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ABSTRACT: The over-exploitation of resources caused by the increasing coal demand has resulted in a sharp increase in solid
waste emissions mainly gangue, which has made the burden on the environment, economy, resources, and society of our country
heavier. In order to achieve a balance between energy consumption and solid waste emission in the process of top coal caving, this
study carried out coal gangue recognition research based on multi-source time−frequency domain feature fusion (MS-TFDF-F).
First, the process of coal gangue symbiosis and the harm of gangue in top coal caving are analyzed, and the fundamental method of
comprehensive treatment of gangue is put forward, which is the accurate recognition of the coal gangue interface. Second, by
building a top coal caving simulation test bed, the MS signals generated in the caving process of the coal gangue mixture with a
gangue content of 0−100% are collected and the TFDFs are extracted. Third, the MS-TFDF-F-based coal gangue recognition model
is established. Then, the recognition effect of the two TFDF-F sample sets was compared, and the results show that the time−
frequency domain feature selection fusion method (TFDFS-FM) has higher accuracy. On this basis, this paper studies the variation
law of the number of sensors on the coal gangue recognition accuracy of MS information fusion. Finally, the economic, social,
environmental, and resource benefits of the model are qualitatively described. The final results show that the MS-TFDF-F-based coal
gangue recognition model has the strongest recognition ability when fusing six sensor signals, and the recognition accuracy reaches
99% under the AdaBoost algorithm. The establishment of this model brings huge benefits to China’s environment, economy,
resources, and society, and it is helpful to realize the balance between loss reduction mining and solid waste emission reduction in
the process of top coal caving.

1. INTRODUCTION
Coal is the cornerstone of China’s energy security. Because of
its abundant reserves and wide distribution compared with
other energy sources, it plays an extremely important role in
the development of China’s society, economy, and other
aspects.1 Top coal caving is an efficient mining method suitable
for the thick and extra-thick coal seams in China.2,3 At present,
the development status of the industry is high mining intensity
and low caving technology level, resulting in a high gangue
rate, which imposes additional burdens on the environment,
economy, and other aspects. Under the background of China’s
carbon peaking and carbon neutrality goals,4 it is of extreme
significance to realize clean coal production by strengthening
scientific and technological support.

Gangue is a common solid waste in the process of geological
mineral mining.5,6 In the actual coal production process, coal
and gangue coexist symbiotically. With the support and
encouragement of relevant policies and mechanisms, there
are more and more ways of comprehensive utilization of coal
gangue, such as recycling useful minerals,7 gangue for power
generation,8 sintering into useful materials,9,10 grouting
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filling,11,12 etc. However, the volume of gangue and its harm
under long-term accumulation should not be underestimated,
especially in the area with a low utilization rate of gangue in
western China. Therefore, while ensuring the coal recovery
rate, technical research should be strengthened to make the
gangue emissions reach the standard. At present, the widely
used artificial coal gangue interface discrimination method is
easy to cause misjudgment. Accurate and reliable coal gangue
recognition technology is the fundamental way to solve this
problem.
In order to realize the balance between loss reduction

mining and solid waste emission reduction in top coal caving,
this study establishes an MS-TFDF-F-based coal gangue
recognition model, which can accurately judge the coal gangue
interface and improve the recognition accuracy. The model is
expected to control the generation of gangue from the source
and achieve clean coal production.
Many studies have been carried out based on image,13−16

vibration,17−19 sound,20−22 γ rays,23,24 Lidar,25,26 and other
media. Recently, Wang et al.27 proposed a semantic
segmentation network for coal gangue image recognition. Li
et al.28 innovatively uses the density characteristics of coal and
gangue for recognition. Zhang et al.29 makes the thermal
infrared images of coal and gangue more significant through
the intervention of different liquids. Wang et al.30 established a
coal gangue recognition model based on dielectric parameters
and geometric characteristic parameters of coal and gangue. In
the early stages, aiming at the problem of low recognition
accuracy of single-source multi-point vibration acceleration
signals, our team carried out a study on coal gangue
recognition based on time-domain feature cross-optimal
fusion, and the recognition accuracy finally reached 97%.31

To sum up, most of the existing studies are based on
different single properties of coal and gangue, while there are
few studies on MS information fusion generated by a variety of
different properties of coal gangue. Due to the differences in
various properties of coal and gangue in different mining areas,
it is easy to lead to the problems of insufficient recognition
accuracy and weak generalization ability of the coal gangue
recognition model established based on a single information
source. In addition, current research lacks the screening of the
location and type of sensors, which is limited by the availability
of sensor data and the discriminability of recognition
features.32 In addition, only the time domain features were
cross-optimal selected, and the feature selection method needs
to be further improved.

In view of the gaps and shortcomings of previous studies,
this paper will simultaneously screen the sensors and TFDFs of
signals based on the fusion of MS signals and TFDFs. The
purpose is to increase the effective information as well as
reducing the amount of computation, so as to further improve
the recognition accuracy. The innovations in this study are as
follows.
(1) The fundamental method of comprehensive treatment of

gangue is explored.
(2) Two feature fusion methods, OTFDF-FM and TFDFS-

FM, are proposed and compared.
(3) The MSI-FM based on vibration signals, pressure

signals, and acoustic signals is proposed.
(4) The MS-TFDF-F-based coal gangue recognition model

is established.
(5) The fusion frequency of each feature in the process of

TFDFS-FM is studied.
(6) The benefits of the MS-TFDF-F-based coal gangue

recognition model are qualitatively analyzed.
The specific work route of this paper is as follows. Section 2

discusses the process of top coal caving and the harm of
gangue and explores the ways of comprehensive treatment of
gangue. Section 3 extracts MS signals of top coal caving
through experiments and establishes a MS-TFDF-F-based coal
gangue recognition model. Section 4 verifies the performance
of the coal gangue recognition model under the AdaBoost
algorithm. Section 5 qualitatively analyzes the benefits of the
model. Section 6 shows the relevant conclusions.

2. MODEL BUILDING BACKGROUND
Under the pressure of increasing energy demand in China, the
problem of solid waste discharge caused by the excessive
strength of coal mining is becoming increasingly difficult to
solve. This section introduces the process of top coal caving
and the harm of gangue and explores the fundamental way of
comprehensive treatment of gangue.
2.1. Introduction of Top Coal Caving Process. Fully

mechanized top coal caving is one of the main mining methods
suitable for thick and extra-thick coal seam mining in China,
which has many advantages such as low cost, low tunneling
rate, high recovery rate, and strong adaptability.33,34

The coal seam generally occurs in the coal-bearing rock
formation, located between the roof and floor strata. With the
advancement of coal mining at the working face, the coal seam
floor plays a supporting role, and the roof is above the coal
seam. With the mining of the whole roadway coal seam, the
roof fall fills the mined-out area. In some mining areas, the

Figure 1. Schematic diagram of top coal caving.
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coal−rock interface is not obvious due to geological processes,
and the closer the coal seam is to the roof, the higher the
gangue content is.
As shown in Figure 1, the front scraper conveyor transfers

the coal from the shearer to the coal face. Meanwhile, the
hydraulic support supports the upper coal seam. Then, the
hydraulic support moves forward, and the upper coal seam is
induced to collapse, falling onto the unfolded tail beam and the
extended insert plate.35−37 Then the hydraulic control system
controls the tail beam to open and the insert plate to recover.
The broken coal falls from the coal caving port and is
transported out of the mining working face by the rear scraper
conveyor. When the gangue content in the fallen coal reaches
the shutdown threshold, the hydraulic system is timely
controlled to close the tail beam and extend the insert plate
to prevent a large amount of gangue from further falling out
with the coal flow.
2.2. Hazards of Gangue. At present, mine workers

determine the coal gangue interface by auditory and visual
inspection. The influence of subjective consciousness and the
noise and the dark environment of the mine often lead to
misjudgment, resulting in over-discharge or under-discharge. If
over-discharging, a large amount of gangue will be transported
out of the working face with coal flow, and if under-
discharging, a large amount of coal will be left in the mined-
out area, which is easy to cause spontaneous combustion38,39

and gas explosion.40−42 In the context of China’s current
energy mining, top coal over-discharge occurs from time to
time, and a large amount of gangue mining ground has a
serious impact on China’s environment, economy, other
resources and society,43−45 as shown in Figure 2.

(1) Impact on the environment

Gangue is a kind of industrial waste containing many
harmful components. Because the use of gangue has not been
fully developed, it is difficult to achieve industrialization and
often accumulates near the mining area. A large number of
harmful gases, such as SO2 and CO, are produced by the
spontaneous combustion of heat accumulated inside the
gangue dumped into the atmospheric environment, forming
acid rain. In addition, a large amount of dust produced by the
disintegration and weathering of gangue has a bad impact on
the mining area’s environment.

(2) Impact on the economy

The impact of gangue on the economy is mainly reflected in
the following three aspects. (a) The extra cost of coal
transportation, coal washing, and gangue crushing in the
process of gangue production. (b) The accumulation of gangue
mountains occupies land, resulting in the loss of cultivated land
resources and affecting the development of the agricultural
economy. (c) Environmental degradation will generate most of
the economic expenditure on environmental remediation.

(3) Impact on other resources
The gangue mined with coal will occupy and destroy land

resources. With the intensification of coal mining, the
occupation of land resources by gangue becomes more and
more serious. Harmful elements in gangue dissolve in water
and penetrate into the soil, resulting in water destruction,
excessive heavy metals, soil fertility decline, etc. The
destruction of the atmospheric environment, land resources,
and water resources in coal mining areas will lead to an
imbalance of the ecological environment, a change in plant

Figure 2. Hazards of gangue.
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growth conditions, the destruction of animal habitat, and then
the loss of biodiversity resources.

(4) Impact on society

The environmental and economic impacts caused by gangue
will inevitably lead to a series of negative social effects. Human
and material resources will be spent on environmental
remediation, while the population will be more likely to suffer
from physical and mental illness.
2.3. Fundamental Treatment Method of Gangue.

Gangue is the solid waste produced in the process of coal
mining and coal washing and transported to the ground with
coal. An excessive coal recovery rate will inevitably cause a
large number of gangue output. The treatment of gangue can
be carried out in two aspects: recycling (harmless) and
reducing mining. For the recovery and utilization of gangue, its
use mainly includes replacing fuel, recycling coal and pyrite,
power generation, manufacturing building materials, etc.
Although China has extended the industrial chain of gangue
in many aspects to make it a valuable resource for reuse, it is
still unable to realize its industrialization, with the utilization
rate only reaching more than 70%. If the gangue is not mined,

it will not cause great harm to all aspects of society. If the
mining intensity is reduced in order to reduce the gangue
content, it may cause the top coal to be under-discharged. Coal
flows into the mined-out area with gangue, resulting in a waste
of resources and even the hidden danger of spontaneous
combustion. Solving the problem of gangue content while
greatly reducing the output of resources will be more than
worth the loss.
While meeting the national standard of gangue rate,

improving the coal recovery rate is the best coal mining goal.
Therefore, achieving the balance between loss reduction
mining and solid waste emission reduction in top caving coal
is the fundamental way of comprehensive treatment of gangue,
and the accurate recognition technology of the coal gangue
interface is the fundamental method to solve this problem. The
comprehensive treatment approach for coal gangue is shown in
Figure 3.

3. TEST AND DATA PROCESSING
In order to improve the accurate perception ability of the coal
gangue recognition model at the coal gangue interface, this

Figure 3. Comprehensive treatment method of gangue.

Figure 4. Test bed. (a) Test bed physical prototype. (b) Coal and gangue for test. (c) Signal acquisition equipment.
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study integrates vibration, pressure, and acoustic sensors to
collect MS information on coal and gangue. The methods of
time domain, frequency domain, and time−frequency domain
fusion are used to process MS information data.
3.1. Top Coal Caving Test. As shown in Figure 4, the test

bed is an in-lab impact slip test bed transformed with reference
to ZF5600 hydraulic support for top coal caving so as to
imitate the actual top coal caving working surface. The coal
gangue mixture with different mixing ratios slides from the
shield beam and impacts the tail beam. In this process, the
signal acquisition system collects MS signals.
The signal acquisition system mainly includes four parts: MS

signal sensors (9 sets of 1A102E universal piezoelectric
vibration acceleration sensors, 1 set of 1A302E three
directional vibration acceleration sensor, 2 sets of CYB41
high-frequency pressure sensors, and 3 sets of MPA426
acoustic sensors), constant voltage power supply for sensor
power supply, dynamic signal test and analysis system for
signal transmission, and DHDAS dynamic signal analysis
system for signal storage. At the same time, noise reduction
and anti-mixing filtering modules are added to the data
acquisition system. The test also performs noise reduction
filtering on the signal from both software and hardware. In the
software part, the noise reduction program is added to the data
acquisition process according to the Butterworth low-pass
filtering principle, and the principle of the Faraday cage is
applied to electrostatic shielding in the hardware part. The
location of the MS signal sensors is shown in Table 1.
During the test, the coal gangue mixed sample is dumped on

top of the shield beam, slides down to the upper surface of the
tail beam to produce certain impact vibrations and sounds, and
changes the oil pressure of the tail beam jack. The sampling
frequency is set to 10,000 Hz, and the MS signals collected by
each sensor are transmitted to the DHDAS dynamic signal
analysis system for storage by the DH8302 and DH5925
dynamic signal test and analysis system. 16 MS signals
obtained from each set of coal gangue mixed sample tests
are stored in a folder. Table 2 shows the number of test groups

conducted for coal gangue mixed samples with different
gangue mixing rates.

A total of 2223 groups of tests were carried out in this study.
According to the requirements of relevant regulations on top
coal caving, this paper takes the gangue ratio of 25% as the
classification threshold, and defines the samples with a gangue
ratio of less than 25% as the “caving category”, with a total of
1098 groups, and the samples with a ganging ratio greater than
25% were defined as the “shutdown category”, totaling 1125
groups.
3.2. MS Information Data Processing. In this section, all

signals collected during the test are preprocessed as follows.
The first data point that is 0.25 m/s2 greater than the
acceleration at the initial time is taken as the first data point
and the effective time domain length is set to 2.5 s. Each signal
is a standardized time−acceleration signal with a length of
25,001 after preprocessing, as shown in Figure 5.
Then, each signal is processed in the time domain and the

frequency domain, respectively. Time domain processing refers
to the direct extraction of 12 features such as mean, absolute
mean, and standard deviation for standardized signals.
Frequency domain processing refers to the extraction of 12
features such as spectrum mean, frequency variance, and
frequency center of gravity for the signals after fast Fourier
transform,46−48 as shown in Figure 6. The feature expression is
shown in Table 3.

Table 1. Location of the MS Signal Sensors

Table 2. Number of Samples with Different Gangue Mixing
Rates

mixed gangue rate (%) 0 0−5 5−10 10−15 15−20
number of samples 30 22 47 72 74
mixed gangue rate (%) 20−25 25−30 30−40 40−50 50−60
number of samples 853 995 40 11 11
mixed gangue rate (%) 60−70 70−80 80−90 90−100 100
number of samples 10 10 10 9 29

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02319
ACS Omega 2023, 8, 25221−25235

25225

https://pubs.acs.org/doi/10.1021/acsomega.3c02319?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02319?fig=tbl1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4. MODEL ESTABLISHMENT AND VERIFICATION
In the previous section, we collected the vibration acceleration
signals of the bottom of the tail beam, the bidirectional
vibration acceleration signals of the pin shaft, the high-
frequency pressure signals, and the acoustic signals around the
test bed during the coal gangue impact test and extracted the
time domain and frequency domain features of each signal. On
this basis, this section will carry out the study of coal gangue
recognition based on MS-TFDF-F, as shown in Figure 7.
First, this paper proposes two TFDF-F methods. The first

one is the overall time−frequency domain feature fusion
method (OTFDF-FM). In this method, the time domain
features and frequency domain features of the same signal are
connected in series to form a coal gangue recognition
eigenmatrix containing all signal features. Then, to simplify
the recognition model and improve the recognition accuracy,
the time−frequency domain feature selection fusion method
(TFDFS-FM) is proposed. The first six features with the
highest recognition accuracy among all time domain and
frequency domain features are retained, and various combina-
tions of them are traversed. The optimal feature subset is the
feature combination with the highest recognition accuracy,
which is the result of TFDF-F. The pseudocode of TFDFS-FM
is shown in Figure 8.
Second, in order to increase the effective information and

reduce the computational complexity, the MS information
fusion method (MSI-FM) is proposed. On the basis of the two
kinds of TFDF-F methods, the better one is selected for MS
information fusion. The specific fusion steps are as follows.
The recognition accuracy of 16 sensors was sorted, and the
sensor signals were selected for parallel fusion according to the

recognition accuracy from high to low. One sensor was
selected each time for a total of 16 fusions, and the optimal
sensor combination with the highest recognition accuracy was
selected. According to the principle of selecting a small number
of sensors with the same recognition accuracy, the final MS-
TFDF-F result is obtained.
Finally, the MS-TFDF-F-based coal gangue recognition

model is established based on the above research, and the
recognition process is shown in Figure 9. First, each signal
collected by the sensors is processed to extract 12 time domain
features and 12 frequency domain features. Second, according
to the boundary of 25% gangue content, it is divided into two
kinds of coal gangue recognition sample sets: “caving category”
and “shutdown category”. Then, 400 groups of samples are
randomly selected from the “caving category” and “shutdown
category” sample sets as the training set and 200 groups of
samples are randomly selected as the test set, respectively.
Finally, the training set and the test set are input into the MS-
TFDF-F-based coal gangue recognition model, and the
recognition accuracy of the sample set is obtained. The time
domain and frequency domain feature fusion method is
selected according to the recognition results, and the
recognition accuracy of each sensor is sorted based on the
selected fusion method. The sensors are selected successively
for parallel combination, and finally trained into a MS-TFDF-
F-based coal gangue recognition model with the highest
recognition accuracy.

5. RESULTS AND DISCUSSION
In this section, the AdaBoost recognition algorithm49−51 is
used to recognize the MS-TFDF-F sample sets of coal gangue
and the performance of the recognition model is verified. The

Figure 5. Time domain signal waveform diagram. (a) Coal and (b) gangue.

Figure 6. Frequency domain signal waveform diagram. (a) Coal and (b) gangue.
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algorithm sets consistent frame parameters, as shown in Table
4.
5.1. Recognition Results of OTFDF-FM. First, we analyze

the recognition results of the OTFDF-FM. Table 5 shows
recognition results under the AdaBoost algorithm for the
sample set of time domain, frequency domain, and TFDF-F of
each sensor signal and all sensor parallel signals.
As shown in Table 5, the recognition accuracy of the TFDF-

F is slightly higher than the time domain and frequency
domain features for most single sensors. When all sensor
signals are used in parallel, the recognition result of TFDF-F is
lower than that of time domain features.
It can be seen from Figure 10 that on the whole, the

recognition result of signal TFDF-F is the best, followed by the
frequency domain feature, and the time domain feature is the
worst. Whether in time domain feature, frequency domain
feature, or TFDF-F, the recognition accuracy of all sensor
signals in parallel is higher than that of each single sensor. The
highest recognition accuracy of signal TFDF-F only reaches
97%, which is lower than the highest recognition accuracy of

time domain features of 97.3%. Therefore, the OTFDF-FM is
not effective in improving recognition accuracy.
5.2. Recognition Results of TFDFS-FM. Recognition

results of the OTFDF-FM are analyzed in this section. Table 6
shows the recognition results and fused features under the
AdaBoost algorithm for the sample set of time domain,
frequency domain, and TFDF-F of each sensor signal and all
sensor parallel signals. To ensure the comparability of
recognition results, we perform feature selection according to
the same principle for time domain and frequency domain
features. That is, the first six features with the highest
recognition accuracy are retained, and their various combina-
tions are traversed to find the optimal feature subset and obtain
the recognition results.
The fused feature subset in Table 6 is the feature

combination with the highest recognition accuracy. Therefore,
the stronger the classification ability of the feature for the
target task, the higher the possibility that it will be retained. In
order to explore the classification ability of each time domain
and frequency domain feature, we made statistics on the
frequency of features in the process of time domain, frequency

Table 3. Time Domain and Frequency Domain Feature Expressionsa

serial number time domain features serial number frequency domain features

1 13

2 14

3 15

4 16

5 17

6 Ftd6 = max[x(i)] − min[x(i)] 18

7 19

8 20

9 21

10 22

11 23

12 24

aHere, n = 25,001 and x(i) is the value of the corresponding vibration signal acceleration at the ith (1 ≤ i ≤ 25,001) sampling point. s(k) is the
spectrum of the signal x(i) and f k is the frequency value of the kth spectral line. (k = 1, 2, ..., K. K is the number of spectral lines).
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domain, and TFDF-F-based selection fusion, as shown in

Table 7.
As shown in Table 7, the feature with the highest frequency

is Ftd1, which appears 24 times in total and has a strong
classification sensitivity for the signal sample. The lowest

frequency features are Ftd7 and Ftd12, which did not play a role
in this recognition experiment based on the TFDFS-FM.
Figure 11 shows the frequency of time domain and

frequency domain features in the recognition experiment

based on feature selection fusion, respectively. It can be seen
from the figure that the overall sensitivity of frequency domain
features is higher than that of time domain features. The

frequency of each feature is sorted, and the result is as follows.

According to Table 6, we compare the recognition accuracy
of the time domain, frequency domain, and time−frequency
domain features of each sensor signal based on the TFDFS-
FM, as shown in Figure 12.
According to Figure 12, the recognition accuracy of TFDF-F

is significantly higher than that of time domain features and
frequency domain features under the TFDFS-FM. Recognition
results of 16 sensor signals connected in parallel are distinctly
higher than those of each single sensor, and the highest

Figure 7. Diagram of the MS-TFDF-F process.
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recognition accuracy is 98.8% after TFDF selection fusion. The
TFDFS-FM has an obvious effect on improving recognition
accuracy.
5.3. Comparison of Recognition Accuracy of Two

Feature Fusion Methods. Above, we compare the
recognition results before and after the fusion of the two
TFDF-F methods. According to Tables 5 and 6, this section
will compare the two feature fusion methods. First, the
recognition results of all features and feature selection in time
domain and frequency domain are compared, as shown in
Figure 13a,b, respectively.
As shown in Figure 13a, the recognition accuracy of time

domain feature selection is higher than that of all time domain
features under most sensors. As shown in Figure 13b, the
recognition accuracy of frequency domain feature selection and
all frequency domain features varies from sensor to sensor.
Then, we compare the recognition accuracy of the two
methods of OTFDF-FM and TFDFS-FM, as shown in Figure
14.
As shown in Figure 14, the recognition accuracy of the

TFDFS-FM is higher than that of the OTFDF-FM under most
sensors by comparing the recognition accuracy. In general, the
recognition results of the TFDFS-FM are better, and this
feature selection method can reduce the number of
classification features to 6 or less, which is less than the 24

inherent features in the OTFDF-FM, greatly reducing the
computational complexity of the model. Therefore, the
following research is based on the TFDFS-FM.
5.4. Analysis of the Recognition Results of Each

Single Sensor. In this section, the recognition accuracy of
each single sensor is analyzed based on the TFDFS-FM. Table
8 and Figure 15 shows the recognition accuracy of each single
sensor.
As shown in Table 8 and Figure 15, the recognition accuracy

varies greatly among the nine vibration acceleration sensors at

Figure 8. Pseudocode of the TFDFS-FM.

Figure 9. MS-TFDF-F-based coal gangue recognition model.

Table 4. Definition of AdaBoost Classifier System and
Parameters

parameters definition implication

n_estimators 20 the number of weak learners
algorithm SAMME.R the prediction probability of

sample set fraction is used as the
weight of weak learner

learning_rate 1 weight reduction coefficient of
weak learner

base_estimator AdaBoostClassifier the weak learner is the
classification learner

Table 5. Recognition Results Based on OTFDF-FM

sensor
number

time
domain

frequency
domain

time−frequency
domain

vibration
acceleration
sensor at the
bottom of tail
beam

NO.1 0.713 0.860 0.853

NO.2 0.733 0.770 0.790
NO.3 0.863 0.825 0.910
NO.4 0.658 0.733 0.753
NO.5 0.790 0.778 0.835
NO.6 0835 0.850 0.873
NO.7 0.710 0.778 0.775
NO.8 0.690 0.735 0.733
NO.9 0.748 0.765 0.775

axis pin vibration
acceleration
sensor

NO.10 0.800 0.768 0.783

NO.11 0.790 0.778 0.780
high frequency
pressure sensor

NO.12 0.840 0.890 0.895

NO.13 0.728 0.853 0.900
acoustic sensor NO.14 0.698 0.785 0.795

NO.15 0.743 0.770 0.798
NO.16 0.818 0.888 0.878

ALL 0.973 0.965 0.970
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the bottom of the tail beam. Although several groups of sensors
are in mutually symmetric positions, the symmetry of the
recognition accuracy is also extremely unobvious, which is
caused by the uneven position of the gangue particles sliding.
Therefore, the sensitivity cannot be defined only based on the
sensor position. The recognition accuracy of the axis pin
vibration sensor has no obvious advantage compared with
other sensors, and the recognition accuracy of the acceleration
signal generated by the x-direction vibration is higher than that
generated by the y-direction vibration. The recognition
accuracy of the signals detected by the two pressure sensors
is high. The recognition accuracy of acoustic sensors varies
depending on the sensor position. The recognition accuracies
of single sensor signals are sorted as follows.

5.5. Coal Gangue Recognition Results Based on MS
Time−Frequency Feature Fusion. Based on the TFDFS-
FM with better results and the recognition accuracy ranking of
each single sensor, we carry out the recognition research of MS
information fusion in this section. Sensors are selected for MS
information fusion according to the recognition accuracy of the
single sensor TFDF-F from high to low. The relationship
between the number of fusion sensors and the recognition
accuracy as well as the fusion features is shown in the following
table.
According to Table 9, the frequency of each time domain

and frequency domain feature in the process of MS
information fusion is counted, as shown in Table 10. (Only
the features appearing in the process of MS information fusion
are counted.)
The feature with the highest frequency is Ftd1, which appears

16 times in total, followed by Ffd10, which appears 12 times in
total.
According to Figure 16, the frequency of each feature is

sorted.

The ranking of feature frequency and its sensitivity are
different by comparing Table 7 with Table 10, which proves
that the classification ability of features varies greatly with
different data sets. Therefore, in practical applications, it is not
only necessary to perform a simple series fusion of all features
but also to screen out the most useful feature subset for the
corresponding sample set classification.
According to Table 9, the following figure shows our graph

of the recognition accuracy as a function of the number of
sensors fused in the process of MS information fusion.
As shown in Figure 17, the highest recognition accuracy is

achieved when the number of fused sensors is in the interval of
6−11. When the recognition accuracy is consistent, we try to
select a smaller number of sensors for fusion so as to reduce
the computational pressure of data processing and learning.

Figure 10. Comparison of recognition results based on the OTFDF-
FM.

Table 6. Recognition Results Based on TFDFS-FM

time domain frequency domain
time−frequency

domain

recognition results
and the fused

features

recognition results
and the fused

features
Recognition results

and the fused features

NO.1 0.765 0.853 0.893
[Ftd1, Ftd4] [Ffd6, Ffd11] [Ftd1, Ffd5, Ffd8, Ffd11]

NO.2 0.753 0.783 0.803
[Ftd1, Ftd5] [Ffd6, Ffd7, Ffd11] [Ftd1, Ffd7]

NO.3 0.873 0.828 0.918
[Ftd1, Ftd5] [Ffd6, Ffd7, Ffd8,

Ffd11, Ffd12]
[Ftd1, Ffd3, Ffd7, Ffd8]

NO.4 0.713 0.775 0.758
[Ftd1, Ftd3, Ftd4,
Ftd5]

[Ffd5, Ffd7, Ffd12] [Ffd5, Ffd7, Ffd9, Ffd11]

NO.5 0.803 0.793 0.863
[Ftd1, Ftd4] [Ffd2, Ffd5] [Ftd1, Ffd8, Ffd9]

NO.6 0.858 0.838 0.880
[Ftd1, Ftd3, Ftd4,
Ftd5]

[Ffd6, Ffd7, Ffd9,
Ffd11, Ffd12]

[Ffd5, Ffd7, Ffd8, Ffd9]

NO.7 0.758 0.788 0.830
[Ftd1, Ftd3] [Ffd6, Ffd7, Ffd11,

Ffd12]
[Ftd1, Ffd7, Ffd9]

NO.8 0.723 0.773 0.745
[Ftd1, Ftd11] [Ffd5, Ffd7, Ffd9,

Ffd12]
[Ffd5, Ffd12]

NO.9 0.773 0.773 0.780
[Ftd1, Ftd3, Ftd4] [Ffd2, Ffd6, Ffd9] [Ftd1, Ffd6, Ffd9, Ffd12]

NO.10 0.808 0.775 0.825
[Ftd1, Ftd3, Ftd4] [Ffd1, Ffd2, Ffd7] [Ftd1, Ftd4, Ffd9]

NO.11 0.790 0.785 0.780
[Ftd1, Ftd2] [Ffd5, Ffd7, Ffd9,

Ffd12]
[Ftd2, Ftd4, Ffd5, Ffd7]

NO.12 0.855 0.855 0.885
[Ftd1, Ftd2, Ftd3,
Ftd4, Ftd5, Ftd10]

[Ffd3, Ffd6, Ffd10] [Ffd1, Ffd3]

NO.13 0.735 0.855 0.918
[Ftd1, Ftd2, Ftd3] [Ffd5, Ffd7, Ffd9,

Ffd12]
[Ftd1, Ffd1, Ffd2, Ffd3]

NO.14 0.713 0.755 0.780
[Ftd1, Ftd2, Ftd3,
Ftd4]

[Ffd5, Ffd7] [Ftd2, Ftd4, Ffd6, Ffd11]

NO.15 0.735 0.818 0.818
[Ftd6, Ftd8, Ftd11] [Ffd5, Ffd8, Ffd11] [Ffd5, Ffd7]

NO.16 0.785 0.878 0.898
[Ftd2, Ftd4, Ftd9,
Ftd10]

[Ffd2, Ffd5, Ffd10] [Ftd2, Ftd4, Ffd5, Ffd9,
Ffd10]

ALL 0.983 0.978 0.988
[Ftd1, Ftd4, Ftd11] [Ffd3, Ffd6, Ffd9] [Ftd1, Ftd2, Ftd3, Ffd10]
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Table 7. Statistics of Feature Frequency

features Ftd1 Ftd2 Ftd3 Ftd4 Ftd5 Ftd6 Ftd7 Ftd8 Ftd9 Ftd10 Ftd11 Ftd12
frequency 24 9 9 14 5 1 0 1 1 2 3 0
features Ffd1 Ffd2 Ffd3 Ffd4 Ffd5 Ffd6 Ffd7 Ffd8 Ffd9 Ffd10 Ffd11 Ffd12
frequency 4 5 6 1 14 11 16 6 12 4 10 9

Figure 11. Frequency of features. (a) Frequency of each time domain feature in the feature selection fusion process. (b) Frequency of each
frequency domain feature in the feature selection fusion process.

Figure 12. Comparison of recognition results based on the TFDFS-
FM.

Figure 13. Comparison of recognition results of all features and feature selection. (a) Comparison of recognition results of two feature selection
methods in the time domain. (b) Comparison of recognition results of two feature selection methods in the frequency domain.

Figure 14. Comparison of time−frequency domain fusion recognition
results of two feature selection methods.
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Table 8. Recognition Accuracy of Each Single Sensor

sensor number NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8
recognition accuracy 0.893 0.803 0.918 0.758 0.863 0.880 0.830 0.745
sensor number NO.9 NO.10 NO.11 NO.12 NO.13 NO.14 NO.15 NO.16
recognition accuracy 0.780 0.825 0.780 0.885 0.918 0.780 0.818 0.898

Figure 15. The recognition accuracy of each single sensor based on the TFDFS-FM.

Table 9. Recognition Results and Fusion Features of MS-TFDF-F

number of sensors 1 2 3 4
recognition results and the fused features 0.918 0.965 0.988 0.983

[Ftd1, Ffd3, Ffd7, Ffd8] [Ftd1, Ffd3, Ffd4, Ffd5] [Ftd1, Ftd3, Ffd10] [Ftd1, Ftd3, Ffd5]
number of sensors 5 6 7 8
recognition results and the fused features 0.983 0.99 0.99 0.99

[Ftd1, Ftd3, Ftd4, Ffd10] [Ftd1, Ftd2, Ftd3, Ftd4, Ftd6] [Ftd1, Ftd2, Ftd3, Ffd10] [Ftd1, Ftd4, Ffd10]
number of sensors 9 10 11 12
recognition results and the fused features 0.99 0.99 0.99 0.988

[Ftd1, Ftd2, Ffd10] [Ftd1, Ftd2, Ffd10] [Ftd1, Ftd2, Ffd10] [Ftd1, Ftd4, Ffd10]
number of sensors 13 14 15 16
recognition results and the fused features 0.988 0.988 0.988 0.988

[Ftd1, Ftd2, Ftd3, Ffd10] [Ftd1, Ftd2, Ftd3, Ffd10] [Ftd1, Ftd2, Ftd3, Ffd10] [Ftd1, Ftd2, Ftd3, Ffd10]

Table 10. Statistics of Feature Frequency

features Ftd1 Ftd2 Ftd3 Ftd4 Ffd3 Ffd4 Ffd5 Ffd6 Ffd7 Ffd8 Ffd10
frequency 16 9 7 4 4 1 2 1 1 1 12

Figure 16. Frequency of features.

Figure 17. Recognition results based on the MS-TFDF-F.
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Finally, the number of fusion sensors in the MS-TFDF-F-based
coal gangue recognition model is six, and the recognition
accuracy reaches 99%. Six sensors are numbered NO.3, NO.13,
NO.16, NO.1, NO.12, and NO.6, a fusion of three vibration
acceleration sensors, two high-frequency pressure sensors, and
one acoustic sensor.

6. APPLICATION ANALYSIS
China’s coal demand is a large and growing trend, mainly used
in thermal power generation, industrial boilers, domestic coal,
and other aspects. Although the output of gangue in the
process of coal mining will cause harm to the environment,
economy, resources, and society, the characteristics of “rich
coal, poor oil, and less gas” in the energy structure of China
determine that coal will continue to occupy the main body of
energy in our country, so the growth trend of it will not change
significantly in the short term. The following will qualitatively
analyze the benefits of various aspects of the coal gangue
recognition model.
For the environment and green sustainable development, the

application of coal gangue recognition intelligent technology
can not only reduce the impact of gangue on the environment
but also avoid the spontaneous combustion of residual coal in
the mined-out area and the harmful gas pollution of the
environment, which is conducive to the green sustainable
development of coal mine production.
In terms of economy, each ton of gangue needs to consume

transportation and lifting costs of about 14.26 yuan, and the
cost of moving the sieve of 2.25 yuan. In addition, there are
coal washing costs, evaluation costs, depreciation costs, and the
impact of gangue on coal quality costs. The cost of producing
one ton of gangue in China is 89.54 yuan through
comprehensive calculation, so reducing the output of gangue
can greatly reduce the cost of coal mining. In addition, it also
reduces the input of environmental governance costs.
In terms of resources, the accurate recognition of the coal

gangue interface avoids the situation of under-discharging and
over-discharging, reduces the consumption of land, water,
biology, and other resources by solid waste emission, and
realizes loss reduction mining to increase the output of coal
resources as much as possible. China’s raw coal production has
been on the rise every year since 2016. According to the
current coal mining technology in China, 14 million tons of
gangue will be discharged for every 100 million tons of coal
produced. At present, more than 3 billion tons of gangue are
stored in China, covering about 12,000 hectares. Governance
of gangue is conducive to promoting the liberation of
cultivated land in China.
In recent years, China has issued a series of policies on coal

mining, supporting the coal industry to develop in the
direction of intelligence and efficiency, which will also promote
the further development of coal mining. In addition, as an
irreplaceable fuel and raw material for power, steel, building
materials, and chemical industries, the overall development
trend of coal in the future is stable growth. Under the
background of national advocacy for green mining, it is of
profound significance to achieve a balance between loss
reduction mining and solid waste emission reduction.
The establishment of the MS-TFDF-F-based coal gangue

recognition model and the wide application of this technology
will bring great benefits to China’s environment, economy,
resources, and society, as summarized in Table 11.

7. CONCLUSIONS
In order to ensure the balance between loss reduction mining
and solid waste emission reduction in the process of top coal
caving and realize clean production, this study builds a top coal
caving simulation test bed and conducts coal gangue
recognition research based on MS time−frequency domain
fusion. Several conclusions can be drawn as follows.
(1) The way of comprehensive treatment of gangue is the

realization of loss reduction mining and solid waste
emission reduction, and the fundamental method is the
accurate recognition of the coal gangue interface.

(2) By building a simulation test bed for top coal caving, the
MS signals of a coal gangue mixture with a gangue
content of 0−100% are extracted. After preprocessing,
12 time domain features such as mean, absolute mean,
and standard deviation and 12 frequency domain
features such as spectrum mean, frequency variance,
and frequency center of gravity of each signal are
extracted.

(3) Two feature fusion methods, OTFDF-FM and TFDFS-
FM, are proposed. By comparison, the recognition
accuracy of the TFDFS-FM is higher, reaching 98.8%
when using all sensor signals.

(4) The fusion frequency of each feature in the process of
TFDF selection fusion is studied, and it is found that the
sensitivity ranking of features is different when fusing
different sensor signals. Therefore, each data set has its
corresponding optimal feature subset.

(5) Through the processing of TFDFS-FM and the MS
signal fusion method, the recognition accuracy of the
sample set can be improved to 99% under the AdaBoost
algorithm when six sensors are fused. While ensuring
high-precision recognition, the number of sensors and
features is reduced.

The results of this paper prove the recognition ability of the
MS-TFDF-F-based coal gangue recognition model. This
research lays the foundation for accurately defining the coal−

Table 11. Benefits Analysis of the Recognition Model

benefits

environment (1) the harm of gangue output to atmosphere, water source,
and soil is reduced

(2) the risk of a large number of harmful gases produced by
spontaneous combustion in mined-out area is reduced

(3) it promotes the green and sustainable development of
the local ecological environment

economy (1) the extra cost of gangue production, transportation, and
crushing is reduced

(2) the cost of environmental remediation caused by gangue
treatment is avoided

(3) make full use of the economic benefits brought by coal
resources

resources (1) it alleviates the excessive consumption of land, water,
biological, and other resources caused by environmental
degradation

(2) the accumulation of gangue mountain to the occupation
of cultivated land resources is reduced

society (1) it responds to the call of related green mining policy in
China

(2) it is conducive to the intelligent and efficient
development of various industries in China

(3) the harm to the physical and mental health of the local
population is reduced

(4) the social burden caused by economy and environment
is alleviated
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gangue interface and realizing the balance between loss
reduction mining and solid waste emission reduction in the
process of top coal caving, which is of great significance to
promote the clean and green development of the coal mining
industry. In this paper, only the accuracy of the coal gangue
recognition model is considered, while the response speed is
not studied. It will be the future development direction to
establish a multi-index and comprehensive coal gangue
recognition model.
With the development of China’s industrialization, people’s

demand for energy is rising, however, we should always uphold
people-oriented thinking. The environment in which human
beings live, the economy they develop, the resources they rely
on, and the society they live in should be placed within the
scope of resource development priorities.
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