature to stratify patient prognosis and predict the potential
response to immune checkpoint inhibitor (ICI) treatment,
providing a novel biomarker for precision medicine. Together,
our analyses highlighted the previously unappreciated role of
DNAm in metabolism-associated heterogeneity in LGGs.

2 MATERIALS AND METHODS

2.2 Data Collection and Processing
2.1.1 Publicly Available Datasets
The methylation, gene expression and clinical data of the TCGA
LGG cohort were collected from the UCSC Xena database, and
the methylation and clinical data of the GSE48461 and
GSE104293 data sets were collected from the GEO database.
The mRNAseq_693 data set of the CGGA database was also
collected. Only patients with primary LGGs (WHO grade II and
grade III) in the above data sets were included for analysis
(baseline characteristics are summarized in Supplementary
Table S1). Methylation data were filtered and normalized
using the champ.filter and champ.norm functions of the
‘ChAMP’ R package. For quality control, outliers shown in
principal component analysis (PCA) were excluded.
Furthermore, CpGs that were hypermethylated (β > 0.7) or
hypomethylated (β < 0.3) in 98% of all samples were also
excluded. Only CpGs that existed in both the TCGA and GEO
data sets were included. Batch effects of methylation data among
the TCGA LGG, GSE48461, and GSE104293 data sets were
removed using the “sva” R package according to a previously
reported pipeline (Marabita et al., 2013). GSE48461 and
GSE104293 were merged into one cohort and considered the
GEO cohort. For transcriptome data, frglycoagments per kilobase
of transcript per million mapped reads (FPKM) format data were
transformed into transcripts per million (TPM) format for
analysis.

2.1.2 Patient Sample Collection of the Qilu Cohort
We collected samples for mRNA sequencing from 23 LGG
patients who received surgical resection at Qilu Hospital of
Shandong University from May 2018 to December 2018.
Transcriptome data were transformed into TPM format for
analysis. The study was approved by the Research Ethics
Committee of Qilu Hospital of Shandong University, and
written informed consent was obtained from all patients.

2.2 Bioinformatic Analysis
Gene set variation analysis (GSVA) is a method for estimating the
variation in gene set enrichment through the samples of a
transcriptome data set. Various biological process-associated
gene sets were collected from the Molecular Signatures
Database (MSigDB) and previous studies (Rosario et al., 2018).
The GSVA score of each biological process for each sample was
calculated using the ‘GSVA’ R package.

Gene Ontology (GO) enrichment analysis is a method to
annotate gene sets. It finds the overrepresented GO terms of a
given set of genes based on the annotations of the gene set. Gene
set enrichment analysis (GSEA) is a computational method to
determine whether a given set of genes has significant
differences in two groups of objects. Both GO enrichment
analysis and GSEA were conducted using the “clusterProfiler”
R package.

Differentially expressed genes (DEGs) between groups were
identified using the “limma” R package on count data, and genes
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with absolute log2-fold change (|log2FC|) > 2 and adjP <0.05
were defined as significantly differentially expressed.
Differentially methylated CpGs (DMCs) were determined
using the champ.DMP function of the “ChAMP” package.

2.3 Metabolism-Associated CpGs in
Lower-Grade Gliomas
First, 87 metabolic processes acquired from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database were
quantified using the GSVA algorithm. Kendall’s correlation was
used to assess the correlation between metabolic processes and
CpGs. IDH mutation has a profound effect on both metabolism
and DNAm (Han et al., 2020). Such an effect could be a significant
confounding factor in assessing the correlation between
metabolism and DNAm. Thus, in this part, we included only
IDH wild-type LGGs from the TCGA (n = 91) for metabolism-
associated CpG identification. Kendall’s tau-b (τb) of each
metabolic process with all CpGs was calculated based on GSVA
scores and beta values. Univariate Cox regression was used to
assess the association of CpGs with overall survival (OS). Then, the
criteria below were used to eventually determine the metabolism-
associated CpGs: 1) Kendall’s tau-b (τb) > 0.4 and false discovery
rate (FDR) < 0.05; 2) prognostic significance in both IDH-mutant
and wild-type LGGs (univariate Cox p value < 0.05).

2.4 Clustering, Classification of
Lower-Grade Gliomas and Validation
To identify metabolism-associated DNAm subgroups, K-means
clustering was carried out based on the metabolism-associated
CpGs using the R package “ConsensusClusterPlus”. The similarity
between samples was measured by Euclidean distance. Eighty percent
of the samples were resampled 1000 times. The optimal k value was
determined by the cumulative distribution function (CDF).

For external validation of the clinical characteristics of the
clustering, we used the K-nearest neighbour (KNN) algorithm
to classify the GEO cohort. The KNN algorithm is a commonly
used machine learning classification algorithm. It takes k training
samples closest to the object as a reference and assigns the object to
the most common class among them. In the present study, to
determine the optimal k value, the TCGA cohort was randomly
assigned to a training set and testing set at a ratio of 1:1. The
classification accuracy of KNN classification when k ranged from 1
to 20 was tested, and k value corresponding to the highest accuracy
was determined as the optimal k value. Then, taking the clustered
TCGA cohort as a reference, the GEO cohort was classified by the
KNN method, and clinical characteristics were assessed. PCA was
also performed to validate the clustering and classification results.

2.5 Construction of the Metabolic CpG
Signature
For the construction of the metabolic CpG signature, differential
methylation analysis was performed on the TCGA cohort using
the DMP function of the “ChAMP” R package. Differences were
considered significant if delta-beta > 0.1 and FDR < 0.05.

Metabolic-related CpGs differentially methylated across all
subgroups were selected and considered subgroup-related
CpGs. Then, least absolute shrinkage and selection operator
(LASSO) Cox regression was performed on these CpGs. The
optimal lambda value was determined according to the partial
likelihood deviance. The risk score of each sample was defined as
the sum of the beta values of the signature CpGs weighted by their
LASSO coefficients. The risk score can be calculated using the
following equation, where Beta and Coef represent the beta value
of the CpG and the corresponding coefficient, respectively:

RiskScore � ∑
M

i�1
(BetaipCoefi)

An alternative gene signature was also generated by fitting
gene expression to the CpG signature-generated risk score.
Specifically, Kendall’s correlation of all genes with the risk
score was caclulated. Genes with a strong linear correlation
(τb > 0.35, FDR < 0.05) with the risk score were selected.
LASSO regression was utilized to fit these genes to the risk
score. The optimal lambda value was determined according to
the mean-squared error. The risk score can be calculated using
the following equation, where GeneExp represents gene
expression, and Coef represents the corresponding coefficient:

RiskScore � ∑
M

i�1
(GeneExpipCoefi) + Intercept

2.6 Correlation Between the Signature and
Ki-67 Positive Rate
Immunohistochemistry-determined Ki-67 positive rate is a widely
used indicator of the percentage of proliferating cells within a
tumour. To further validate our signature, we compared the Ki-67
positive rate determined by immunohistochemistry and the risk
score using the Qilu cohort. Specifically, the Ki-67 positive rates
were determined by two experienced pathologists from the
Department of Pathology of Qilu Hospital and were then
divided into lower positive rates (<10%) and higher positive
rates (≥10%). The alternative gene signature was applied to
calculate the risk scores of the Qilu cohort. The Qilu cohort
was divided into a high-risk group and a low-risk group using
themedian risk score as the cut-off value. Finally, Fisher’s exact test
was used to determine the significance of the difference in the Ki-
67 positive rate between different groups.

2.7 Estimation of Immune Infiltration
ESTIMATE was used to quantify the overall immune and stromal
abundance of samples. Single-sample gene set enrichment analysis
(ssGSEA) and MCP-counter were used to quantify immune
subpopulations. Immune metagenes for ssGSEA were collected
from a previously published study (Charoentong et al., 2017).

2.8 Prediction of Immunotherapy Response
The Immunophenoscore (IPS) is an algorithm that predicts the
response to ICI treatments. It quantifies the potential

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9022983

Yang et al. Metabolism-Associated DNAm Stratifies LGGs

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


immunotherapy response through four aspects, including MHC-
related molecules (MHC), checkpoints or immunomodulators
(CP), effector cells (EC) and suppressor cells (SC), and integrates
them into the IPS. A higher IPS indicates a better response to ICI
therapy, while a lower IPS indicates a poorer response. An online
tool to calculate the IPS was developed by the authors (https://
tcia.at/).

2.9 Statistical Analysis
The Wilcoxon test and Student’s t test were used to assess
differences in continuous variables among/between groups.
Fisher’s exact test and the chi-square test were used to assess
differences in contingency table variables among/between groups.
Multivariate Cox regression was implemented to determine the

independence of prognostic factors. The Kaplan-Meier method
and the log-rank test were used to assess the significance of
prognostic differences among/between groups. Kendall’s tau-b
was used to assess the correlation between variables. Statistical
significance was defined as p < 0.05. All analyses were performed
using R software version 4.1.1 (https://www.r-project.org/).

3 RESULTS

3.1 Identification of Metabolism-Associated
DNAm Patterns in Lower-Grade Gliomas
We created a flowchart to demonstrate the workflow of our
research (Figure 1A). According to Kendall’s correlation

FIGURE 1 | Identification of metabolism-associated DNAmethylation patterns. (A) Flowchart of the research. (B) Relative changes in the area under the CDF curve
when k ranges from 2 to 10. (C) Consensus matrix heatmap of the three distinct subgroups in the TCGA cohort. (D) Heatmap of metabolism-associated CpGs in the
three subgroups of the TCGA cohort. (E,F) Kaplan-Meier analysis of the three subgroups in the TCGA cohort and the GEO cohort. (G) PCA of metabolism-associated
CpGs to demonstrate the three subgroups in the TCGA and GEO cohorts. CDF, cumulative distribution function; PCA, principal component analysis.
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FIGURE 2 |Molecular characteristics of the three LGG subgroups. (A) Heatmap of the subgroup-specific metabolic signatures. (B) Boxplot of the GSVA scores of
glycosylation processes. (C,D) Dotplot of functional analysis using GSEA. (E–G) Boxplot of the combined score, immune score and stromal score estimated using
ESTIMATE. (H) Correlation of our subgroups with common clinical features/molecular subclasses. ns represents no significance, *p < 0.05, **p < 0.01, ***p < 0.001.
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coefficient and the selection criteria described in theMethods and
Materials, we acquired 708 metabolic process-CpG pairs
consisting of 35 metabolic pathways and 391 CpGs
(Supplementary Figures S1A,B and Supplementary Table
S2). Based on the 391 CpGs, we performed k-means clustering
on the TCGA cohort. According to the CDF, we chose k = 3 as the
optimal number of clusters (Figure 1B and Supplementary
Figure S1C). As shown in the heatmap (Figures 1C,D), 501
LGG patients were clustered into three distinct subgroups. We
then applied Kaplan-Meier analysis to investigate the prognostic
significance of the clustering. The results showed significant
differences in OS among the three subgroups (Figure 1E). To
further validate the prognostic value of such methylation
patterns, we assigned the GEO cohort (GSE48461 and
GSE104293) to the aforementioned subgroups using the KNN
algorithm. To determine the optimal k value of KNN, the TCGA
cohort was first randomly assigned to the training set and testing
set at a ratio of 1:1, and the accuracy of KNN classification when k
ranged from 1 to 20 was tested. According to the test, KNN had
the best classification accuracy (94%) when k = 3
(Supplementary Figure S1D). Then, taking the TCGA cohort
as a reference, we assigned the GEO cohort to the three distinct
subgroups (Supplementary Figure S1E). Subsequent Kaplan-
Meier analysis also showed significant differences in progression-
free survival (PFS) among the subgroups (Figure 1F). Moreover,
PCA was performed to further validate the subgrouping of both
the TCGA and GEO cohorts (Figure 1G).

3.2 The Distinct Lower-Grade Glioma
Subgroups Present Different Biological
Characteristics
Since our classification is based on metabolism, we explored the
metabolic features of each subgroup. First, 114 metabolic
signatures were acquired from a previously published study.
We used GSVA to quantify the 114 metabolic signatures.
Then, we performed differential analysis to determine
subgroup-specific metabolic signatures, which were defined as
signatures with the highest GSVA scores in certain subgroups.
Eventually, 31 subgroup-specific metabolic signatures were
identified (Figure 2A). Subgroup 1, subgroup 2 and subgroup
3 had 13, 3 and 31 subgroup-specific metabolic signatures,
respectively. Subgroup 1 had higher scores in the glutamine
and glutamate metabolism and lipid metabolism signatures.
Notably, 8 of 31 subgroup-specific signatures of subgroup 3
were associated with glycan metabolism, such as
glycosaminoglycan degradation and mucin-type o-glycan
biosynthesis. Based on this result, we further investigated
whether subgroup 3 had a more active glycosylation process,
which has been proven to promote malignancy in various types of
neoplastic diseases. As expected, we found that the GSVA scores
of glycosylation processes in subgroup 3 were significantly higher
than those in the other subgroups (Figure 2B).

To further clarify the underlying biological characteristics of
each subgroup, we performed GSEA among the subgroups.
Specifically, we performed differential expression analysis
among all three subgroups. DEGs were defined as |log2FC| >

1 and adjP < 0.05. Then, we ranked the DEGs according to the
log2FC and performed GSEA. The results suggested that
subgroup 3, with the worst prognosis, was significantly
enriched in cell cycle- and immune-related processes
(Figure 2C, Supplementary Figure S2A). Subgroup 2, with a
moderate prognosis, was mainly enriched in embryonic
development-related processes relative to subgroup 1
(Figure 2D).

3.3 Correlation of the Lower-Grade Glioma
Subgroups With Clinical and Molecular
Features
We also investigated the relationship between our subgroups and
common clinical features/molecular subclasses of LGGs,
including histological grade, IDH mutation, MGMT promoter
methylation, TERT promoter mutation, and combined
chromosome 7 +/10− events (Figure 2H and Supplementary
Table S3). In the TCGA cohort, we found that subgroup 1
consisted of only IDH-mutant LGGs and was closely
associated with 1p/19q codel subset (p < 0.001), PN
transcriptome phenotype (p < 0.001), TERT promoter
mutation (p < 0.001), etc. In IDH-mutant LGGs of the TCGA
cohort, subgroup 2 was significantly linked with chromosome 1p/
19q non-codeletion (p < 0.001) and the G-CIMP-high subset.
Subgroup 3 was closely associated with histological grade III (p <
0.001), methylated MGMT promoter (p = 0.0308), chromosome
1p/19q non-codeletion (p < 0.001) and the G-CIMP-low
phenotype of the TCGA supervised DNA methylation cluster.
In IDH wild-type LGGs of the TCGA cohort, subgroup 2 was
correlated with histological grade II, PA-like subset of the TCGA
supervised DNA methylation cluster (p < 0.001) and NE
transcriptome subtype (p < 0.001), while subgroup 3 was
significantly correlated with chromosome 7 gain/10 loss, TERT
promoter mutation, EGFR amplification, and classic-like and
mesenchymal-like subsets of the TCGA supervised DNA
methylation cluster (p < 0.001).

To explore whether the distinct subgroups were accompanied
by different immune infiltration levels, we quantified the immune
infiltration abundance of each subgroup using the ESTIMATE
algorithm. As a result, significant differences in immune scores,
stromal scores and combined scores were observed among the
subgroups, with the highest scores in subgroup 3, followed by
subgroup 2, and the lowest in subgroup 1 (Figures 2E–G).

3.4 Construction of the Metabolic CpG
Signature
To simplify our subgrouping for practical application, we
constructed a subgroup-associated scoring scheme termed the
metabolic CpG signature. For the construction of the signature,
we first performed differential methylation analysis among the
subgroups on metabolism-associated CpGs (differences were
considered significant if FDR < 0.05 and Δβ > 0.1). CpGs
differentially methylated in all possible comparisons were
considered subgroup-related CpGs. Eventually, 213 subgroup-
associated CpGs were identified (Figures 3A,B). Next, we
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performed LASSO regression on these subgroup-associated
CpGs. After comprehensive consideration of the parsimony
and generality of the signature, we chose the maximum
lambda value within one standard error of the value that
minimizes the partial likelihood deviance as the optimal value
(Figure 3C). As a result, a CpG signature consisting of seven
CpGs was generated (Figure 3D and Supplementary Table S4).

We calculated the risk scores of all TCGA samples. Analyses
showed that the risk score was significantly differentially
distributed among the three subgroups. Most subgroup 3

LGGs were assigned to the high-risk group, and most of
subgroup 1 and subgroup 2 LGGs were assigned to the low-
risk group. (Figures 3E,F). We then assessed the prognostic
significance and efficacy of the signature. The TCGA cohort
was first divided into high-risk and low-risk groups. We
determined −0.604472 as the optimal cut-off value using the
surv_cutpoint function of the “survminer” R package. Patients
with risk scores higher than the cut-off were assigned to the high-
risk group, while those with risk scores lower than the cut-off
were assigned to the low-risk group. Kaplan-Meier analysis

FIGURE 3 | Construction of the CpG signature. (A) Venn diagram illustrating the 213 metabolism-associated CpGs differentially methylated across all three
subgroups. (B) Heatmap of beta values of the signature CpGs in the three LGG subgroups in TCGA. (C) Plot of correlation between partial likelihood deviance and
lambda value in LASSO regression. The maximum lambda value within the one standard error of the partial likelihood deviance minimizer was determined as the optimal
value. (D) Signature CpGs and corresponding LASSO coefficients. (E,F) Boxplot (E) and Sankey diagram (F) demonstrating the correlation of the CpG signature
and metabolism-associated subgroups in TCGA.
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FIGURE 4 | Evaluation of the CpG signature in the TCGA, GEO and CGGA cohorts. (A,G) Kaplan-Meier analysis stratifying overall survival in the TCGA (A) and
CGGA (G) cohorts. (C) Kaplan-Meier analysis stratifying progression-free survival in the GEO cohort. (B,H) ROC curves and AUC values showing the performance in
predicting 3-year (left) and 5-year (right) survival in the TCGA and CGGA cohorts. (D)ROC curves and AUC values showing the performance in predicting 3-year (left) and
5-year (right) progression. (E) Signature genes and corresponding coefficients in the alternative gene signature. (F) Plot of the correlation between the alternative
gene signature predicted risk scores and actual risk scores calculated by the CpG signature. τb, Kendall’s tau-b.
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confirmed that the signature was capable of stratifying the
prognoses of LGG patients (Figure 4A). Multivariate Cox
regression considering age, IDH mutation, chromosome 1p/
19q codeletion and histologic grade confirmed the
independence of the signature (Table 1). A receiver operating
characteristic (ROC) curve was generated to evaluate the
prognostic power of our signature. The area under the curve
(AUC) suggested that our signature had great prognostic power
(0.853 in predicting 3-year OS, 0.815 in predicting 5-year OS) and
performed better than common clinical features, such as IDH
mutation, grade, and age (Figure 4B).

3.5 External Validation of the CpG Signature
Next, we performed external validation in the GEO and CGGA
cohorts. Of note, OS information was not provided in most
publicly available LGG methylation data sets, and in the GEO
cohort, only complete PFS information but incomplete OS
information was available. To determine the signature’s
performance in predicting PFS, we calculated risk scores for
all patients in the GEO cohort and assigned them to the high-
risk group and the low-risk group. Kaplan-Meier analysis and
multivariate Cox regression confirmed the prognostic
significance (Figure 4C) and independence of the signature
(Table 1). Although ROC analysis showed that the metabolic
CpG signature had good prognostic power in predicting 3-year
PFS (AUC = 0.747) but not as good performance in predicting 5-
year PFS (AUC = 0.66), the performance was better than that of
common clinical features such as age, grade and IDH mutation
(Figure 4D).

To validate the performance of the signature in predicting OS,
we performed indirect external validation in the CGGA cohort by
fitting gene expression to the risk score to construct a gene
signature as an alternative. Specifically, we screened genes with
a strong linear correlation with the risk score (τb > 0.35, FDR
<0.05) and then fitted these genes to the risk score using LASSO

regression (Supplementary Figures S4A,B). The maximum
lambda value within one standard error of the mean-squared
error minimizer was considered the optimal value. As a result, a
gene signature consisting of 48 genes as an alternative to the CpG
signature was generated (Figure 4E and Supplementary Table
S4). The risk score calculated using this alternative gene signature
had a strong correlation with that calculated using the CpG
signature (Figure 4F). We then calculated risk scores for the
CGGA cohort using the gene signature. Kaplan-Meier analysis
(Figure 4G), multivariate Cox regression (Table 1), and ROC
curves (Figure 4H) generated similar results to those from the
TCGA data set; the AUCs were 0.83 for predicting 3-year OS and
0.754 for predicting 5-year OS. The results indicated that the
signature was applicable to a wider range of cohorts.

3.6 Characterization of the Metabolic CpG
Signature
We investigated the correlation of the risk score with common
prognostic variables or molecular subclasses, including
histological grade, IDH mutation, TCGA supervised DNA
methylation cluster and chromosome 1p/19q codeletion status
in IDH-mutant LGGs as well as chromosome 7loss/10gain, EGFR
amplification, TERT promoter mutation in IDH wild-type LGGs.
We noticed that the risk score had a significant difference in
distribution between/among subgroups stratified by these
common variables or subcategories. Grade III, IDH wild-type,
chromosome 1p/19q non-codeletion, EGFR amplification,
chromosome 7loss/10gain, and TERT promoter mutation all
presented elevated risk scores relative to their respective
counterpart subgroups (Figures 5A–H). Our signature was
able to further stratify these stratified subgroups (Figure 6A–L).

To better understand the biological basis of the metabolic CpG
signature, we performed functional characterization of each
signature CpG. Of the seven signature CpG sites, only

TABLE 1 | Univariate and multivariate Cox regression analysis of risk score and other clinical features in the TCGA/CGGA/GEO cohorts.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

TCGA cohort

Risk score 14.595 (9.487–22.454) 3.66E-30 10.829 (5.154–22.754) 3.21E-10
Age 3.119 (2.096–4.640) 5.19E-09 2.235 (1.431–3.490) 4.04E-04
IDH mutation 6.307 (4.325–9.198) 4.10E-18 0.657 (0.326–1.323) 2.39E-01
Grade 3.312 (2.227–4.926) 4.36E-10 2.183 (1.415–3.367) 4.15E-04
1p/19q codel 0.400 (0.250–0.641) 2.95E-05 0.615 (0.364–1.040) 6.97E-02

GEO cohort

Risk score 3.689 (2.145–6.344) 4.37E-05 6.620 (1.102–39.775) 3.88E-02
Age 1.101 (0.743–1.632) 6.30E-01 1.028 (0.692–1.527) 8.90E-01
IDH1 mutation 0.254 (0.166–0.389) 1.49E-08 0.471 (0.227–0.976) 4.28E-02
Grade 1.961 (1.288–2.986) 2.57E-03 1.049 (0.627–1.754) 8.56E-01

CGGA cohort

Risk Score 5.296 (3.523–7.961) 1.26E-13 3.641 (1.977–6.705) 3.36E-05
Age 1.154 (0.776–1.718) 4.78E-01 1.492 (0.947–2.350) 8.42E-02
IDH mutation 3.168 (2.082–4.820) 3.30E-07 0.831 (0.653–2.218) 5.53E-01
Grade 2.506 (1.625–3.863) 1.38E-05 3.125 (1.886–5.178) 9.70E-06
1p/19q codel 0.202 (0.107–0.381) 3.96E-09 0.321 (0.159–0.650) 1.57E-03

P-values marked in bold were considered significant statistically (p < 0.05).
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cg10054641 was located in the promoter region of genes, and it
was located in the TSS200 of TMEM71 (Table 2). To investigate
whether cg10054641 regulates the expression of TMEM71, we
calculated Kendall’s correlation between the methylation of
cg10054641 and the expression of TMEM71. The results
revealed a strong negative correlation (τb = −0.44, p < 0.05)
between them, indicating that cg10054641 negatively regulates
the expression of TMEM71 (Figure 7G). For the functional
analysis of signature CpGs located in non-promoter regions,
we screened genes with a strong correlation (|τb|>0.35, p <
0.05) with these CpGs and performed GO enrichment

analysis. The results revealed that cg00347746 was correlated
with genes that are mainly associated with normal cell functions
such as synapse activities (Figure 7A), cg00301239 was correlated
with genes that are involved in cell differentiation and
proliferation and RNA processing (Figure 7B), and
cg02518245, cg04003582, cg25205489, and cg27305460 were
correlated with genes that are associated with RNA
metabolism (Figures 7C–E). Next, we further conducted
GSEA to investigate how the signature CpG genes function as
a whole. First, using the “limma” R package, we conducted
differential expression analysis on the high-risk group versus

FIGURE 5 | Correlation of the CpG signature with common clinical features. (A,B) Distribution of the risk scores in LGGs stratified by histological grade and IDH
mutation status. (C,G) Distribution of the risk scores in IDH-mutant LGGs stratified by chromosome 1p/19q codeletion status and supervised DNA methylation cluster.
(D–F,H) Distribution of the risk scores in IDH wild-type LGGs stratified by TERT promoter status, chromosome 7gain/10loss, EGFR amplification and supervised DNA
methylation cluster.
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the low-risk group. Differences were considered significant if
log2FC > 2 and adjP < 0.05. As a result, we identified 2028 DEGs
between the two groups. After ranking these DEGs by their logFC

value, we performed GSEA of these DEGs. The results showed
that the high-risk group was significantly enriched in cell cycle-
and immune-related processes (Figure 7H).

FIGURE 6 | The CpG signature remained prognostically significant in LGGs stratified by common variables. (A–D) Kaplan-Meier analysis of the CpG signature in
LGGs stratified by histological grade (A,B) and IDH mutation (C,D). (E,F) Kaplan-Meier analysis of the CpG signature in chromosome 1p/19q codeletion-stratified IDH-
mutant LGGs. (G–L) Kaplan-Meier analysis of the CpG signature in IDH wild-type LGGs stratified by EGFR amplification, TERT promoter mutation and combined
chromosome 7gain/10loss.

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 90229811

Yang et al. Metabolism-Associated DNAm Stratifies LGGs

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Immunohistochemistry results of the Qilu cohort also revealed
that tumours with higher risk scores were more likely to have
higher Ki-67 positive rates (Fisher’s exact test, p = 0.08938),
further confirming that the risk score was associated with
proliferative activity. (Figure 8A).

Active cell mitosis is correlated with a high mutation burden
and immune infiltration. To investigate the mutation
characteristics of different risk groups, we performed an
analysis of somatic mutation data from the TCGA cohort. A
significant difference in mutation frequency between the high-
risk group and the low-risk group was found (Figure 8B). The
high-risk group, with active cell proliferation, was significantly
correlated with higher mutation frequencies than the low-risk
group. Next, the mutation patterns of the high-risk group and the
low-risk group were also explored. Only mutations existing in
more than 5% of all samples were analysed in this step. We found
distinct mutation patterns between the high- and low-risk groups.
IDH1 (11.3 vs. 94.8%, p < 0.001), ATRX (15.5 vs. 49.1%, p <
0.001), CIC (0 vs. 29.4%, p < 0.001), FUBP1 (0 vs. 13%, p < 0.001),
and NOTCH1 (1.4 vs. 10.5%, p = 0.011) had significantly higher
mutation rates in the low-risk group, whereas TTN (35.2 vs.
18.5%, p = 0.011), EGFR (42.3 vs. 2%, p < 0.001), PTEN (25.4 vs.
2%, p < 0.001), and NF1 (36.6 vs. 4.7%, p < 0.001) had
significantly higher mutation rates in the high-risk group
(Figure 8C and Supplementary Table S5).

3.7 The Metabolic CpG Signature Predicts
Immune Infiltration and Potential
Immunotherapy Response
We also evaluated the association between our signature and
immune infiltration. First, we quantified 8 major immune
subpopulations using MCP-counter and investigated their
association with the risk score. We noticed that the risk score
was accompanied by distinct immune infiltration. Compared
with the low-risk group, the high-risk subgroup was infiltrated
with significantly higher levels of antitumour cell subpopulations,
such as T cells and CD8 T cells (Figure 9A). Next, we quantified
28 immune subpopulations with the ssGSEA algorithm. A similar
result was observed. The high-risk group had significantly
elevated levels of activated CD4 T cells, activated CD8 T cells,
activated dendritic cells, central memory CD8 T cells, etc.
(Figure 9B).

Immune checkpoints play important roles in the regulation of
immune cell function. Therapy targeting ICIs has been
considered the most promising antitumour treatment. Given

that our signature was accompanied by distinct mutational
loads and immune infiltration patterns, which are predictors
of the response to ICI therapy, we assume that our signature
could also be associated with the response to ICI therapy. Hence,
we explored whether the distinct immune infiltration pattern
between the high- and low-risk groups was accompanied by
differences in ICI levels. As a result, we noticed a significant
difference in immune checkpoint molecule expression between
the two groups. Relative to the low-risk group, the high-risk
group had significantly higher levels of PD-L1 (CD274), CTLA-4,
and HAVCR2 (Figure 9D). Moreover, we quantified the
potential immunotherapy response using the IPS algorithm
and found that the IPS was significantly elevated in the high-
risk group, which indicated that the high-risk group patients were
more likely to respond to immunotherapy (Figure 9C). Overall,
our signature could serve as a biomarker to predict patients’
response to ICI therapy.

4 DISCUSSION

Due to the substantial heterogeneity of LGGs, even with identical
histological diagnoses, patients usually have significant
differences in prognosis. The conventional classification of
gliomas solely based on histology can no longer satisfy patient
stratification in the era of precision medicine. In recent years,
many emerging molecular biomarkers have been identified. IDH
mutation and chromosome 1p/19q codeletion were first
incorporated into the 2016 WHO classification for the
stratification of gliomas (Louis et al., 2016). Recent studies
have highlighted the role of metabolic reprogramming in
cancers (Faubert et al., 2020; He et al., 2020). Much effort has
been devoted to exploring the metabolic heterogeneity of tumours
from the perspective of transcriptomics and metabolomics.
DNAm and metabolism have been proven to be closely
interlinked (Lopes, 2020; Sun et al., 2021); however, no one
has studied the value of the interplay between DNAm and
metabolism in the stratification of gliomas. In the present
study, we comprehensively analysed the correlation between
metabolic pathways and DNAm. Based on metabolism-
associated CpGs, we identified three distinct subgroups of
LGGs and constructed a subgroup-related CpG signature. The
molecular and clinical features of each subgroup/risk group were
characterized. Our findings provide a new perspective for the
stratification of LGGs and for understanding the mechanisms
driving the malignancy of LGGs.

TABLE 2 | Annotation of the seven signature CpGs.

Probe MAPINFO Chromosome UCSC_RefGene_Name UCSC_RefGene_Group

cg00301239 103801487 8
cg02518245 51573168 16
cg04003582 92936507 5
cg27305460 29969096 15
cg25205489 24125993 13
cg10054641 133773093 8 TMEM71; TMEM71 TSS200; TSS200
cg00347746 48970082 19
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We first investigated the correlation between DNAm and 87
metabolic processes and acquired 708 metabolic process-CpG
pairs consisting of 35 metabolic pathways and 391 CpGs. Based

on thesemetabolism-associated CpGs, three distinct subgroups of
LGGs were identified. Each subgroup had distinct clinical and
molecular characteristics. Subgroup 1, characterized by high

FIGURE 7 | Functional characterization of the CpG signature. (A–F) Bar plot of GO annotation for genes with a strong correlation with non-promoter signature
CpGs. (G) Correlation between methylation of cg10054641 and TMEM71 expression. (H) Dotplot of the GSEA results of the CpG signature.
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methylation of metabolism-associated CpGs, had a favourable
outcome and low immune infiltration and was significantly
correlated with IDH mutation, lipid metabolism and
glutamine metabolism. Subgroup 3, characterized by low
metabolism-associated CpG methylation, had the worst
prognosis and high immune infiltration and was significantly
enriched in cell cycle- and immune-associated processes,
carbohydrate metabolic processes, and glycosylation processes.
Subgroup 2, with moderate metabolism-associated CpG
methylation, was correlated with embryonic development
processes and had a moderate prognosis. Glycosylation, lipid
metabolism, and carbohydrate metabolism are all considered
important mechanisms promoting malignancy and novel
therapeutic targets, suggesting that the subgrouping serves as a
potential decision aid for the choice of treatment (Roth et al.,
2020; Thomas et al., 2021). Considering that lipid metabolism is
recognized as an important mechanism of promoting malignancy

(Cheng et al., 2018), the positive correlation between lipid
metabolism and better prognosis we revealed can be a little
counterintuitive. Actually, this result is compatible with
previous studies showing that phenotypes with upregulated
lipid metabolism usually indicate a more favourable outcome,
while phenotypes with upregulated carbohydrates indicate the
opposite (Peng et al., 2018). A reasonable explanation could be
that, unlike studies that focus on single variables, these analyses
were performed based on real-world patient data and were
affected by many other variables, the effect of lipid
metabolism did not play a dominant role in this context. The
recent cIMPACT-NOW update has recommended that for IDH
wild-type gliomas, even if the histology suggests low grade, if
accompanied by at least one of the three high-risk events,
including chromosome 7gain/10loss, TERT promoter
mutation, and EGFR amplification, they should be assigned to
grade IV (Brat et al., 2018). Notably, in our results, more IDH

FIGURE 8 |Mutations in CpG signature-stratified LGGs. (A)Barplot of Ki-67 level in different groups in the Qilu cohort. (B)Boxplot of mutation counts in the low-risk
group and high-risk group. (C) Mutation landscape in the low-risk group and the high-risk group.
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wild-type LGGs with the above risk factors were assigned to
subgroup 3, which indicated poor prognosis. This result
suggested that metabolism-associated DNAm patterns could
identify IDH wild-type high grade gliomas that were

inappropriately assigned to lower grade according to previous
criteria.

In glioma, genetic alterations, such as IDH mutation and
EGFR amplification, are important contributors in shaping the

FIGURE 9 | Immune landscape in CpG signature-stratified LGGs. (A) Boxplot of the abundance of 10 immune cell subsets estimated by MCP-counter. (B)
Heatmap of the enrichment scores of 28 immune cell subsets generated by ssGSEA. (C) Violin plot showing the distribution of immunophenoscores in the low-risk and
high-risk groups. (D) Expression levels of 11 immune checkpoint genes in the low-risk and high-risk groups.
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tumour metabolic landscape. Mutated IDH catalyses the
transformation of isocitrate into 2-HG, causing the
accumulation of 2-HG and loss of α-ketoglutarate (α-KG),
making the cell more dependent on glutamate-derived α-KG
(Dang et al., 2009). BCAT1/2-catalysed conversion of branched
amino acids and glutaminolysis are major sources of glutamate.
However, in the context of IDHmutation, BCAT1/2 are inhibited
by 2-HG, suggesting glutaminolysis as the major source of
glutamate in IDH mutant LGGs (McBrayer et al., 2018; Wei
et al., 2020). Consistently, subgroups 1 and 2 in our results were
enriched with IDH mutation and had a higher level of
D-glutamine and D-glutamate metabolism. IDH mutation has
also been shown to impact lipid metabolism. For instance,
although it inhibits de novo fatty acid synthesis at the
substrate level by NADPH depletion, it also upregulates the
levels of genes and proteins involved in fatty acid biosynthesis
(Badur et al., 2018; Stuani et al., 2018; Dekker et al., 2020); it
accelerates LDLR degradation to reduce exogenous cholesterol
uptake, it also stimulates intracellular cholesterol biosynthesis
(Stuani et al., 2018). In agreement with previous knowledge, our
study revealed higher levels of fatty acid and cholesterol
biosynthesis in subgroup 1 and subgroup 2. Moreover, IDH
mutation could induce hypermethylation of the promoter
regions of glycolysis genes, such as LDHA or CA9, thereby
suppressing carbohydrate metabolism (Chesnelong et al.,
2014). A shift into a G-CIMP-low phenotype or solely loss of
DNA methylation at these specific loci can cause the acquisition
of the Warburg phenotype (Ruiz-Rodado et al., 2020). EGFR
amplification is a powerful driver of carbohydrate metabolism. It
activates both AKT-dependent and AKT-independent pathways
involving MYC and mTORC2 and ERK-dependent nuclear
translocation of phosphorylated PKM2, thus upregulating
glycolysis (Yang et al., 2012; Babic et al., 2013; Masui et al.,
2013). Consistently, in our work, subgroup 3 mainly consisted of
IDH mutant lesions with a G-CIMP-low phenotype and IDH
wild-type lesions with EGFR amplification, and presented a
higher level of carbohydrate metabolism than subgroup 1 and
subgroup 2.

To make our results more convenient for practical
application, based on the metabolism-associated CpGs that
were differentially methylated across all subgroups, using
LASSO Cox regression, we constructed a CpG risk
signature that is quantifiable, applicable to individual
patients and requires fewer features, which we termed the
metabolic CpG signature. We assigned patients to a high-risk
group and a low-risk group according to the signature.
Survival analysis suggested that the metabolic CpG
signature was capable of stratifying the prognosis of LGG
patients in all three (TCGA/GEO/CGGA) cohorts. It was
identified as an independent prognostic factor and has
great prognostic power. Even when stratified by many
major prognostic variables, our signature was still capable
of further stratifying the prognosis of LGGs. To understand
the underlying mechanisms of the signature, we performed
some functional analyses. First, to understand how the
signature functions as a whole, we performed GSEA
analysis. The result indicated that the high-risk group was

significantly enriched in cell cycle- and immune-related
processes compared with the low-risk group. Further
characterization of these signature CpGs was also
performed. Of the seven signature CpG sites, only
cg10054641 is a promoter CpG and regulates TMEM71
expression, which has been proven to be associated with
malignancy and TMZ resistance in glioma (Wang et al.,
2019). For nonpromoter signature CpGs, GO enrichment
analysis was performed. The results indicated that
cg00347746 is associated with normal cell functions, such
as synapse activities, while cg00301239 is correlated with
genes that are involved in cell differentiation, proliferation
and RNA processing. cg02518245, cg04003582, cg25205489,
and cg27305460 are mainly associated with RNA metabolism,
which has been proven to be involved in the immune response
(Nussbacher et al., 2019) and maintaining cellular
metabolism (An and Duan, 2022; Peng et al., 2022).

Recently, ICI treatment has been considered the most
promising antitumour treatment (Sanmamed and Chen, 2018).
Nevertheless, not all individuals respond well to such treatment.
Recent studies suggest that the degree of immune cell infiltration
is critical for the response to ICI treatment (Herbst et al., 2014;
Tumeh et al., 2014). Tumours with high immune cell infiltration
tend to respond well to ICI therapy, whereas tumours with low
immune cell infiltration tend to respond poorly (Herbst et al.,
2014; Chen and Mellman, 2017). In our study, we revealed that
the high-risk group was infiltrated with significantly higher
degrees of antitumour immune cells (e.g., CD8 T cells) than
the low-risk group, indicating that the high-risk group lesions
belonged to an immune-inflamed phenotype. Major regulators of
immune infiltration include TMB and cellular metabolism (Wang
et al., 2022). TMB is positively correlated with neoantigens, which
are recognized as key drivers of immune infiltration (Chalmers
et al., 2017). In contrast, the IDH mutant-derived aberrant
metabolite 2HG is recognized as a potent suppressor of the
recruitment, activation and proliferation of antitumour T cells
(Bunse et al., 2018). The difference in immune landscape between
the two groups could be attributed to the high TMB in the high-
risk group and the high IDH mutation rate in the low-risk group.
In addition, the response to immunotherapy requires the
presence of immune check points. The high-risk group also
presented higher immune checkpoint expression, suggesting a
good response to ICI therapy in the high-risk group. Finally,
analyses using the IPS algorithm also drew consistent
conclusions. In summary, the CpG signature could serve as a
biomarker to predict the potential response to immunotherapy
in LGGs.

Very interestingly, our results revealed that lipid
metabolism is strongly correlated with the methylation of a
significantly wider range of DNAm sites than other types of
metabolism (Supplementary Figures S1A,B). Aside from the
roles of being regulated, whether or how lipid metabolism
participates in the regulation of tumour DNAm seem to have
been unappreciated, whereas amino acid and carbohydrate
metabolism have been proven to affect DNAm by regulating
one-carbon metabolism or TETs (Xu et al., 2011; Rosenzweig
et al., 2018). However, we noticed some clues that lipid
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metabolism might also regulate DNA methylation. One
possible mechanism is that it might also regulate DNAm by
lipid metabolism-related metabolites. For example, SAM is a
major methyl group donor of the methylation process. The
synthesis of phosphatidylcholine (PC) requires the
methylation of phospholipid phosphatidylethanolamine (PE)
and consumes SAM. This process is recognized as a major
SAM consumer and serves as a methyl sink (Ye et al., 2017).
PPARα, as a lipid homeostasis regulator, can be activated by
certain lipid metabolites (Varga et al., 2011). It is also reported
to affect DNAm by regulating the level of DNMT1(Luo et al.,
2019). In addition, histone acetylation has also been reported
to direct demethylase activity, and inhibition of histone
deacetylase can cause replication-independent
demethylation of DNA (Cervoni and Szyf, 2001; Ou et al.,
2007). It is well established that histone acetylation can be
regulated by lipid metabolism in many ways. The lipid-derived
metabolite acetyl-CoA serves as a major source of carbon for
histone acetylation (McDonnell et al., 2016). An end-product
of fatty acid metabolism, β-hydroxybutyrate (β-OHB), is
recognized as a histone deacetylase (HDAC) inhibitor
(Shimazu et al., 2013). Another possible mechanism is that
fatty acid synthase (FASN) might directly participate in
DNAm. This lipid metabolic enzyme has been reported to
have a methyltransferase domain and be able to localize to the
nucleus (Maier et al., 2006; Madigan et al., 2014). However,
whether this domain is functional remains unknown. Anyway,
the strong covariation between lipid metabolism and DNAm is
interesting and worth exploring. Future work can
further delineate the molecular details of how lipid
metabolism is linked to the regulation of DNAm. This
might provide a new perspective on how metabolism drives
malignancy.

In our work, we explored the relationship between metabolic
reprogramming and DNAm from the perspective of the
transcriptome and methylome and performed our analyses
based on this relationship. However, the limitation of our
study is that transcriptional changes do not fully reflect all
metabolic changes. Other variables, such as protein
modification status, also play important role. Therefore, to
investigate the crosstalk between DNAm and metabolism
more comprehensively, it is better to further incorporate
metabolomic data and proteomic data for analysis.

In summary, our analysis identified three metabolism-
associated DNAm subgroups in LGGs and constructed a CpG
signature to stratify prognosis and to predict the response to ICI

treatment. Our findings provide new perspectives for the
stratification of LGGs and highlight the role of DNAm in
metabolism-associated tumor heterogeneity.
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