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Abstract: The study was conducted with C31 and C80 genotypes of the potato (Solanum tuberosum L.),
which are tolerant and susceptible to phosphite (Phi, H2PO3), respectively. To decipher the molecular
mechanisms underlying tolerance and susceptibility to Phi in the potato, RNA sequencing was
used to study the global transcriptional patterns of the two genotypes. Media were prepared with
0.25 and 0.50 mM Phi, No-phosphorus (P), and 1.25 mM (phosphate, Pi as control). The values of
fragments per kilobase of exon per million mapped fragments of the samples were also subjected to
a principal component analysis, grouping the biological replicates of each sample. Using stringent
criteria, a minimum of 819 differential (DEGs) were detected in both C80-Phi-0.25_vs_C80-Phi-0.50
(comprising 517 upregulated and 302 downregulated) and C80-Phi-0.50_vs_C80-Phi-0.25 (comprising
302 upregulated and 517 downregulated) and a maximum of 5214 DEGs in both C31-Con_vs_C31-
Phi-0.25 (comprising 1947 upregulated and 3267 downregulated) and C31-Phi-0.25_vs_C31-Con
(comprising 3267 upregulated and 1947 downregulated). DEGs related to the ribosome, plant
hormone signal transduction, photosynthesis, and plant–pathogen interaction performed important
functions under Phi stress, as shown by the Kyoto Encyclopedia of Genes and Genomes annotation.
The expressions of transcription factors increased significantly in C31 compared with C80. For
example, the expressions of Soltu.DM.01G047240, Soltu.DM.08G015900, Soltu.DM.06G012130, and
Soltu.DM.08G012710 increased under P deficiency conditions (Phi-0.25, Phi-0.50, and No-P) relative
to the control (P sufficiency) in C31. This study adds to the growing body of transcriptome data on
Phi stress and provides important clues to the Phi tolerance response of the C31 genotype.

Keywords: phosphite stress; potato; transcriptome; phytohormones; transcription factors; photosynthesis

1. Introduction

Phosphorus (P) is an essential mineral for the formation and proliferation of cells.
P is a component of phospholipids and nucleic acids as well as a source of energy and
a signal transducer [1]. P is taken up by plant roots mainly in the form of inorganic
phosphate (HPO4

2– and H2PO4
–). However, because Pi is readily aggregated with cations

or transformed to its organic state, its accessibility in the soil is generally limited [2]. To
promote the utilization of Pi from the soil, plants have evolved a series of adaptations
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called Pi starvation responses (PSRs) that alter the distribution and utilization of Pi in
plants in response to low Pi availability. PSRs have been associated with changes in root
system architecture, increased expression of Pi transporters, release of phosphatases and
RNases, modification of membrane lipids, buildup of anthocyanins, and rapid energy
production [3]. Several studies have addressed the transcriptional control of PSRs. When
Pi was limited in the growth medium, a variety of genes (500–2000) were upregulated,
depending on the experimental design [4–7].

In the absence of Pi, plants show signs of deficiency, such as increased root growth
and a higher ratio of roots to shoots. During this time, the plant’s ability to take up Pi
also improves. Molecular analysis of Pi deficiency has revealed evidence of coherent gene
expression involving Pi transporters [2,8]. Pi transporters are involved in the extraction
of Pi against a concentration gradient through an energy-mediated proton cotransport
process [9]. Arsenate, vanadate, and phosphite are examples of ions known to be trans-
ported by them [10]. Phi (H3PO3

–), commonly known as phosphoric acid or phosphonate,
is a Pi-anion isostere in which one of the oxygen atoms associated with the P atom has
been replaced by hydrogen. According to Carswell et al. [11], the alkali metal salts of
phosphorous acid are referred to as Phi. Phi is touted as an excellent source of P and is
often used as a fungicide [10,12,13]. Phi is rapidly taken up by the plant and translocated
to its interior [10]. Uptake is pH-dependent and competes with Pi [12]. There is also a
similarity between the mobility of Phi and Pi in the xylem and phloem [12]. Despite its
comparable structure and mobility, Phi is a non-metabolizable version of Pi that plants
cannot use as a major source of P [11,14,15]. The main difference between Pi and Phi is that
Pi can be easily converted into organic P molecules immediately after absorption, which is
not possible with Phi [10,13]. The transfer of Pi groups is caused by certain enzymes, which
can also provide a clue to the difference between Pi and Phi [10]. Bacteria that oxidize Phi
to Pi are most likely responsible for their nutritional benefits [16]. Because of this biological
transformation, Phi is an important component of the global P cycle, although it does not
provide a direct source of nutrients to plants.

Several researchers have found evidence of the deleterious effects of Phi on plant
growth and development [11,15,17,18]. Application of Phi to roots of Allium cepa and
Brassica nigra reduced root growth [11,14]. In Arabidopsis, root development, elongation,
and root hair formation were induced [15]. Phi induced decreased activity of nucleolytic
enzymes and Pi deficiency induced gene expression in Arabidopsis [15]. According to Ticconi
et al. [15], the adverse effects of Phi could be attenuated by an additional supply of Pi. Since
Phi suppresses several responses triggered by Pi deficiency, it has been hypothesized that
the signal transduction patterns leading to Pi deficiency responses have been damaged [11].
To support the development of a better use of Phi in modern agriculture, a better knowledge
of the underlying molecular signaling pathways associated with the indirect mode of action
of Phi is required.

RNA-sequencing (RNA-seq) is a powerful analytical tool for deciphering molecular
mechanisms, structural genes and transcription factors associated with plants under biotic
and abiotic stresses [19,20]. Due to its proven approach and rapid development, the
cost of data acquisition is reduced and complicated phenomena of gene expression and
regulation are revealed [17,18]. This technique has enabled scientists to study the genetic
responses of different plant species to biological and abiotic factors, such as drought,
high or low temperatures, salt stress, phosphate and nitrogen deficiencies, and pathogen
infection [21]. Chickpea genotypes that are salt- or drought-tolerant were studied using
RNA-seq under both normal and salt or drought stress situations in asexual and generic
plant development [22]. Using RNA-seq technology, leaves of Pi-deficient potatoes were
found to have increased protein recycling and altered amino acid production [23–26].

A previous report also indicated that a number of genes annotated with protein fate
terms in Gene Ontology (GO) were elevated in the potato with insufficient Pi [23]. Accord-
ing to Wu et al. [24] and Misson et al. [4], Arabidopsis plant leaves respond to Pi deficiency
with increased expression of protein degradation genes and inhibition of protein production
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genes. In addition, eight pht1 homologous genes were detected in barley under limited
Pi [27]. Among the various PHT1 genes, HvPHT1;6 genes were found to transfer phospho-
rus for expression in the shoot and root [28], and a mycorrhiza-specific gene, HvPHT1;8, was
discovered. The promoters of HvPht1;1 and HvPht1;2 were strongly expressed in barley un-
der P deficiency [29]. Moreover, the RNA-seq tool was used under biotic stress conditions.
For example, Huang and colleagues found that pathogenesis-related proteins and salicylic
acid genes were significantly less expressed in susceptible potato genotypes compared
to the control, indicating higher resistance to pathogens (Phytophthora infestans) after Phi
treatment [30]. In addition, important ethylene pathway genes, such as ERF1/2, jasmonic
acid (JAZ), and SA (TGA and PR1) were strongly expressed in Phi-treated seedlings [31].
RNA-seq revealed that the ACO1 gene was more highly-expressed in Phi-treated potato
seedlings than in control plants [32,33], indicating resistance to the pathogen (P. infestans).
Overexpression of OsPHR2 leads to a response to phosphate deficiency, suggesting that
this gene plays a conserved role in the control of Pi signaling in rice [34].

Three other TFs reported to be involved in the control of plant adaptation to Pi de-
ficiency [35–37] are OsPTF1/ZmPTF1, WRKY75, and ZAT6 (zinc finger of Arabidopsis6,
a cysteine-2/histidine-2 zinc finger protein). RNA-Seq technology has indeed led to an
explosion of genomic and transcriptomic resources in plant sciences. It is a rapid and
simple technique to study global gene expression patterns in a variety of situations [38]. To
elucidate the underlying molecular mechanisms of Phi tolerance in plants, we performed
transcriptome profiling of two contrasting potato (S. tuberosum L.) genotypes under 0,
0.25, and 0.50 mM Phi, and No-P. The aim of the present study was to: (i) Identify po-
tential candidate genes for tolerance or susceptibility of potato genotypes to P treatment.
(ii) Identify key transcription factors involved in the potato’s response to P treatment, and
(iii) investigate key biosynthetic pathways involved in the potato’s response to P treatment.
In this study, the analysis of the expression of TFs revealed that relevant gene families,
such as WRKY, MYB, NAC, and bHLH, are associated with the Phi-tolerant genotype C31,
whereas MAD is associated with the susceptible genotype C80. The expression of key genes
underlying the P response in the potato was also investigated. The results of the present
study provide the basis for manipulating and understanding the response to phosphite
in the potato to exploit its potential for crop production and will facilitate the breeding
of Phi-tolerant cultivars. In addition, potential candidate genes could be useful for future
functional validation through editing technology and gene overexpression, among others.

2. Materials and Methods
2.1. Planting Materials and In Vitro Propagation Conditions

The present study was designed to determine whether the differential gene expression
profiles of tolerant and susceptible potato genotypes correlate with the phenotypic response
to Phi stress and which genes might contribute to this effect. Two potato genotypes (C31
and C80) were used that were classified as moderately tolerant and susceptible based
on data from the initial screening for Phi tolerance, respectively. The genotypes were
characterized based on physiological traits (number of roots, plant height, root length, and
shoot length) under different treatment concentrations (Con, No-P, Phi0.25, and Phi0.50
mM KH2PO3) in vitro culture. The experiment was conducted in the growth chamber of
the Tissue Culture Laboratory of the College of Agronomy, Gansu Agricultural University
Lanzhou, China (36◦03′ N; 103◦40′ E).

To obtain healthy-grown seedlings for the next experiment, uniform stem explants
consisting of cuttings with one node were maintained in vitro under aseptic conditions and
propagated on Murashige and Skoog [39] growth medium containing 30 gL−1 sucrose and
5 g L−1 agar. The pH was raised to 5.8, and the cultures were autoclaved at 121 ◦C and 15 1b
psi for 25 min. The culture was maintained under aseptic conditions in a culture storage
chamber at an active temperature of 25 ± 1 ◦C during the day, 16 h of light and night, 8 h
of darkness, an active photosynthetic radiation of 45 mol photons m−2 s−1, and relative
humidity of 55–66% for a growth period of 30 days. After this period, healthy plantlets were
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selected and subcultured in the MS medium supplemented with 0.25 and 0.50 mM KH2PO3,
No P (-Pi + -Phi) and 1.25 mM H2PO4

3– as the control. Individual cuttings, which had two
auxiliary buds, were subcultured in an ethanol-sterilized chamber with laminar air flow
and grown in the final treatment media in sterilized glass tubes. Each glass tube contained
four identical cuttings of explants. The glass tubes containing the control and experimental
units were sealed with the original lids and kept in a culture storage room under constant
conditions (16/8 h light/dark cycle, 22 ◦C temperature, 55–60% relative humidity) for a
growth period of 20 days. After 20 days of culture, various physiological traits, such as root
length, shoot length, the number of roots, and plant height, were measured [40,41].

Experimental Design and Treatments

A 2 × 4 factorial experiment was conducted in the controlled culture storage room
in a completely randomized design with 3 biological replicates. Treatments consisted of
two potato genotypes (C31 and C80) and three treatments (0.25 and 0.50 mM Phi, No-P)
plus a control. Thirty glass tubes per treatment were arranged in four groups per genotype.
Each glass tube contained four explants. After 20 days, three glass tubes containing
mature plantlets were randomly selected from each treatment and used for physiological
measurements. At the same time, the remaining plantlets were immersed in liquid nitrogen
and their shoots were immediately preserved at −80 ◦C for the transcriptome Illumina
sequencing study.

2.2. Isolation of RNA, Library Construction, and RNA Sequencing

Total RNA was isolated using a modified CTAB technique [42] from two different plant
samples, each subjected to four treatments. A total of 3 g of shoot per sample was utilized
as the starting material for the RNA sample preparation. The Epicenter Ribo-zeroTM
rRNA Removal Kit (Epicenter, San Antonio, TX, USA) was used to extract ribosomal RNA,
and the rRNA-free residue was purified by ethanol precipitation. The NEBNext® UltraTM

Directional RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA) was used to
prepare sequencing libraries from rRNA-depleted RNA according to the manufacturer’s
instructions. Divalent cations were used to fragment NEBNext First Strand Synthesis
Reaction Buffer at high temperatures (5X). The first strand of cDNA was prepared using
a random hexamer primer and M-MuLV reverse transcriptase (RNaseH-). Then, DNA
polymerase I and RNase H were used to synthesize the second strand of cDNA. In the
reaction buffer, the dTTP-containing dNTPs were replaced with dUTP. The remaining
overhangs were converted to blunt ends by exonuclease/polymerase activity. NEBNext
adaptors were ligated to hairpin loop structures in preparation for hybridization after the
3′ ends of the DNA fragments were adenylated. cDNA segments 150–200 bp in length were
identified using AMPure XP technology to purify library fragments (Beckman Coulter,
Beverly Hills, CA, USA). Before PCR, 3 L of USER (NEB, USA) containing size-selected,
adaptor-gelled cDNA was used for 15 min at 37 ◦C followed by 5 min at 95 ◦C. PCR was
then performed using Phusion high-fidelity DNA polymerase, universal PCR primers, and
an Index (X) primer. Finally, the products were purified (using the AMPure XP system) and
the quality of the library was determined using the Agilent Bioanalyzer 2100 system.

2.3. Sequencing, Reads Mapping, and Differential Expression Analysis Identification

RNA sequencing with library preparation was performed on an Illumina HiSeq 2500/X
platform, and 125/150 bp were generated at Biomics Biotech Co., Ltd. (Beijing, China).
Gene expression profiles (collected from fragments per kilobase exon per million mapped
fragments (FPKM) to compare samples) were used to perform the principal component
analysis (PCA) and Pearson correlation in Ref. [43]. The reference genome and gene model
annotation files were obtained directly from the genome website (http://spuddb.uga.
edu/dm_v6_1_download.shtml), accessed on 12 June 2022. Bowtie v2.0.6, Ben Langmead,
MD, USA [44], was used to build the reference genome index, and (TopHat v2.1.1, Cole
Trapnell, MD, USA) was used to align paired-end clean reads with the reference genome.

http://spuddb.uga.edu/dm_v6_1_download.shtml
http://spuddb.uga.edu/dm_v6_1_download.shtml
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In a reference-based approach, the mapped reads from each sample were created using
Scripture (beta2) and Cufflinks (v2.2.1) [45].

Clean reads were filtered from the raw data after removing low-quality RNA-seq
reads, reads consisting only of adaptors, and reads containing 5% unknown nucleotides
(Ns) [46]. All left files of the libraries/samples (read1 files) were combined into a single
left.fq file, and all right files of the libraries/samples (read2 files) were combined into a
large right.fq file. Trinity [47] was used to assemble the transcriptome based on the left.fq
and right.fq, with min kmer cov set to 2 by default and all other parameters set to the
default values. The functional annotations of the identified transcripts were based on
eight public databases, namely the National Center for Biotechnology Information (NCBI)
non-redundant (Nr) protein sequences [48], NCBI non-redundant nucleotide sequences
(Nt), and protein family (Pfam) [49]; Clusters of Orthologous Groups of proteins (COG) [50];
Eukaryotic Orthologous Groups (KOG) [51]; Swiss-Prot, a protein sequence database that
has been manually annotated and reviewed [52], the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [53], and the Gene Ontology (GO) [54]. Blast2GO was used to map
terms describing molecular activities, biological processes, and cellular components to the
expected genes based on the results of Nr BLASTp searches [55]. Custom Perl scripts were
used to perform functional classification of keywords COG and GO for all genes [56].

Based on the sample treatments, the differential expression analysis was performed
for samples in groups, such as Con vs. Phi0.25, Con vs. Phi0.50, and Con vs. No-P of each
genotype to identify differentially expressed genes (DEGs) associated with Phi tolerance.
The DESeq2 package in R was used to perform the genetic analysis, which was based
on FPKM. p values were corrected for the false discovery rate using the differentially
expressed gene analyses with stringent criteria of the log2 fold change (log2FC) ≥ 2 and
false discovery rate (FDR) with an adjusted p-value (padj) < 0.01 [57].

2.4. Identification of Transcription Factors in the Differentially Expressed Genes

To identify transcription factors (TFs) involved in Phi response in the potato, iTAK
software was used in the default state [58]. The HMM search database (version 3.0) was
then used to target open reading frames to the TF protein domain [59]. The TF families
available in the PlantTF database version 3.0 (http://planttfdb.cbi.pku.edu.cn), accessed
on 6 June 2022, [60] were used to define the aligned sequences.

2.5. Validation of DEGs by qRT-PCR

Total RNA was extracted from approximately 100 mg of the frozen shoot tissue
using the TransZol Up Plus RNA Kit (lot no. M31018) according to the manufacturer’s
instructions. RNA quantity and quality were examined using a TGen spectrophotometer
(TianGen) using A260 nm/A280 nm and A260 nm/A230 nm ratios.

Eighteen genes were selected for the quantitative real-time polymerase chain reaction
(qRT-PCR) to confirm the validity and reliability of the data from the RNA-seq experiment
(Supplementary Table S1). We used Tiangen Biotech The High-Capacity cDNA Reverse
Transcription Kit (Tiangen Biotech, Beijing, China) to synthesize new cDNA from the treated
RNA according to the manufacturer’s guidelines. A NanoDrop 1000 spectrophotometer
was used to measure the concentration of cDNA in all samples [47]. For qRT-PCR assays, a
Bio-Rad iQ5.0 instrument (Hercules, CA, USA) with a Roche qPCR kit (Basel, Switzerland)
was used and heated to 95 degrees Celsius for three minutes. The RT-qPCR assays were
performed using the iQ5.0 instrument (Bio-Rad, Hercules, CA, USA) in conjunction with a
SYBR Green qPCR kit (Roche, Basel, Switzerland). Heating was performed for 3 min at
95 ◦C, followed by 40 cycles of 30 s at 95 ◦C and 30 s at 60 ◦C. Dissociation curves were
used to evaluate the specificity of the amplicon at the end of each run with amplification
reactions (20 L) containing 10 L of 2 × SYBR Green Mix, 1 L of cDNA, and 0.25 M of
forward and reverse primers. The 2−∆∆Ct technique [61] was used to estimate relative gene
expression, which was then normalized against actin. Experiments were performed three
times under the same conditions.

http://planttfdb.cbi.pku.edu.cn
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2.6. Analysis of Data

Gene expression values are expressed as mean ± standard deviation (SD) (n = 3) and
were analyzed with SPSS statistical software (version 22.0, SPSS Inc, Chicago, IL, USA)
using the one-way method ANOVA at a significance level of 5% probability. Differences
between means were determined by Duncan’s multiple range test, and GraphPad Prism 8
was used to generate all graphs.

3. Results
3.1. Phi Impedes Physiological Growth and Development of the Potato in a Medium without Pi

The effects of Phi on the growth and development of the potato (S. tuberosum L.) were
studied in vitro using tissue cultures grown in media with or without Pi. Plant growth and
development were significantly affected in media containing Phi without Pi. A twofold
difference was observed between the two genotypes for all indices measured between
Pi-sufficient (control plants) and -deficient plantlets (Phi-treated plants) (Figure 1A–D).
However, the presence of 0.50 mM Phi decreased the number of roots of both genotypes
(Figure 1A). The reduction in the number of roots was more pronounced in genotype C80
than in C31 compared with the respective control plants. Genotype C31 recorded 70.88%
compared to 8.83% in C80 compared to the control plants. At a low Phi concentration of
0.25 mM, a percentage of 62.25% was recorded in C31 and 28.42% in C80. Root length devel-
opment was significantly reduced by the variation between the two genotypes. Genotype
C31 recorded 21.67 and 28.79% versus 2.74 and 11.77% at 0.5 and 0.25 mM Phi, respectively.
A similar result was obtained when the effect of Phi on the shoot length was measured.
Compared to the control plants, C31 recorded 43.76 and 54.19% versus 9.83 and 25.81% for
genotype C80 at 0.50 and 0.25 mM Phi, respectively. Similar suppression of growth was
observed at both concentrations (0.50 and 0.25 mM) of Phi in the total plant height of the
two genotypes. Consequently, the significant reduction in the number of roots, root lengths,
and shoot lengths affected the propagation of the physio-morphological appearances of
the plants.
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Figure 1. Phi suppressed the physiological growth of two potato genotypes in in vitro propagation
for 20 days at different Phi doses. Plants were analyzed for (A) difference in the number of roots;
(B) total plant height (cm); (C) root length (cm); and (D) shoot length (cm) after 20 days of growth in
concentrations of Phi (0, 0.25, 0.5 mM) in the media with or without Pi. Values represent the average of
three replicates, and the error bars indicate standard deviation (SD). According to Duncan’s multiple
range test (p < 0.05), the means with the same lowercase letters are not significantly different from
each other.
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Plant height of the two genotypes was significantly affected compared to their respec-
tive controls, but more so in C80 than in C31. Genotype C31 recorded a 69.39 and 61.23%
decrease in plant height at 0.50 and 0.25 mM Phi, respectively, compared to genotype C80
(93.32 and 77.63%). In addition, the two genotypes were studied in a medium without
Pi and Phi, i.e., No-P. The effect of No-P treatment resulted in a significant decrease in
genotype C80 for all measured indices, while genotype C31 showed an increase in all
measured indices except shoot length. Genotype C31 showed an increase in the number
of roots (4.125%), root length (68.87%), and plant height (22.63%). However, shoot length
decreased by 48.97% in C31 compared to the control plant. On the other hand, a reduction
in the number of roots (61.78%), root length (38.77%), shoot length (73.88%), and plant
height (59.86%) was observed in C80 compared to the control plant.

3.2. RNA Sample Sequencing, Quality Control, and Functional Annotation

To elucidate the molecular mechanisms underlying increased phosphite tolerance
and the genes regulating expression in potato genotypes, we compared the global gene
expression profiles of two potato genotypes, C31, which showed some degree of moder-
ate tolerance to Phi in our preliminary studies, and C80, which was susceptible to Phi.
RNA samples were collected from two different 20-day-old plants grown in MS media
with Phi in two different treatments—the plant without phosphate and the control with
1.25 mM Pi. The average raw reads obtained from C80-Phi 0.25, C80-No-P, C80-Con, C80-
Phi 0.50, C31-Phi 0.50, C31-No-P, C31-Con, and C31-Phi 0.25 samples were 39,716,517,
41,101,662, 41,401,177, 41,855,121, 41,941,310, 42,043,470, 42,225,842, and 42,635,159, re-
spectively (Table 1). Of these, the total mapped reads ranged from 27,377,396 bp (in C80
Phi-0.25) to 29,718,175 bp (in C31 Phi-0.25) (Table 1). Of the total mapped reads, more
than 99% (≥27,303,171 bp) were uniquely mapped (Table 1). These libraries had guanine–
cytosine (GC) content ranging from 41.38 % (in C31-Con) to 42.22% (C31No-P), while the
quality control (Q) at 30 error rates (QC30) ranged from 94.46% (in C80No-P) to 94.95%
(C31-Con). At least 91% of the clean reads were assigned to the potato reference genome,
including at least 89% of the coding region (exon) in C31 (control), C31 (Phi 0.25), or C80
(No-P) (Figure 2A–H). High Pearson correlation coefficients (>0.74) were obtained between
samples (Supplementary Figure S1). Together with the successful annotations of most
detected genes in public databases, high reproducibility, and repeatability of samples from
the same treatment, these results suggest that our transcriptome results are reliable for
further downstream analyses.

Table 1. Statistics of sequencing data for the two potato genotypes of RNA-seq libraries.

Samples Raw Reads (bp) Reads Mapped (bp) Unique Mapped (bp) GC (%) ≥Q30 (%)

C31-Con 42,225,842 29,434,183 29,367,816 41.38 94.95
C31No-P 42,043,470 29,486,431 29,421,504 42.22 94.88

C31Phi0.25 42,635,159 29,718,175 29,643,683 41.98 94.50
C31Phi0.5 41,941,310 29,174,524 29,104,150 41.69 94.77
C80-Con 41,401,177 28,685,887 28,618,083 41.52 94.57
C80No-P 41,101,662 28,165,842 28,087,967 41.78 94.46

C80Phi0.25 39,716,517 27,377,396 27,303,171 42.02 94.48
C80Phi0.5 41,855,121 29,440,480 29,365,884 42.10 94.57

Con (phosphate at a concentration of 1.25 mM was used to prepare the media); No-P (no addition of Pi or Phi to
the media); Phi 0.25 mM (phosphite at a concentration of 0.25 was used to prepare the media); and Phi 0.5 mM
(phosphite at a concentration of 0.5 was used to prepare the media). The two potato genotypes, C31 and C80,
were propagated in each treatment medium with 3 replicates and maintained under tissue culture conditions for
20 days. After 20 days of growth, each treatment was harvested with 3 replicates for sequencing; therefore, the
values shown are the averages of the 3 replicates (samples) per treatment.
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Figure 2. Alignment of transcriptome sequencing reads. (A), C31 (control) (B); C31 (No-P)
(C), C31 (Phi0.25); (D), C31 (Phi0.5); (E), C80 (control) (F), C80 (No-P); (G), C80 (Phi0.25), and
(H), C80 (Phi0.5). All treatments were aligned with 3 biological replicates each. Control = 1.25 mM
Pi; No-P = (-Phi + -Pi); Phi 0.25 = Phi 0.25 mM Phi or Phi 0.5 = Phi 0.5 mM.

Gene Annotation and Functional Classification of DEGs

A total of 224,163 genes discovered in the libraries were annotated in at least one of
the eight publicly available databases. Of the annotated unigenes, 11,192; 19,423; 23,720;
17,963; 27,163; 26,492; 32,703; and 33,229 were annotated using COG; GO; KEEG; KOG;
Pfam; Swiss-Prot; TrEMBL; NCBI nr; and all databases, respectively (Figure 3). Figure 4A
shows a high-quality distribution of FPKM with a correlation of samples centered on FPKM
that could be replicated among Phi treatments. The FPKM values of the samples were also
subjected to the principal component analysis (PCA), grouping the biological replicates of
each sample, indicating high reproducibility and reliability of results from each replicate.
The first two principal components explained 79.38% of the variability between samples
with different amounts of Phi and Pi (Figure 4B).
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Figure 3. Functional annotations of genes in public databases. All represent the set of annotated
genes in at least one of the public databases listed below: NR, non-redundant nucleotide sequences;
KEGG, Kyoto Encyclopedia of Genes and Genomes; Swiss-Prot, Swiss Protein; Pfam, Protein Families;
GO, Gene Ontology; KOG, Eukaryotic Orthologous Groups; and COG, Cluster Orthologous Groups
of Proteins. The number of genes annotated in each public database is shown on top of each bar.
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3.3. Identification of Differentially Expressed Genes in Pairwise Comparison between the Six Categories

Using the strict threshold, a minimum number of 819 DEGs was detected in both
C80-Phi-0.25_vs_C80-Phi-0.50 (consisting of 517 upregulated and 302 downregulated) and
C80-Phi-0.5_vs_C80-Phi-0.25 (consisting of 302 upregulated and 517 downregulated) and
the maximum number of 5214 DEGs in both C31-Con_vs_C31-Phi-0.25 (consisting of
1947 upregulated and 3267 downregulated) and C31-Phi-0.25_vs_C31-Con (consisting of
3267 upregulated and 1947 downregulated) (Figure 5). The FPKM of the DEGs clustered
the samples in a similar manner (Figure 6) as the PCA in Figure ??B.

In C31 (Con vs. Phi-0.25), 5214 DEGs were found, with 1947 and 3267 up- and
downregulated genes, respectively. In C31 (Con vs. Phi-0.50), 3582 DEGs were identified,
including 1431 and 2151 up- and downregulated genes, respectively. In C31 (Con vs. No-P),
1872 DEGs were detected, of which, 954 and 918 were up- and downregulated, respectively.
In C80 (Con vs. Phi-0.25), 3181 DEGs were detected, of which 877 and 2304 were up- and
downregulated, respectively. In C80 (Con vs. Phi-0.50), 3364 DEGs were detected, of which,
1214 and 2149 were up- and downregulated, respectively. In addition, in C80 (Con vs.
No-P), 1006 and 2645 were up- and downregulated, respectively, while 3651 DEGs were
found. The Venn diagram analysis showed that 1054 DEGs were conserved between the
four groups (Figure 7A, Table S2). A total of 871 DEGs were also found between C80 (Con
vs. No-P) and C31 (Con vs. No-P) (Figure 7B). The high number of conserved DEGs in
Figure 7A, B indicates that a number of DEGs were involved in the regulation of the two
genotypes under the different conditions of P.

3.4. 6 DEGs in the Context of Transcription Factors

When both C31 and C80 potato genotypes were subjected to 20 days of Phi treatment,
gene expression was either increased or decreased in the major families of transcription fac-
tors associated with stress: AP2/ERF (ethylene response factor), Aux/IAA (auxin/indole
acetic acid) [62], bHLH (basic helix–loop–helix), bZIP (basic zinc zipper domain), C3H (cys-
teine3Histidine), MAD (Mother against Dpp), MYB (myeloblastosis), NAC (NAM, ATAF
and CUC) [63], PHD (chloroplast envelope-bound plant homeodomain) and WRKY [64]
(Table S3). However, we focused on bHLH, MAD, MYB, NAC, and WRKY DEGs to identify
potential candidate genes that might be responsible for tolerance or susceptibility to P
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treatment in the C31 and C80 genotypes, respectively. For this purpose, the conserved
DEGs were compared with the four focused TF families under Con, Phi-0.25, Phi-0.50, and
No-P, and their FKPM values (log2-transformed) were heat-mapped.
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Figure 5. Differentially expressed genes (DEGs) between two potato (S. tuberosum L.) genotypes
under four different phosphorus conditions (Con, No-P, Phi-0.25, and Phi-0.50 mM KH2PO3). The
brown, red, and blue bars represent the total numbers of up- and downregulated DEGs, respectively.
Potato genotype C31 showed some tolerance to Phi, while C80 was susceptible to Phi under a 20-day
Phi treatment. Con (phosphate at a concentration of 1.25 mM was used to prepare the media); No-P
(no addition of Pi or Phi to the media); Phi 0.25 mM (phosphite at a concentration of 0.25 was used to
prepare the media); and Phi 0.50 mM (phosphite at a concentration of 0.50 was used to prepare the
media). All analyses were conducted in triplicate.
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Figure 6. Heatmap clustering of differentially expressed genes (DEGs) with potato genotypes C31
and C80 using RNA-seq expression profiles. C31 (Con, No-P, Phi0.25, Phi0.50) and C80 (Con, No-P,
Phi0.25, Phi0.50), after 20 days of therapy with Phi, Pi, and No-P. The color scale of the heat map
corresponds to the log2 (FPKM) values of the genes in each sample.

A number of WRKY TF genes have been shown to modulate the response of plants to
a Pi sufficient amount of Pi, including WRKY33 in Arabidopsis [65], CaWRKY58 in pep-
per [66], GmWRKY46 in soybean [67], and others [68]. A number of WRKY TF genes were
detected in the two contrasting genotypes under the four P conditions. Among the numer-
ous WRKY TF genes identified, based on FPKM (log2 transformed), Soltu.DM.01G047240,
Soltu.DM.08G015900, Soltu.DM.06G012130, and Soltu.DM.08G012710 exhibited increased
expressions under P deficiency conditions (Phi-0.25, Phi-0.50, and No-P) compared with
the control (P sufficiency) in C31 (Figure 8A), indicating their possible involvement in the
improvement of P deficiency tolerance observed in C31. In contrast, Soltu.DM.01G049590,
Soltu.DM.01G041390, Soltu.DM.06G020080, and Soltu.DM.06G02470 had almost similar
expressions under both P sufficiency and P deficiency conditions in the C80 genotype
(Figure 8A), indicating their role in enhancing the susceptibility of C80 to P deficiency or Phi.
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Figure 7. DEGs between four comparisons were analyzed using a Venn diagram; (A) C31(Con vs.
Phi0.25); C31(Con vs. Phi0.50); C80(Con vs. Phi0.25); C80(Con vs. Phi0.5); and (B) C80(Con vs. No-P)
and C31(Con vs. No-P), after 20 days of Phi treatment.
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Figure 8. Heatmap of fragments per kilobase exon per million mapped fragments (log2 transformed)
conserved transcription factor (TF) genes in either C31 or C80 genotype under four P conditions (Con,
Phi-0.25, Phi-0.50, and NoP). (A). WRKY TF (B). MYB TF. The common conserved genes detected
in each TF family are underlined, while those with asterisks (*) are potential candidate genes for
tolerance and susceptibility to P starvation observed in C31 and C80, respectively.

MYB TF family is reported to regulate Pi starvation responses either positively or neg-
atively [69]. For example, overexpression of OsMYB2P-1 in Arabidopsis and rice increased
tolerance to Pi starvation, while the knockdown of OsMYB2P-1 by RNA interference in
rice made transgenic rice more sensitive to Pi deficiency [69]. A total 51 MYB genes were
detected in either the C31 or C80 genotypes under four P conditions (Con, Phi-0.25, Phi-0.50,
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and No-P). Nineteen and thirty-eight MYB TF genes were detected as conserved genes
in C31 and C80, respectively, under four conditions (Figure 8B). Soltu.DM.03G037130,
Soltu.DM.06G022940, Soltu.DM.01G032300, Soltu.DM.03G016980, Soltu.DM.09G029230,
Soltu.DM.10G020820, Soltu.DM.10G29970, Soltu.DM.05G003270, and Soltu.DM.02G034120
exhibited different expression profiles under P sufficiency and deficiency (Figure 8B). These
MYB TF genes could be either positive or negative regulatory factors for the P tolerance
observed in the C31 genotype. Conversely, five MYB TF genes (Soltu.DM.05G008140,
Soltu.DM.12G022970, Soltu.DM.06G034280, Soltu.DM.01G024670, and Soltu.DM.11G020640)
largely under P sufficiency and deficiency conditions (Figure 8B), highlighting their poten-
tial roles in the P susceptibility observed in the C80 genotype.

Other potential candidate genes from bHLH, MAD, and NAC from the C31 and C80
genotypes are shown in Supplementary Figures S2 and S3. bHLH32 was identified as a
negative regulator of Pi deficiency in Arabidopsis in the study by Chutia et al. [70]. MAD
box genes have been reported to regulate root hair length and spacing under P availability
or absence [71]. NAC genes have been shown to respond to various aspects of nutrient
abundance or deficiency, including P [72]. Therefore, the genes reported here with the
different TFs could be useful genomic resources for future functional validation studies to
ascertain their role in regulating P response in the potato.

3.5. Analysis of COG Enhancement and KEGG Pathway DEGs

Annotation with the Clusters of Orthologous Groups of Proteins (COG) database
revealed that many DEGs in each comparison were not accurately annotated and were
therefore assigned to the “general function prediction only” cluster. Based on the number
of annotated genes in each group, “transcription”, “replication, recombination, and repair”,
“biosynthesis, transport, and catabolism of secondary metabolites”, “signal transduction
mechanisms”, “posttranslational modification, protein turnover, chaperones”, and “car-
bohydrate transport and metabolism” formed the top six DEG groups in C31(Con vs.
Phi 0.50) (Supplementary Figure S4A). In addition, “transcription”, “signal transduction
mechanisms”, “carbohydrate transport and metabolism”, “biosynthesis, transport, and
catabolism of secondary metabolites”, and “replication, recombination, and repair” were
the six most important classes in the comparison between C80(Con vs. Phi0.5) (Supplemen-
tary Figure S4C). These findings suggest that DEGs in these categories play a vital role in
abiotic stress responses in potato genotypes exposed to phosphite for 20 days. To identify
the biochemical pathways associated with DEGs, the KEGG was searched for identifiers.
The 50 most prominent KEGG pathways allied with DEGs from the C31(Con vs. Phi 0.50)
and C80(Con vs. Phi0.5) comparisons are shown in (Supplementary Figure S4B,D), respec-
tively. Pathways that contained the most DEGs included “plant–pathogen interaction”,
starch and sucrose metabolism, phenylpropanoid biosynthesis, and plant hormone signal
transduction, among others in the two potato genotypes. In addition, many DEGs from the
different Phi treatments of the comparison of genotypes C31 and C80 were enriched in the
KEGG pathways “photosynthetic antenna proteins”, “plant hormone signal transduction”,
starch and sucrose metabolism, and “photosynthesis” with lower enrichment factors and
higher Q values (Supplementary Figure S5A,B). In the photosynthesis pathway, five DEGs
were found when comparing C31 and C80 genotypes, with three genes downregulated and
two upregulated (Figure 9).

3.6. Genes Involved in Hormone Signaling in Plants Have Been Discovered for Differential
Expression Analysis

Plants, such as the potato, respond to abiotic stress through a diverse harmonization
of various plant hormone pathways, which include auxin (AUX), abscisic acid (ABA),
brassinosteroid (BR), cytokinins (CTK), ethylene (ETH), gibberellin (GA), jasmonic acid (JA),
and salicylic acid (SA) [73]. A total of 44 genes were found in tryptophan metabolism, of
which 21 and 23 were associated with transport inhibitor response 1 (TIR1), auxin response
factor (ARF), AUX/indoleacetic acid (IAA)-induced protein (AUX1/IAA), and Auxin in
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responsive glycoside hydrolase 3 (GH3) were either up- or downregulated in C31 and C80
genotypes (Figure 10A,B, Supplementary Table S4, and Figures S6 and S7). Most of these
genes were more highly expressed in Phi0.50 than in Phi0.25 and No-P in both genotypes.
For example, the gene Trans_newGene_199 (TIR1) was increased 1.29- and 1.17-fold in
Phi0.50 C31 and C80, respectively. However, at Phi0.25 and No-P, it was not expressed
in either genotype. In addition, Soltu.DM.05G019150 (ARF) showed a 1.17-fold change at
Phi0.50 C31, whereas Soltu.DM.01G035200; Soltu.DM.04G036350; Soltu.DM.08G029550; and
Soltu.DM.11G022570 (ARF) showed 1.10; 1.77; 1.69; and 1.21-fold changes in the Phi0.50
C80 genotype. The same gene (ARF) showed 1.09- and 1.01-fold changes in Phi0.25 and
No-P only in the C80 genotype, respectively. However, AUX1 and GH3-related genes were
downregulated in both genotypes. The results of the tryptophan metabolic pathway show
that Phi0.50 induced the TIR1 genes in the C31 genotype, whereas the ARF genes were
induced in the C80 genotype.

A total of 22 genes were discovered in zeatin biosynthesis. Of these, 10 were upreg-
ulated and 12 downregulated in both genotypes. Phi0.50 induced 2 (B-ARR) genes in
C31, one each of CRE1 and B-ARR in C80. Phi0.25 induced Soltu.DM.08G014610 histidine
phosphotransferase (AHP), which was altered 2.66-fold in genotype C31. In addition,
Phi0.25 induced Soltu.DM.01G037840 and Soltu.DM.11G023770 genes with 1.36-fold and
1.71-fold changes, respectively, and Soltu.DM.04G003490 (CRE1) was altered 1.42-fold in
genotype C80. In addition, Soltu.DM.05G002670 and Soltu.DM.07G020230 (B-ARR) were
altered 2.28- and 1.54-fold, respectively, in genotype C80.

In diterpenoid biosynthesis, 11 genes related to (DELLA) and gibberellin Insensitive
Dwarf 2 (GID 2) were identified in both genotypes. Most genes DELLA were expressed in
Phi0.50 C31 and delivered in No-P, and Phi025 was expressed from C80. Phi0.50 signifi-
cantly induced the expression of DELLA genes in C31, while GID2 genes induced strong
expression in the C80 genotype.
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Figure 9. DEG evaluation of photosynthesis in the potato genotype C31 after 20-day treatment with
phosphite. Red, green, and blue colors indicate up-, down-, and mixed regulatory forms of DEGs,
respectively. After 20 days of growth, each treatment (for both genotypes) was harvested in triplicate
for sequencing under P deficiency (0.25, 0.50, and No-P) and P sufficiency (Pi-1.25).
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Figure 10. DEGs associated with plant hormone signaling were examined when comparing C31 and
C80 genotypes after phosphite treatment. (A). C31(Con vs. Phi0.50) (B). C80(Con vs. Phi0.50). The
colors red and green represent DEGs that are upregulated and downregulated, respectively. DEGs
with different regulatory properties are highlighted in blue. After 20 days of growth, each treatment
(for both genotypes) was harvested in triplicate for sequencing under P deficiency (0.25, 0.50, and
No-P) and P sufficiency (Pi-1.25).

In carotenoid biosynthesis, most genes (86) were associated with protein phosphatase
2C (PP2C), ABA reactive element binding factor (ABF), pyrabactin resistance 1 (PYR)/PYR
-like (PYL) (PYR /PYL), and serine/threonine protein kinase (SnRK2). Of these, 17 PYR
/PYL genes expressed in C31 and 10 SnRK2 genes expressed in C80 were downregulated.
Fifty-nine genes related to PP2C and ABF were upregulated and highly expressed in
the two genotypes relative to the different treatments. However, most of these genes
were strongly expressed in Phi0.5, followed by Phi0.25 and No-P. Among the PP2C genes,
Soltu.DM.03G012480 caused a 3.77-, 2.93-, and 2.59-fold change in Phi0.5, Phi0.25, and
No-P of the C31 genotype, respectively. While Soltu.DM.03G022710 (PP2C) caused a
4.38-, 3.52-, and 3.01-fold change in Phi05, Phi0.25, and No-P, respectively, in the C80
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genotype. In addition, Soltu.DM.02G005680 (ABF) caused a 2.01-, 1.83-, 1.34-, and 3.71-,
1.46-, and 3.02-fold change in the C31 and C80 genotypes, respectively. The C80 potato
plantlets in the growth media containing Phi and No-P showed yellowed leaves and stunted
growth compared to the C31 plantlets. This suggests that plants under Phi stress convert
chlorophyll in their leaves to carotenoids by forming abundant structural genes for the
carotenoid biosynthetic pathway.

In addition, Phi0.50 induced 12 genes involved in cysteine and methionine metabolism
(ETR, ethylene-insensitive protein 3 (EIN3), and ERF1/2), 7 of which were strongly ex-
pressed. Three genes were induced by Phi025, whereas No-P induced two genes in both
genotypes. Similar results were obtained for brassinosteroid biosynthesis in the two geno-
types. Soltu.DM.01G007270 (BAK1) was expressed at Phi0.25 and No-P in the C31 genotype,
whereas Soltu.DM.02G028240 (CYCD3) was expressed in the C80 genotype. However, no
expression was observed for Phi 0.25 and No-P in the C80 genotype. Similarly, 10 TGA
genes (4, 5, and 1) were more highly expressed at Phi0.50, Phi0.25, and No-P in the C31
genotype, whereas they were not expressed in the C80 genotype. For example, the gene
Soltu.DM.10G022600 (TGA) showed higher fold changes (by 2.39, 3.06, and 2.18) com-
pared to the other 10 genes in the treatments of the C31 genotype. Again, only the gene
Soltu.DM.07G011890 (NPR1) was expressed in Phi0.25 of C31. In addition, 11 Pathogenesis-
Related Protein 1 (PR-1) genes related to phenylalanine metabolism were more highly
expressed in C31 than in C80. Thus, 8 of the 11 genes were expressed in C31, whereas
3 genes were expressed in the C80 genotype. This suggests that the phenotypic growth of
C31 plants is better than that of C80 plants during their growth period, which may be due
to the structure of the α-linoleic acid and phenylalanine genes.

3.7. Expression Patterns of 18 Different Genes in Response to Phi Stress by qRT-PCR

Eighteen genes that were differentially expressed between genotypes C31 and C80
under the four P conditions were randomly selected for qRT-PCR (Supplementary Table S1
and Figure S8). The gene expression response differed between the Phi treatments in the two
genotypes. The expression patterns of ten genes (Soult.DM.12G004810; Soltu.DM.03G019440;
Soltu.DM.02G024820; Soltu.DM.03G036150; Soltu.DM.01G035900; Soltu.DM.02G002360;
Soltu.DM.09G020830; Soult.DM.12G004810; Soltu.DM.12G026570; and Soltu.DM.12G026290)
were significantly increased in genotype C31 compared with genotype C80 (p < 0.05). Of
these, four genes (Soltu.DM.12G004810; Soltu.DM.03G019440; Soltu.DM.12G026570; and
Soltu.DM.12G026290) showed statistically significant expression patterns with 2.2; 2.5; 4.4;
and 3.6 higher values compared to the control at 0.50 mMPhi. In addition, five genes
(Soltu.DM.02G024820; Soltu.DM.03G036150; Soltu.DM.01G035900; Soltu.DM.12G026570;
and Soltu.DM.12G026290) showed significantly higher expression at 0.25 mMPhi compared
with the control. In the case of No-P supply, 3 genes (Soltu.DM.09G020830; Soltu.DM.12G026570;
and Soltu.DM.12G026290) showed higher expressions compared with the control. How-
ever, the expression patterns of the C80 genotype genes were very low. Three genes
(Soltu.DM.02G002360; Soltu.DM.12G026570; and Soltu.DM.12G026290) showed higher ex-
pressions at both 0.50 and 0.25 mM Phi, whereas one gene Soult.DM.01G013680 was more
highly expressed in the No-P supply compared with the respective control. The expression
profiles were consistent with the results of the RNA-seq data, indicating the reliability of
our results.

4. Discussion

In the present study, we investigated the effects of Phi, a phosphate (Pi) analog, on
plant growth and the responses of two potato genotypes to Pi deficiency. We found that
phosphite at concentrations of 0.25 and 0.5 mM significantly reduced plant growth of the
two genotypes in all measured morphological traits compared with the respective control
plants. When comparing the inhibitory effects of Phi on the two potato genotypes, the data
showed that genotype C31 responded better to Phi than genotype C80 (Figure 1A–D). This
result is consistent with our previous Phi screening study conducted with two hundred
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potato genotypes. In addition, the two potato genotypes were evaluated with a No-P
treatment. There was a significant difference between C31 and C80 in the root number, root
length, shoot length, and plant height. The inhibitory effect of Phi was observed in the
potato [74], tomato [75], and Brassica sp. [11]. Although Phi cannot be a substitute for Pi to
meet the phosphorus needs of plants, it has recently been shown to be useful in agriculture.
In light of this, the mechanisms of tolerance and the components of the signal transduction
pathway linking the response to Pi deficiency and Phi sensitivity in the potato need to
be investigated.

To understand the dynamics and gain new insights into the molecular basis of the
effects of Phi on potato genotypes, the present study compared a global transcriptional
profile of C31 and C80 using RNA-seq technology. RNA-seq is a highly efficient sequencing
tool that allows researchers to study global transcriptional profiles. It is widely used to
study molecular responses to biotic and abiotic challenges and to compare transcriptomes
under different conditions [76–80].

RNA-seq identified 224,163 genes in the samples, of which 20,864 are functionally an-
notated in public protein databases, such as COG, KOG, GO, KEGG, Swiss-Prot, Pfam, and
the NCBI nr database. The global gene expression profiles of C31 and C80 potato genotypes
treated with Phi for 20 days differed from those of control plants and the No-P supply, ac-
cording to RNA-seq data. When comparing the two potato genotypes, 12,174 genes showed
significantly different expression levels in the C31 genotype, of which 1947 and 1431 were
upregulated, while 3267 and 2151 were downregulated in C31 (Con vs. Phi0.25 and Phi0.5,
respectively). In genotype C80, of the 6545 genes, 877 and 1215 were upregulated, whereas
2304 and 2149 were downregulated (Con vs. Phi0.25 and Phi0.50, respectively). When
comparing the two genotypes in the No-P treatment, 1872 and 3651 genes were detected
in the C31 and C80 genotypes, respectively. Of these, 954 and 918 were up- and down-
regulated in C31, respectively, while 1006 and 2645 were up- and downregulated in C80
plants, respectively. Interestingly, only 871 DEGs were present in the comparisons between
C31(Con vs. No-P) and C80(Con vs. No-P) (Figure 7B). This could be due to the different
expression levels of the different DEGs in each genotype in relation to Phi stress, resulting
in different genetic regulation patterns between potato genotypes.

It is becoming increasingly clear that the endocytosis pathway involving the coat
protein clathrin functions in plant cells. Plant genomes contain homologs of mammalian
clathrin coat proteins, such as clathrin heavy chain, clathrin light chain, adaptor protein
(AP)2 and AP180 subunits, and downstream effectors (e.g., epsin, dynamin, auxilin, heat
shock cognate 70, and synaptojanin) [81–83]. Moreover, electron microscopy has revealed
different stages of clathrin-coated vesicle production in different types of plant plasma
membranes [82]. They are essential for signal transduction and regulation of numerous
plasma membrane activities that are vital to plants. In our current studies, the endocyto-
sis pathway was expressed in both potato genotypes but was found more frequently in
genotype C31. In all species, a ribosome is a macromolecule unit that facilitates protein
production [84]. Plants are known to utilize multiple ribosomal proteins for other functions.
For example, the multipurpose ribosomal protein S3 is a structural and useful factor of
the ribosome as well as a DNA base excision repair enzyme [84]. In our present study,
the “ribosome” pathway ranked first among the prominent KEGG pathways for DEGs, in
genetic information processing, identified by comparing C31(Con vs. Phi0.50):C80(Con
vs. Phi0.50); C31 genotypes were significantly higher compared to C80 genotypes under
Phi treatments. This suggests that the C31 genotype can cope with Phi stress by regulating
ribosomal metabolism and is tolerant to some extent.

In addition, several studies have shown that plants, as well as a number of impor-
tant crops, reactivate their starch stores to produce energy, sugars, and compounds that
help buffer stress. This is a critical mechanism for plant fitness and has significant im-
plications for plant productivity in harsh environments. In the current study, starch and
sucrose metabolism topped the KEEG pathways of DEGs in mentalism. Starch and sucrose
metabolism were higher in the C31(Con vs. Phi0.50) combination than in the C80(Con vs.
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Phi0.50) combination. This suggests that the C31 potato genotypes can accumulate more
starch and sucrose metabolic pathways that function better under Phi stress conditions.

Further analyses of DEGs based on KEGG pathway enrichment led to the identification
of the major pathway, plant hormone signaling, in the treatment combinations of both
genotypes (map04075) (Figure 10). According to Javid et al. [85], phytohormones are
chemical messengers that are produced at extremely low concentrations in one region of
the plant and are transmitted to other parts of the plant where they play a critical role
in regulating the plant’s response to stress. Phytohormones help plants adapt to adverse
environmental conditions, such as extreme pH and temperatures, flooding, drought, high
salinity, and organic and inorganic pollutants. Hormone signaling networks are attractive
candidates for facilitating protective responses due to their complexity and ability to interact
with each other [86]. These genes are involved in the transport of phosphorylation (AHP)
into the nucleus and in the transfer of phosphate groups to type A or type B response
regulators (ARR) that control cytokinin gene expression. Type A ARRs consist only of
the receptor domain (D) and a short C-terminal region that could be used to adapt the
downstream response by acting as a negative regulator of the original signal transduction
pathway. Type B ARRs have both an output and a receiving domain. The C-terminal output
region (blue) of a protein localized in the nucleus phosphorylates DNA in a sequence-
specific manner, stimulates transcription (red), involves type-A ARRs and CRFs, and
regulates the downstream response to cytokinin.

According to Wilkinson and Davies [87], ABA is responsible for promoting distress and
weakness in plants by closing stomata, which restricts cellular development and produces
genes associated with causing weakness, e.g., non-yellow coloration 1 (NYCI), stay green
(SGR), pheophytinase (PPH), and pheophorbide an oxygenase gene expression (PAO) [88].
In both genotypes, most of the genes identified in the ABA-induced carotenoid biosynthetic
pathway (ABF, PP2C, PYR /PYL, and SnPK2) were more highly expressed in Phi-treated
plants than in plants grown in No-P media (Figure 10, Figures S5 and S6). The use of
endogenous ABA and genes related to ABA leads to the weakening of plant tissues [89–91].
Typical circumstantial evidence has shown that PYR/PYL, PP2C, and SnRK2 are the three
main components of ABA signaling pathways that mediate the promotion of ABA to cause
stress or senescence in plants [92,93]. This confirms the fact that Phi cannot be synthesized
by plants, so a higher dose could cause shocks that lead to plant death. However, the gene
PYR/PYL was downregulated in genotype C31 in both No-P and Phi treatments compared
to the control combinations. This suggests that the C31 genotype may be tolerant to Phi
stress. The higher expression of carotenoid-associated genes observed in the treatment
combination of C80 genotypes may be due to chlorophyll deficiency.

Another phytohormone that affects plant growth, development, and stress response is
ethylene. Ethylene is thought to bind to receptors localized in the endoplasmic reticulum in
the absence of the hormone and acts as a negative regulator of ethylene signal transduction.
This phytohormone affects tissue abscission and senescence by inducing effective genes
while repressing genes that delay abscission or senescence [94]. In these studies, three
ethylene-insensitive genes (EIN3, ETR, and ERF1/2) were either upregulated or downregu-
lated. However, this expression was only significantly observed in the Phi combinations
(0.50 and 0.25) compared to the Con vs. No-P combinations. For example, overexpression
of ethylene-insensitive3 (EIN3) enhances plant abscission and distress, whereas loss of
EIN3-Like1, its homolog, slows plant abscission and distress [95]. The EIN3 protein was
identified as a positive ethylene signaling promoter that promotes chlorophyll degradation
when chlorophyll physically binds to and activates the promoters of non-yellowing col-
oration 1 (YC1) and pheophorbide a oxygenase (PAO) [96]. Most genes associated with BR,
SA, and JA were upregulated in combinations of control and high Phi compared to control
and No-P. These identified genes associated with JA, BR, and SA can be further explored
and targeted to improve Phi tolerance in the potato.

Transcription factors (TFs) are thought to play a critical role in regulating adaptive
mechanisms among the molecular drivers of Pi stress responses [93,97–100]. TFs have been
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shown to interact with cis-transcriptional regulatory elements surrounding the genes they
regulate, such as promoters, silencers, enhancers, insulators, and LCR regions, thereby
affecting the expressions of many downstream genes to control a variety of biological
processes [23,79,101]. A small change in the relative abundance of transcription factor
messenger RNAs can set in motion a chain of events that affect a variety of physiological
processes and lead to significant changes in the expression of downstream genes [102]. In
the present study, several TF families that regulate gene expression were discovered. The
major TFs discovered include: AP2, AUX /IAA, bHLH, bZIP, C3H, MAD, MYB, NAC,
PHD, and WRKY. However, we focused on the bHLH, MAD, MYB, NAC, and WRKY
DEGs to find potential candidate genes responsible for Phi tolerance or susceptibility
in the C31 and C80 genotypes (Figure 8, Supplementary Figures S2 and S3). WRKY
transcription factors have been found to play a role in nutrient deficit response signaling
pathways in several studies [101,103]. In our current experiment, several genes related
to WRKY TF were highly expressed under Phi treatment compared to the corresponding
control, Pi-sufficient. This suggests that they are actively involved in enhancing Phi
tolerance in the C31 genotype. In C80, the expressions of genes related to WRKY TF
were similar in P deficiency (Phi-0.25, -0.50, and No-P) as in P sufficiency, confirming
the sensitivity of this genotype to Phi. Jiang et al. [84] showed that AtWRKY75 is the
first WRKY member involved in the regulation of Pi deficiency. Thus, AtWRKY75 was
significantly increased in Pi insufficiency in Arabidopsis plants, and RNAi suppression
of WRKY75 resulted in early anthocyanin buildup, suggesting that RNAi plants are more
susceptible to Pi stress [36]. Similar reports suggest that WRKY6, WRKY42, and WRKY75
are induced by Pi deficiency [36,104]. According to Yi et al. [37], plant tolerance to Pi
deficiency is mediated by transcriptional control of Pi stress response genes by bHLH family
members. In addition, TabHLH1 is sensitive to exogenous Pi deprivation stressors and
confers increased Pi tolerance in wheat [7]. MYBs are one of the best-studied transcription
factors involved in the response to Pi deficiency [105]. Moreover, stress tolerance in Pi
deficiency is controlled by NAC and MAD TFs [72,106]. In particular, the gene ZmNAC134
has been associated with low Pi tolerance in maize seedlings [107]. In Arabidopsis, rice,
and other plant species, MADS genes are also transcriptional responses to Pi deficiency
and are important in mediating plant tolerance to Pi deficiency stress [4,108]. qRT-PCR
has been shown to be an advantageous tool for validating transcriptomics data due to its
precision, accuracy, simplicity, speed, and sensitivity [109]. The genes discovered in this
study could be selected for functional validation experiments to decipher and validate
their regulatory involvement in Phi stress in potatoes, especially those verified by qRT-
PCR. Analysis of the expression of TFs revealed that WRKY, MYB, NAC, and bHLH were
largely associated with Phi-tolerant genotype C31, whereas MAD was associated with
susceptibility of genotype C80. The results presented in the present study provide the basis
for manipulating and understanding the response of phosphite in potatoes to exploit its
potential for crop production.

5. Conclusions

In the present study, transcriptome profiling was performed to identify genes with
differential expressions in two potato genotypes under different P conditions. This was
demonstrated by examining the transcriptional changes induced by the supply of 0.25 and
0.50 mM No-P and the corresponding control. It confirmed that Phi and No-P adminis-
tration reprogrammed plant hormone signaling, TFs, and metabolic pathways, such as
tryptophan, zeatin, carotenoids, cysteine, and methionine, which significantly contributed
to the promotion and regulation of the effects of Phi in the two genotypes. The present
study confirmed that plants cannot metabolize Phi. Genotype C31 showed some degree
of tolerance to the compound in the media. Genes detected in the tryptophan metabolic
pathway initiated by auxin (TRJ, ARE, Auxi1, CH3, ARF, and Aux/IAA) were more highly
expressed in Phi-0.25 or Phi-0.50 mM than in the No-P and Pi combinations. A similar trend
in gene expression was also observed for zeatin biosynthesis and cysteine and methionine



Genes 2022, 13, 1379 20 of 24

metabolism induced by cytokinin and ethylene, respectively. However, most of the genes
associated with the metabolic pathways identified in this study that regulate plants under
stress were more highly expressed in the C31 genotypes than in the C80 genotypes. An
analysis of the expressions of TFs revealed that WRKY, MYB, NAC, and bHLH were largely
associated with Phi tolerance in the C31 genotype, whereas MAD was related to suscepti-
bility in the C80 genotype. The results of this study provide valuable information on gene
functions and pathway engineering under Phi stress in the potato. Future research could
focus on the Phi-tolerant C31 genotype to measure its yield potential under Phi treatment
in the field.
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