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Abstract

Viruses are spherical or complex shaped carriers of proteins, nucleic acids

and sometimes lipids and sugars. They are metastable and poised for

structural changes. These features allow viruses to communicate with

host cells during entry, and to release the viral genome, a process known

as uncoating. Studies have shown that hundreds of host factors directly

or indirectly support this process. The cell provides molecules that pro-

mote stepwise virus uncoating, and direct the virus to the site of repli-

cation. It acts akin to a snooker player who delivers accurate and timely

shots (cues) to the ball (virus) to score. The viruses, on the other hand,

trick (snooker) the host, hijack its homeostasis systems, and dampen

innate immune responses directed against danger signals. In this review,

we discuss how cellular cues, facilitators, and built-in viral mechanisms

promote uncoating. Cues come from receptors, enzymes and chemicals

that act directly on the virus particle to alter its structure, trafficking and

infectivity. Facilitators are defined as host factors that are involved in

processes which indirectly enhance entry or uncoating. Unraveling the

mechanisms of virus uncoating will continue to enhance understanding

of cell functions, and help counteracting infections with chemicals and

vaccines.
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How Cellular Cues and Facilitators Shape
the Viral Uncoating Program

Virus entry is the process by which the genome of a
virus particle is delivered to the replication site, which can
be in the cytosol, on cytoplasmic membranes or in the
nucleus. The viral uncoating program is encoded in the
viral genome together with the blueprint for the produc-
tion of progeny viruses. The majority of viruses link their
uncoating program to the endocytic machinery (for sum-
mary, see Figure 1) (1). The details of uncoating are highly
variable depending on the nature of the virus and the cell.
However, the profile of events is similar for most viruses. It
involves a stepwise process with a final step, the release of
the genome from a protective, confining capsid structure
(2,3). The final step enables transcription and replication,
or in the case of DNA and RNA retroviruses the stable

maintenance of the viral genome in the host nucleus. As
a rule, complete uncoating occurs once the capsid has
reached its final destination (4). The steps of uncoating are
regulated by cellular cues, which directly act on the virus.
Here we have categorized cellular factors exerting cues to
promote entry and uncoating of the incoming particle. The
three major cues come from host receptors, enzymes and
small chemicals including ions.

Receptor cues come from plasma membrane associated
molecules (proteins, sugars, lipids). They bind the virus
to a cell, and actively promote virus endocytosis. They
mediate conformational changes in the virion (a virus
particle outside the cell) or the virus, and promote the for-
mation of microdomains that trigger signaling pathways
and enable the infection process (1,4–7). Signaling plays a
critical role in virus entry. Receptors often follow the virus
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Figure 1: Endocytic pathways involved in virus entry. The majority of viruses use endocytosis for entry (4,279). The virus-carrying
vesicles and vacuoles often move along microtubules toward the nucleus. Cellular markers for the vesicles are shown within the
light-blue boxes. The pH lowers as the vesicles mature and approach the nucleus. Viruses (not shown) enter the endocytic pathway
and respond to cellular cues and facilitators that serve as uncoating signals. Such cues and facilitators are regulated in time and space
and control the stepwise uncoating program, as shown in the examples in Figures 2–4. Abbreviations: EEA1, early endosomal antigen
1; ER, endoplasmic reticulum; ESCRT, endosomal sorting complexes required for transport; LAMP1, lysosome associated membrane
protein 1; NPC1, Niemann-Pick Disease, Type C1; PI3P, Phosphatidylinositol 3-phosphate; SNX, syntaxin; TGN, trans-Golgi network.
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into the cell during endocytosis, as shown with dendritic
cell-specific intercellular adhesion molecule 3-grabbing
non-integrin (DC-SIGN) and bunyavirus (8). Intracellular
receptors found in the endocytic pathway can also play an
important role in viral fusion and escape into the cytosol.
Examples are Niemann-Pick C1 (NPC1) for Ebola virus
and lysosome associated membrane protein 1 (LAMP1)
for Lassa virus (9,10). A receptor cue and actomyosin work
together in virion surfing at the extracellular part of the
plasma membrane (11–15).

Enzymatic cues include oxido-reduction, quality control
machineries such as the ubiquitin proteasome system
(UPS), endoplasmic reticulum (ER)-associated protein
degradation (ERAD) and disaggregation. A good example
is simian virus 40 (SV40), a polyomavirus whose uncoat-
ing process in the ER has been studied in detail (16–23)
(see also section Uncoating Cues and Facilitators). Further
to this, protease digestion can activate viral spike proteins
that facilitate virus fusion with host membranes and escape
of many viruses from endosomes (24). Enzymatic activity
can also result in generation of mechanical/physical forces
involving cytoskeletal motors (dynein, kinesin, myosin),
the cytoskeleton (tubulin, actin filaments) and the nuclear
pore complex (NPC). Such forces can alter the physi-
cal properties of the capsid and promote uncoating and
genome release (11,25,26).

Chemical cues such as low pH, and changes in other ion
concentrations are, for example, spatiotemporally regu-
lated during endosome maturation (27,28). They trigger
conformational changes in the viral envelope, the coat or
the nucleic acid-protein core of incoming viruses (29,30).
Changes in chemical properties between different cellular
compartments, such as from ER to cytosol (16), or endo-
some to cytosol, can promote further steps of uncoating.

Facilitators are host factors (proteins, sugars, lipids, ions)
that enhance viral uncoating, but do so in an indirect man-
ner compared to the cues. According to current knowl-
edge, facilitators do not directly bind to the virus. Examples
include cell signaling molecules, such as Ca2+ transients in
the cytosol, endosome maturation factors or intracellular
transport factors, such as actin and microtubule filaments.

Cellular cues and processes implicated in virus uncoating
are summarized in Figure 2.
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Figure 2: Cellular cues and processes implicated in viral
uncoating. The scheme depicts cellular cues (receptors, enzymes
and chemicals including ions) and their cellular processes impli-
cated in the stepwise uncoating of incoming virus particles. After
binding to the cell surface via receptors and attachment factors,
viruses are typically taken up into endocytic vacuoles following
activation of signaling. They penetrate endosomes to enter the
cytoplasm. Inside endosomes, viruses can be primed via endo-
some maturation, receptor binding, protease digestion or ions.
In some cases, viruses fuse directly at the plasma membrane to
enter the cytoplasm. In the cytoplasm, viruses can be exposed
to cellular cues and processes which culminate in the comple-
tion of uncoating and release of the viral genome from the cap-
sid. The viral genome is transported to the site of replication,
which may be in the cytosol, on cytoplasmic membranes or in
the nucleus. Receptor cues (green), enzymatic cues (pink), chem-
ical cues (blue) and cellular processes (white) implicated in viral
uncoating are indicated. Facilitators are not shown. Abbreviation:
ERAD, ER-associated protein degradation.

Viral Strategies That Promote Uncoating

Viruses have built-in mechanisms that respond to cellu-
lar cues and facilitators, in order to promote entry and
uncoating. For example, by containing phosphatidylser-
ine (PS) within their membranes viruses can effectively

Traffic 2016; 17: 569–592 571



Yamauchi and Greber

mimic apoptotic cells, thereby subverting apoptotic clear-
ance mechanisms to facilitate virus entry or infection (31).
Below we list some of the strategies used by viruses to
uncoat their genome.

Low pH-activated viral fusion
Virus–cell fusion is the means by which all enveloped
viruses, including HIV, influenza and Ebola virus enter
cells. It requires bringing two separate membrane bilay-
ers into intimate contact and then merging them into one.
It is executed by one or more viral surface glycoproteins.
The sole cue so far known to trigger fusion of orthomyxo-,
rhabdo-, alpha-, flavi-, bunya- and arenaviruses is low pH
(32). A recently discovered family of cellular factors with
anti-viral activity are interferon inducible transmembrane
(IFITM) proteins. They have the ability to inhibit viral
entry, possibly by modulating the fluidity of cellular mem-
branes and blocking fusion (33).

Low pH-activated viral protease and glycosidase
Some viruses activate proteolytic activity in response to
an acidic environment. Adeno-associated virus (AAV)
is capable of autolytic cleavage at multiple sites within
the capsid, which is induced at pH 5.5 (34). This cleav-
age may contribute to the escape of AAV from acidic
endosomes during entry. The (NA) of H5N1 influenza
A virus was shown to have high catalytic activity at
low pH, and to cleave glycosylated LAMPs. The main
activity of NA is to release newly assembled virus par-
ticles from the cell surface (35). NA inhibitors can also
reduce early stages of infection, and it is possible that NA
activity in late endosomes is required for optimal virus
entry (36).

Capsid softening and internal pressure
Using atomic force microscopy (AFM) at virion resolu-
tion, it was found that influenza virus particles soften
following acidification of the viral core. This is due to
acid-induced conformational changes of the capsid inde-
pendent of the viral glycoproteins (37–39). Assembled
adenovirus particles contain an estimated internal pres-
sure of 30 atmospheres, which is thought to assist in the
stepwise virus disassembly process, starting at the phys-
ically weakest spot of the virus, the fivefold symmetri-
cal vertex (2,11,40–44). Chemical and mechanical stability

have been known to correlate in bacteriophage T7 (45),
and internal pressure with capsid stiffness in phage phi29
(46). The resistance of the adenovirus vertex depends on
virus maturation, which is mediated by the adenovirus
cysteine protease AVP (47,48), and also on innate fac-
tors against the virus, such as defensins which bind to
and stabilize the vertex region (49). Pressure within the
virus particle is built up by electrostatic repulsion between
the negatively charged dsDNA strands, DNA bending and
entropic components, and is thought to weaken the pen-
tons (50). It eventually facilitates genome ejection for
DNA translocation into the nucleus, a strategy acquired
by bacteriophage and certain eukaryotic viruses such as
herpesviruses (46,51).

Directional genome uncoating
Human rhinoviruses (HRVs) are the major cause of
the common cold. The uncoating process of the minor
group virus HRV2 begins with low density lipoprotein
receptor (LDLR) binding, and clathrin-dependent and
-independent endocytosis (52,53). Conversion of the
capsid to subviral particles is induced by low pH in late
endosomes, and VP1 and VP4 insert into the endosomal
lumen creating an ion-conducting pore (30,54,55). The
3′-end of the linear RNA genome exits from the capsid first,
suggesting that the RNA adopts a defined conformation
inside the viral capsid (56).

The assembly-disassembly paradox
How can a virus be assembled in an infected cell and fall
apart (disassemble) during entry into an uninfected cell?
One possibility is that virus capsid is assembled as a stable
structure in an infected cell and rendered metastable, for
example by limited proteolysis, such that it can receive
cues from the host (3). A well studied example here is
adenovirus (48). A second possibility is that the virus
particle itself is unchanged during assembly and egress,
but that the infected and uninfected cells are different. An
uncoating factor may be absent (inactive) during assembly,
but present (active) during viral entry. Semliki Forest virus
(SFV; see Box 2) and influenza virus use this strategy
(25,57,58). During assembly of influenza virus, proton
flux through the viral M2 ion channel, which is present
in the Golgi membrane, neutralizes the acidic pH of the
trans-Golgi network (TGN) and thereby prevents activa-
tion of the newly synthesized hemagglutinin (HA) to its
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fusogenic form (59–62). A third possibility is that the virus
is unchanged but assembly and uncoating are spatially sep-
arated (3,63). Polyomaviruses, for example, are uncoated in
the ER, but assembled inside the nucleus (18,64). Influenza
viral ribonucleoprotein (vRNPs) are prevented from
re-import after replication, or following microinjection
into infected cells due to vRNP binding to newly expressed
viral matrix protein (M1) (65,66). Replicated adenovirus
DNA cannot undergo inter-nuclear spreading upon fusion
of an infected cell with uninfected neighboring cells (67).
To be infectious, progeny viruses must be released and
go through an uncoating program during entry into a
new cell.

As we described above, viruses have evolved to navigate the
networks of host genes, proteins, lipids and RNAs, as well
as metabolic and catabolic pathways. This allows viruses to
couple their stepwise disassembly with the entry process
into cells, leading them through chemically distinct cellular
environments.

Uncoating at the Nuclear Pore

Many viruses replicate in the cytoplasm. Others travel
into the nucleus for replication (68). For such viruses
nuclear entry is a limiting step in infection. The verte-
brate NPC has an estimated molecular mass of 125 MDa
and is composed of 80–100 different proteins called
nucleoporins (Nups) (69–71). The NPC has barrier and
transport functions, with kinetic cargo size restriction of
about 39 nm for receptor-mediated transport and solutes
of about 40 kDa (71,72). Cargo docking sites surround the
pore on the cytoplasmic side, and the NPC structure con-
stricts to form a dynamic basket on the nuclear side (73).
The NPC is a major bottleneck for viruses to overcome
during cell entry because it provides the only contin-
uous aqueous connection between the cytoplasm and
the nucleus (74). Nuclear entry and uncoating are often
concomitant.

NPC docking and genome release
Large virus capsids, such as those of herpesvirus (125 nm
in diameter) and adenovirus (70–90 nm), are too large to
enter the nucleus through the NPC. Instead, they follow a
pathway of stepwise uncoating and weakening of the capsid

to release their linear, double stranded (ds) DNA into the
nucleus.

Herpes simplex virus-1 (HSV-1) fuses at the plasma mem-
brane, although endosomal fusion has also been reported
(75). Capsids shed some outer tegument proteins into the
cytosol. Some of these proteins, such as the major tegument
protein VP16 (a potent transcription factor) are imported
into the nucleus to enhance viral immediate early gene
expression (76–78). The capsids and tightly bound inner
tegument proteins bind to dynein and kinesin motors that
regulate retrograde transport on microtubules toward the
nucleus (76,79–81). After docking to the NPC via Nup358
or Nup214, a single vertex of the capsid is opened, and
viral DNA is released into the nucleus possibly by high
internal capsid pressure (82–87). This model is analo-
gous to DNA ejection by bacteriophages into bacterial
cells (88).

Adenovirus capsids, following endocytosis and endoso-
mal escape, are transported along microtubules toward
the nucleus, where they dock at the NPC via Nup214
and are disassembled by the outward pulling force gener-
ated by kinesin-1 and microtubules (26,89–91). After the
capsid is disassembled, the viral genome translocates into
the nucleus using nuclear import receptors and histone
H1 (90–96). However, some viral DNA fail to be prop-
erly delivered into or retained within the nucleus (95,97).
This DNA misdelivery may give rise to inflammatory host
responses which is a widespread feature of human aden-
ovirus infections (98).

Small viruses

Viruses with capsids smaller than about 40–50 nm, such
as hepatitis B virus (HBV), parvoviruses and some poly-
omaviruses, can enter through the pores in either an intact
form or as a subviral particle. HBV enters the nucleus to
generate a covalently closed circular viral DNA genome
(cccDNA) and to transcribe this genome. During the
import process, immature capsids are initially trapped
within the NPC via Nup153, and then undergo a mat-
uration process and disassembly, which releases viral
DNA and attached viral DNA polymerase to the nucleus
by an nuclear localization signal (NLS)-dependent pro-
cess (99,100). Nuclear cccDNA is maintained in infected
hepatocytes, and used for reduplication and assembly of
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progeny virus. The high persistence of cccDNA makes
pharmacological treatment of chronically HBV infected
individuals difficult (101,102). Parvoviruses are thought
to enter the nucleus as intact particles, or by transiently
disrupting nuclear membranes, followed by disassembly
in the nucleus, albeit mechanisms are unknown (103,104).

Rod-shaped genomes

Several negative-stranded RNA viruses such as influenza,
Thogoto and Borna disease viruses replicate their RNAs
in the nucleus (105). Influenza circumvents the size limit
of the NPC by encoding its genetic information on eight
separate, rod-like vRNPs that are thin enough in diameter
to enter through the pore. They resemble a twisted rod
(10–15 nm in width and 30–120 nm in length) that is
folded back and coiled on itself (106,107). Studies using
amantadine have shown that acidification of the viral core
in endosomes via the viral M2 channel is essential for
the dissociation of incoming nucleocapsids in the cytosol
following fusion (108,109). After capsid uncoating, the
vRNPs are released into the cytosol. Nucleoprotein (NP),
the main component of vRNPs, contains NLSs neces-
sary for nuclear import (110–115). Progeny vRNPs are
exported to the cytosol after binding to M1 and nuclear
export protein (NEP), and are prevented from re-import
into the nucleus (116–119).

Uncoating factors and immune evasion

Human immunodeficiency virus type 1 (HIV-1) uncoat-
ing is controlled by host factors. Following fusion at the
plasma membrane, cyclophilin A or TRIM5α destabilize
the capsid. Transportin 3 (TNPO3), Nup358, cleavage
and polyadenylation specificity factor subunit 6 (CPSF6),
dynein, kinesin-1 and components of the NPC regulate
nuclear transport of the capsid and import of reverse tran-
scribed DNA (120–128). In primary human macrophages,
it was shown that recruitment of cyclophilin A or CPSF6
to capsid protein (CA) prevents premature DNA synthesis,
innate recognition and interferon (IFN)-dependent restric-
tion of HIV-1 (129). In addition, cytoplasmic pools of Nups
may control uncoating by binding to the capsid, or medi-
ate capsid or core docking to the NPC (130). TNPO3, a
member of the importin β family, might play a role in dis-
placing CA and tRNA from the preintegration complex in
the nucleus, and thereby facilitate integration of the viral
genome into host chromatin (127,131).

Actin nucleation mediates nuclear targeting
During entry viruses use microtubule-based mechanisms
to traffic through the cytoplasm to the nucleus for replica-
tion (68). Baculoviruses are an exception, and after fusion
at the plasma membrane the nucleocapsids move on actin
tails through the cytoplasm in random directions (132).
When they collide with the nucleus, they may be proxi-
mal to an NPC and dock to it for a few minutes. There-
after the nucleocapsid (diameter 30–60 nm) is thought to
squeeze through the pore, as suggested by electron micro-
graphs (133), followed by uncoating in the nucleus. Actin
nucleation of baculovirus is mediated by Arp2/3 (134) and
depolymerization of actin inhibits viral entry and infection
kinetics (132).

Mitosis for nuclear access
Unlike influenza virus, HIV-1, herpes- and adenoviruses,
HPV entry into the nucleus apparently does not require
functional NPC. HPV16 is the causative agent of cervi-
cal cancer (135). It has evolved a strategy contingent with
cell tropism in mucosal epithelia, and the skin, involving
basal keratinocytes, which can be infected upon wound-
ing. It establishes persistent infection. After endocytosis,
the virus travels from the endosome to the TGN and ER in
a retromer- and γ-secretase dependent manner (136,137).
Furthermore, access of the subviral DNA/L2 complex to
the nucleus depends on mitotic breakdown of the nuclear
membrane (138,139), or direct transfer from the ER into
the nucleus during reassembly of the nuclear envelope
(137). This correlates with the notion that papillomavirus
exclusively infects basal stem cells that undergo cell divi-
sion (140). Gamma-retroviruses must also wait for nuclear
membrane breakdown during mitosis for nuclear delivery
of preintegration complexes (141–143).

Uncoating Cues and Facilitators – Many
Viruses, Diverse Mechanisms

Viruses make use of ubiquitous cellular processes to exe-
cute their uncoating program. These processes, ironically,
often serve to maintain the cell in a healthy state. For
example, accumulation of protein aggregates is a feature
of cellular stress and aging in all organisms and associ-
ated with pathology. Protein disaggregation is central to the
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Box 1. Break shot – technologies that
advance virus entry studies

Light microscopy, electron microscopy and cor-
relative microscopy. The imaging field has seen
enormous progress in recent years, including
wide field microscopy and total internal reflec-
tion microscopy (TIRF), atomic force microscopy
(AFM), automated high-throughput imaging, lat-
tice light-sheet microscopy and super resolution
microscopy (25,95,144,145). Advance and dissem-
ination of technology has revolutionized the field
of virus entry. Imaging-based entry assays have
been developed to quantify distinct step of virus
entry (146,147). Ethynyl-nucleotide labeling using
EdA/U/C and CLICK chemistry enables temporal
and spatial mapping of the virus genome of adeno,
vaccinia, papilloma and herpes virus (95,148). The
same technique was used to detect cellular DNA
synthesis upregulation by paracrine signaling from a
herpesvirus-infected cell to a remote, uninfected cell
(149). Fluorescence in situ hybridization (FISH) has
been used to detect incoming viral genomes and viral
genome uncoating for coronavirus, adenovirus, rhi-
novirus or influenza virus (91,150,151). It is of note,
however, that FISH is inherently non-quantitative,
as the procedure tends to underestimate the amount
of cytoplasmic viral genomes due to extraction in
the denaturation process (91). This clearly favors
bioorthogonal click-chemistry based approaches
that have single molecule sensitivity (95,152). Wide
field fluorescence microscopy is increasingly used
for automated analysis and quantification of virus
spreading phenotypes in cell cultures (153,154).
For example, Plaque2.0 is a high-throughput soft-
ware method yielding multi-parametric datasets
of virus spreading in 2-D monolayers. It is com-
patible with immuno-cytochemistry and FISH.
Proximity-dependent DNA ligation assay (PLA) has
been used to detect incoming papillomavirus to the
TGN and ER (136,137,155). Fluorescence correlation
spectroscopy (FCS) was used to study directional
exit of the rhinovirus genomic RNA from the capsid
(56). At the ultrastructural level, the combination of

light and electron microscopy using a correlative light
electron microscopy approach provides a powerful
tool for the study of dynamic intracellular membrane
trafficking events, virus entry and replication with
high sensitivity and spatial precision (156–159). Such
technologies may, in the future, enable detection of
particular virus entry steps with greater accuracy
and resolution, and give deeper insight into cell-cell
variability of infection events.
Reverse genetics. The advent of reverse genetics and
molecular engineering of RNA viruses has trans-
formed the field of virology by permitting study
of targeted genetic changes in virus genomes (for
examples see 160–162). Pseudoviruses and virus
like particles (VLPs) can be generated from cloned
cDNAs, for example, allowing for reverse genetics
and introduction of fluorescent probes (163–167).
Beta-lactamase (BlaM) viral core chimeras, such as
BlaM fused to HIV-1 viral protein R (vpr) can be
used to detect virus uncoating with high sensitivity
(168,169).
Systems virology. Systems-level analyses are potent
hypothesis generators, and analyses of systems data,
in combination with mathematical modeling, are used
to generate comprehensive, integrated and predictive
models of biological systems and virus–host interac-
tions (170). Over the last decade, genome-wide RNAi
screens have provided novel leads to study virus–host
interactions (171). For example, such screens found
that the interferon inducible transmembrane (IFITM)
proteins are involved in entry of H1N1 influenza, West
Nile and Dengue virus (172). A recently established
trifunctional reagent for ligand derivatization, termed
TRICEPS, can be used to identify potential viral recep-
tors on the cell surface (173). The proteomics informed
by transcriptomics (PIT) technique allows in silico
derivation of proteomes from transcriptomes. This
allows generation of viral and host protein databases
for non-model species (174). Quantitative proteomics
can provide essential information on posttranslational
protein modifications and interactions with other pro-
teins. Among recent progress are studies with hep-
atitis C and influenza viruses (175–178), identifying
serum response factor binding protein 1 as a potential
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uncoating factor for hepatitis C (177). VirScan is a ver-
satile, high-throughput method to comprehensively
analyze antiviral antibodies displaying proteome-wide
coverage of peptides from all human viruses, from
a single drop of blood (179). Evidently the synergy
between molecular biology, viral immunology and
systems virology reveals novel insights into virus entry
and infection biology.

Box 2. SFV – a model virus to study entry,
uncoating, and immune evasion

In 1980, Ari Helenius and coworkers visualized the
binding of Semliki Forest Virus (SFV), a relatively sim-
ple enveloped virus to the cell surface of BHK-21 cells,
virus internalization into coated vesicles, and accu-
mulation in intracellular vacuoles. They found that
penetration of SFV was triggered by low pH. The
virus responded to this chemical cue by activating
the fusion spike glycoproteins, which then mediated
fusion of the viral envelope with the limiting mem-
brane of the early endosome, followed by penetration
of the viral capsid into the cytosol (180,181). Within
about a minute of reaching the cytoplasm the cap-
sid was fully uncoated by the 28S large ribosomal
subunit, leaving the viral RNA bound to the cytoso-
lic surface of endosomes, where replication occurred
(182,183). Viruses that failed to escape from endo-
somes were delivered to lysosomes and eventually
degraded (184). Infected cells became resistant to
superinfection with SFV but not influenza virus. It is
thought that the uncoating capacity of the ribosomes is
inactivated during SFV replication precluding super-
infection, and protecting progeny capsids from disas-
sembly (57). Helenius and coworkers recently showed
that immediately after uncoating the cellular RNA
helicase Upf1 and nonsense-mediated mRNA decay
(NMD) (185–187) restrict SFV replication by degrad-
ing incoming genomic (+)RNA (188). It is possible
that alphavirus replicases compete with NMD to evade
host restriction.

establishment of homeostasis and long term cell survival
(189). An emerging feature of viral entry and uncoating is
the mimicking of misfolded protein aggregates, so called
‘waste proteins’, in order to hijack cellular quality control
processes that dispose of waste.

Aggresome processing
Influenza virus is an enveloped virus. It uses histone
deacetylase 6 (HDAC6) for uncoating. HDAC6 plays a
central role in regulating both the concentration and
autophagic clearance of protein aggregates (25,190–193).
After binding to sialic acids at the cell surface, influenza
virus is taken up by both clathrin-mediated endocy-
tosis (CME) and macropinocytosis (194–197). Virus
uptake is facilitated by receptor tyrosine kinase signaling
that is mediated by epidermal growth factor (EGFR)
(198). The viral core is primed for uncoating in endo-
somes by H+ and K+ influx through the M2 ion channel
(199–203), followed by HA-mediated viral fusion at
late endosomes which depends on low pH, CD81 and
cathepsin W (204–206). The capsid then exposes unan-
chored ubiquitin chains, a hallmark of misfolded protein
aggregates. These chains are likely generated by deubiq-
uitination of a poly-ubiquitinated misfolded protein that
was not degraded by the proteasome (192,207). They are
exposed to the cytosol and recruit the HDAC6 zinc-finger
ubiquitin-binding domain (ZnF-UBP). HDAC6 binds
to M1 and links the capsid to dynein-, actomyosin-
and autophagy-dependent aggresome processing. The
generated pulling force breaks the capsid, promotes
vRNP release and infection (25,191,192) (Figure 3).
Unanchored poly-ubiquitin chains are emerging as key
factors in multiple cellular responses, including innate
antiviral pathways (208). It will be interesting to find
out whether the incoming ubiquitin chains regulate
downstream signaling events during and after influenza
uncoating.

How does influenza virus prevent premature capsid
uncoating during assembly? During the virus replication
phase, HDAC6 undergoes caspase-mediated cleavage
which inactivates both its ZnF-UBP and deacetylating
enzyme (58,209). This prevents premature capsid uncoat-
ing during virus assembly, and induces hyper-acetylated
microtubules, which in turn, promote viral egress and
budding (58,210).
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Ubiquitin proteasome system
Vaccinia virus core proteins are ubiquitinated during
assembly and packaged into virions. Viral core uncoating
is driven by these pre-packaged ubiquitinated proteins,
rather than by de novo ubiquitination. The core is primed
for uncoating by the acidic pH of macropinosomes, most
likely through a proton channel in the viral membrane
(211). Following fusion, the core disulfide bonds are
reduced in the cytosol. This and proteasome activity
promote the disassembly of the lateral bodies (proteina-
ceous structures flanking the core of the virion), and
the release of the viral phosphatase VH1 (212). VH1
dephosphorylates signal transducer and activator of tran-
scription 1 (STAT1) and protects the infected cells from
IFN restriction (212). In addition, core disassembly is
dependent on the viral D5 primase/helicase, implicating
that chemical energy is required for activating the process
(145,213–215).

ERAD/disaggregation
Polyomavirus is a non-enveloped virus that hijacks the
ERAD machinery during entry. Following binding to
GM1 gangliosides, SV40 arrives in the ER as largely
unmodified particles (216–218). Uncoating is initiated
in the ER, where the capsid diameter shrinks from 45 to
34 nm (17,219,220). The capsid is remodeled structurally
and exposes a hydrophobic peptide which is inserted
into the ER membrane (16,18,183). The hydropho-
bic sequence recruits the ERAD, and the cytosolic

protein disaggregation machinery Hsp105, and the small
glutamine-rich tetratricopeptide repeat-containing pro-
tein α (SGTA)-Hsc70 complex, which together translocate
the penetrating capsid into the cytosol (17,19–23). Capsid
uncoating, specifically the loss of interaction between
the capsid protein VP1 and VP1 pentameric capsomer,
may be aided by low Ca2+ concentrations in the cytosol
(16,221,222). Subviral particles are imported into the
nucleus via NLSs exposed during cytosolic uncoating
(223–225).

Protease cleavage
Cleavage of the viral fusion protein is often crucial for
entry, infection, and pathogenicity, since it enables the
protein to receive cues from the host and insert into a host
target membrane (24). For example, coronavirus (CoV)
fusion (S) glycoprotein is primed by receptor binding
and by low pH. It is proteolytically activated by endo-
somal cathepsins, and the cell surface transmembrane
protease/serine (TMPRSS) proteases, furin and trypsin
(226,227). These steps are spatiotemporally controlled.
Binding of severe acute respiratory syndrome coronavirus
(SARS-CoV) to its receptor angiotensin I converting
enzyme 2 (ACE2) potentiates the S protein for cleavage by
cathepsin L (228–231). The virus acquires fusogenicity in
NPC1-positive endolysosomes where cathepsin L activity
is high (232). Likewise, the fusion (F) protein of respiratory
syncytial virus (RSV) undergoes cleavage by a furin-like
protease twice (233,234). The first cleavage happens during

Figure 3: Cues and facilitators of Influenza A virus entry and uncoating. After binding to sialic acids on the cell
surface, influenza A virus induces receptor tyrosine kinase (RTK) signaling via EGFR and endocytosis by CME or macropinocytosis
(194,197,198,280–282). CME involves Epsin1 and the virus particle enters Rab5-positive early endosomes (197). Macropinocytic
uptake requires N-linked glycans on the cell surface, and also involves RTK signaling (194–196,198). Endosome maturation and
the influx of H+/K+ into the viral core via the M2 channel (shown by H+/K+ with white arrows) primes the virion for uncoating
(199,202,203). Low pH in Rab7/LAMP1-positive late endosomes induces HA-mediated membrane fusion (as shown by H+ with
blue arrows) (206). Unanchored ubiquitin chains are exposed to the cytosol, followed by recruitment of HDAC6 and the aggresome
processing machinery (including dynein, myosin and the cytoskeleton) to disassemble the capsid shell by mechanical force (25). CD81
and cathepsin W also promote virus fusion (204,205). Poly-ubiquitination of matrix protein M1 by E3 ubiquitin ligase Itch is also
implicated in uncoating (283). Following capsid disassembly, the vRNPs are released into the cytosol, followed by NLS-mediated
import into the nucleus, viral gene transcription and replication (110). Receptor cues (green), enzymatic cues (pink), chemical cues
(blue), facilitators (brown), viral protein/process (gray) and endosomal markers (light blue) are indicated. The influenza virion scheme
was adapted from visual-science.com. Abbreviations: EGFR, epidermal growth factor receptor; HA, hemagglutinin; LAMP, lysosome
associated membrane protein; uUb, unanchored ubiquitin; pUb, poly-ubiquitin; FACIL, facilitator; VIRAL, viral protein/process; MARK,
endosomal marker; RECEP, receptor cue; ENZYM, enzymatic cue; CHEM, chemical cue.
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replication in producer cells. After macropinocytic uptake,
a second cleavage in F provides the cue for penetration
by an acid-independent membrane fusion mechanism
(235). The human papillomavirus (HPV) capsid protein
L1 is cleaved in the extracellular space by a serine protease
Kallikrein 8. This cleavage is crucial for further conforma-
tional changes of the minor capsid protein L2 and optimal
uncoating (148).

Intracellular lysosomal receptor
Ebola and Lassa virus use intracellular lysosomal recep-
tors to penetrate into the cytosol. As shown in Figure 4,
Ebola virus binds to T-cell immunoglobulin and mucin
domain 1 (TIM-1) and AXL receptor tyrosine kinase for
macropinocytic uptake by apoptotic mimicry (31,236,237).
After successive proteolytic priming of the glycoprotein
(GP) by cathepsin L and cathepsin B within acidic vesi-
cles, GP and the virus-bound TIM-1 interact with the
endolysosomal receptor NPC1, leading to viral fusion
with the limiting endosomal membrane (9,238–244). A
monoclonal antibody against TIM-1 inhibited membrane
fusion of several filoviruses (244). Fusion and endosomal
escape of Ebola virus appears to happen from endolyso-
somes positive for both NPC1 and TPC2 (two pore Ca2+

channel 2) (232,245,246). TPC1 and 2 are major endo-
somal Ca2+ channels activated by nicotinic acid adenine
dinucleotide phosphate (NAADP), and may influence
endosome maturation by regulating release of Ca2+ from
endolysosomes (247,248).

Lassa virus, an arenavirus, binds O-glycans on cell surface
dystroglycans for endocytic uptake (249). Low pH in late

endosomes releases GP from dystroglycan and in turn
promotes binding to N-glycosylated LAMP1. This receptor
switching process activates membrane fusion and virus
penetration (10,250,251).

Endosome maturation
The endosomal network that receives the incoming viruses
is composed of several different types of organelles.
These are involved in complicated trafficking, sorting
and maturation processes encompassing hundreds of
cellular factors. During endosome maturation the incom-
ing viruses can gain exclusive exposure to cues that are
not available on the plasma membrane or in the cytosol
(27,28). This is supported by the notion that defects in
endosome or macropinosome maturation on the pathway
from the plasma membrane to lysosomes inhibits the
productive entry of many viruses (8,30,202,235,252–263).
Along the same lines, virus entry can be inhibited by
perturbations of microtubule-mediated vesicular traffic,
conversion of Rab5 early to Rab7 late endosomes, or
the formation of intralumenal vesicles (27). In addition,
endosomal cathepsins and furin-like proteases activate
viral fusion proteins (264). Other viruses use endosomal
membrane proteins as intracellular receptors to execute
particular steps of their entry program (9,10). Viruses that
fail to escape from the endosome are eventually degraded
in lysosomes. Endosomes can also trigger innate immunity
against viruses. In plasmacytoid dendritic cells, toll-like
receptor 7 (TLR7) recognizes the ssRNA genomes con-
tained within the influenza virion that are taken up into the
endosome (265–267).

Figure 4: Cues and facilitators of Ebola virus entry and uncoating. Ebola virus binds to the receptors TIM-1 and AXL and
enters cells through classical apoptotic mimicry (31,236,237,284). Endosome maturation, low pH, cathepsin L and cathepsin B activity
prime the virus glycoprotein GP for fusion, an event that is also dependent on cellular factors PIKfyve and HOPS (250). Cathepsin activity
is enhanced by low pH of endolysosomes (as shown by H+ with arrows) (285). Once the virus reaches NPC1/TPC2-positive endosomes
TIM-1 binds NPC1, which directly or indirectly activates fusion and penetration (244–246). TPC2 activity is regulated by NAADP, which
is a highly potent intracellular calcium-mobilizing agent that stimulates intracellular calcium channels to release Ca2+ from endosomes
and lysosomes, influencing the trafficking and maturation of endosomes (248,286). Receptor cues (green), enzymatic cues (pink),
chemical cues (blue), facilitators (brown), viral protein/process (gray) and endosomal markers (light blue) are indicated. Abbreviations:
AXL, AXL receptor tyrosine kinase; GP, glycoprotein; HOPS, homotypic fusion and vacuole protein sorting; LAMP1, lysosome associated
membrane protein 1; NAADP, nicotinic acid adenine dinucleotide phosphate; NPC1, Niemann-Pick Disease, Type C1; PIKfyve, FYVE
finger-containing phosphoinositide kinase; PS, phosphatidylserine; TIM-1, T-cell immunoglobulin and mucin domain 1; TPC2, two pore
Ca2+ channel 2; FACIL, facilitator; VIRAL, viral protein/process; MARK, endosomal marker, RECEP, receptor cue; ENZYM, enzymatic
cue; CHEM, chemical cue.

580 Traffic 2016; 17: 569–592



Virus Entry and Uncoating

Secretory lysosome

Human Adenovirus-C2/5

some

SM CER

ASM

ITGNCAR

SignalingFiber shedding

Endocytosis

Membrane

rupture

Actin

Myosin

Drifting motion

Lesion pore

Endosomal

escape

CER

Protein VI

Protein VI

ASM

Dynamin

Ca
++

Ca
++

Ca
++

Ca
++

Ca
++

Lysosomal exocytosis

FACIL

VIRAL

CHEM

ENZYM

RECEP

Cues

pH7.4

pH6.0

pH6.5

pH5.0

pH4.5

H+
H+

Figure 5: Legend on next page.

Traffic 2016; 17: 569–592 581



Yamauchi and Greber

Co-opted lipid signaling
Non-enveloped viruses pierce or rupture the cell mem-
brane in order to escape into the cytoplasm (268). As shown
in Figure 5, adenovirus type 2 (HAdV-C2) uses membrane
rupture twice, at the plasma membrane and endosomes, to
gain entry into the cell. The virus first binds to its receptors
coxsackie and adenovirus receptor (CAR) and integrins
(269,270). The combination of actomyosin-dependent
drifting motion of CAR versus integrin-mediated confine-
ment shears the capsid fibers and triggers conformational
changes in the incoming capsid that enable externalization
of the internal membrane lytic protein VI (11,271). Protein
VI contains an N-terminal amphipathic helix, and thereby
creates small lesions in the plasma membrane, promoting
cytosolic Ca2+ influx that in turn triggers lysosomal exo-
cytosis and secretion of lysosomal acid sphingomyelinase
(ASM) (272). ASM converts cell surface sphingomyelin
to ceramide. This promotes virus uptake, which is also
cholesterol- and dynamin-dependent (259,260). Virus
containing endosomes have a high ceramide level which
favors the binding of protein VI to the lipid membrane
and the disruption of the membrane. The concerted action
of mechanical and chemical cues (actomyosin) together
with receptors (CAR, integrin) and facilitators (ceramide)
leads to enhanced rupture of the limiting membrane and
escape of the virus from non-acidic endosomes to the
cytosol (272).

Perspectives and Challenges for the Future

Virus entry and uncoating are distinct but highly inter-
linked processes (273). They are enabled by a wealth of
pro-viral host factors (probably hundreds for each virus)

and antagonized by host restriction factors that can pre-
clude entry or trigger inappropriate virus disassembly
(274). Both processes have classically been studied inde-
pendent of each other. When the two were connected and
analyzed with dedicated methodology, deep mechanistic
insights have been obtained. We expect that novel cellu-
lar cues, facilitators and viral uncoating strategies will be
discovered in the future.

How will virus uncoating studies contribute to infectiol-
ogy? An emerging challenge is to translate the results from
cell culture experiments to primary cells and tissues, ini-
tially with the help of animal models and then human
samples. Another challenge is to account for the fact that
viruses are a cohort of particles infecting their target cell,
tissue, organ or organism. The entry pathways and uncoat-
ing factors may be different when cells are infected at low
compared to high number of particles per cell (multiplic-
ity). They may even depend on the nature of the producer
and the target cells. For example, hepatitis A virus particles
of the picornaviridae can be transmitted between cells as
naked or lipid embedded capsids (275). The entry pathways
for adenoviruses in epithelial cells are different from those
in immune cells (276–278). In addition, the same virus can
occur as diverse kinds of particles that use multiple entry
pathways, such as spherical or filamentous influenza virus.
All these features highlight the great adaptability and flex-
ibility of natural infectious agents.

An emerging question for today’s research in infectious
disease is whether multiple virus infections affect one
another. For this, methods to explore the complexity of
the human virome in the host are being developed. For

Figure 5: Cues and facilitators of adenovirus entry and uncoating. HAdV-C2/C5 binds to CAR and integrins on the cell
surface, and the actomyosin-dependent drifting motions of CAR trigger fiber shedding (2,11,12,40). Virus binding to integrins induces
signaling and virus uptake into endosomes in a dynamin-dependent manner (259,260), Protein VI is dislocated from the inside of
the virus and binds to the plasma membrane, forming small pores that allow influx of Ca2+ into the cytosol (272,287). This danger
signal induces rapid lysosomal secretion of ASM to the cell surface. ASM converts SM into CER, which enhances endocytic uptake of
the virus. Protein VI is recruited to CER on the internal surface of endosomes, inducing endosomal leakage and rupture, and thereby
enables escape of viral particles into the cytosol (260,272,288). Low pH is not required for virus penetration, but required to maintain
functional secretory lysosomes (147). Receptor cues (green), enzymatic cues (pink), chemical cues (blue), facilitators (brown), viral
protein/process (gray) and endosomal markers (light blue) are indicated. Abbreviations: ASM, acid sphingomyelinase; CAR, coxsackie
and adenovirus receptor; CER, ceramide; ITGN, integrin; SM, sphingomyelin; FACIL, facilitator; VIRAL, viral protein/process; RECEP,
receptor cue; ENZYM, enzymatic cue; CHEM, chemical cue.
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example, VirScan recently identified an increased rate of
antibodies against adenovirus species C and RSV in
HIV-positive human individuals compared with HIV-
negative individuals (179). Are virus infections tuned by
the bacterial microbiota? We believe that this is a relevant
question, since mucosal surfaces of the oral, respiratory or
intestinal tissues are major entry ports for viral pathogens
into the human body, and these surfaces are colonized by
microbiota, including billions of bacteria. We expect that
in the near future the field of virus entry and uncoating
will make increasing use of physiological model systems,
quantitative omics, bioinformatics and eventually even
personalized measurements.
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