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Differentiation-related epigenomic changes define
clinically distinct keratinocyte cancer subclasses
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Abstract

Keratinocyte cancers (KC) are the most prevalent malignancies
in fair-skinned populations, posing a significant medical and eco-
nomic burden to health systems. KC originate in the epidermis and
mainly comprise basal cell carcinoma (BCC) and cutaneous
squamous cell carcinoma (cSCC). Here, we combined single-cell
multi-omics, transcriptomics, and methylomics to investigate the
epigenomic dynamics during epidermal differentiation. We identi-
fied ~3,800 differentially accessible regions between undifferenti-
ated and differentiated keratinocytes, corresponding to regulatory
regions associated with key transcription factors. DNA methylation
at these regions defined AK/cSCC subtypes with epidermal stem
cell- or keratinocyte-like features. Using cell-type deconvolution
tools and integration of bulk and single-cell methylomes, we
demonstrate that these subclasses are consistent with distinct
cells-of-origin. Further characterization of the phenotypic traits of
the subclasses and the study of additional unstratified KC entities
uncovered distinct clinical features for the subclasses, linking inva-
sive and metastatic KC cases with undifferentiated cells-of-origin.
Our study provides a thorough characterization of the epigenomic
dynamics underlying human keratinocyte differentiation and
uncovers novel links between KC cells-of-origin and their prognosis.
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Introduction

The epidermis constitutes the first line of defense of the human

body against environmental damage. This stratified squamous

epithelium is mainly composed of keratinocytes, which arise from

epidermal stem cells (EpSCs) located at the basal layer of the epider-

mis (Gonzales & Fuchs, 2017; Moreci & Lechler, 2020). As EpSCs

start differentiating, they detach from the basement membrane and

migrate upwards, resulting in distinct differentiated keratinocyte

populations (i.e., spinous, granular, and cornified) (Gonzales &

Fuchs, 2017; Moreci & Lechler, 2020). Terminally differentiated ker-

atinocytes are continuously desquamated. As such, the homeostatic

epidermis is subjected to a constant turnover, which is regulated by

a fine-tuned balance between self-renewal and differentiation (Blan-

pain & Fuchs, 2009).

Keratinocyte cancers (KC), also known as non-melanoma skin

cancers (NMSC), originate from epidermal keratinocytes. They rep-

resent the most common malignancies worldwide in the fair-

skinned population, with an incidence 20 times higher than that

of melanoma, the other major skin cancer (Apalla et al, 2017b; Fitz-

maurice et al, 2019; Stang et al, 2019). The incidence of KC has

alarmingly risen over the last decade, with an increase of ~33% in

the total number of cases worldwide between 2007 and 2017 (Fitz-

maurice et al, 2019). These numbers illustrate why, despite a lower

mortality rate, KC are associated with significant morbidity and a

heavy burden on public health systems (Mudigonda et al, 2010;

Apalla et al, 2017b; Fitzmaurice et al, 2019). Two distinct malignan-

cies account for 99% of all KC: basal cell carcinoma (BCC) and cuta-

neous squamous cell carcinoma (cSCC) (Apalla et al, 2017a; Barto�s

& Kullov�a, 2018). Even though cSCC represents only 20% of KC

cases, it accounts for the vast majority of deaths associated with

such malignancies, as about 5% of the tumors metastasize, with a

mortality rate exceeding 70% (Ratushny et al, 2012; Burton et al,
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2016). In contrast, the estimated metastatic potential of BCC is less

than 0.05% (Apalla et al, 2017a). Most invasive cSCCs arise either

from a precancerous dysplasia known as actinic keratosis (AK) or

from an in situ carcinoma known as Bowen’s disease (BD), with a

progression rate of 0.025-16% and 3-5% per year and event, respec-

tively (Ratushny et al, 2012; Burton et al, 2016). However, the

molecular mechanisms underlying their progression to invasive

cSCC remain largely unknown.

DNA methylation is a dynamic epigenetic modification that

mainly occurs in the context of CpG dinucleotides at the carbon-5

position of cytosines (Lyko, 2018). Catalyzed by a set of three

methyltransferases (DNMT1, DNMT3A, and DNMT3B), it has a

strong influence on gene expression and other essential genetic

functions (Lyko, 2018). Consequently, DNA methylation is essential

for the establishment and maintenance of cellular identity (Lyko,

2018; Greenberg & Bourc’his, 2019). Disruption of normal DNA

methylation patterns is currently considered a hallmark of cancer,

which presents a characteristic genome-wide hypomethylation and

regional hypermethylation (Jones & Baylin, 2007). Importantly,

tumor methylomes not only include cancer-specific methylation

changes, but also partially maintain the DNA methylation patterns

of their tumor-initiating cell (Kulis et al, 2013; Moran et al, 2016).

In fact, a systematic study concluded that cell-of-origin-related pat-

terns are the main variable influencing tumor stratification in many

tumor entities (Hoadley et al, 2018).

Epidermal differentiation has been associated with dynamic

changes in DNA methylation. In mice, keratinocyte differentiation

was associated with a general loss of DNA methylation at lineage-

specific regulatory elements, while methylation gains occurred at

regulatory regions of other lineages (Bock et al, 2012). Similarly, a

loss of DNA methylation in the promoter region of roughly 60% of

the genes induced upon keratinocyte differentiation in vitro has

been observed in humans (Sen et al, 2010). In agreement with these

findings, we have previously identified two subclasses of AK and

cSCC based on their methylation patterns and that we interpreted to

arise from keratinocytes at two distinct epidermal differentiation

stages: one more closely related to the EpSCs and one to a more dif-

ferentiated keratinocyte (Rodr�ıguez-Paredes et al, 2018a). However,

direct proof for this interpretation has been lacking and the sub-

classes were not characterized in detail.

Here, we performed an integrated analysis of the chromatin

dynamics associated with human epidermal differentiation using

single-cell multi-omics and transcriptomics approaches. We identi-

fied more than 3,800 differentially accessible regions between undif-

ferentiated and terminally differentiated keratinocytes. Further

characterization of these regions revealed that they comprised regu-

latory regions associated with known but also novel epidermal dif-

ferentiation transcription factors. Tumor stratification based on the

DNA methylation patterns found at these differentially accessible

regions identified two subtypes of AK and cSCC with EpSC-like and

keratinocyte-like features. Importantly, we also show for the first

time DNA methylation dynamics in the human epidermis at single-

cell resolution, which we studied with single-cell combinatorial

indexing for methylation analysis (sci-MET) (Mulqueen et al, 2018),

after addressing important shortcomings of the original protocol.

The integrative analysis of bulk and single-cell methylation datasets,

as well as the use of deconvolution tools based on scRNA-seq, pro-

vided direct evidence of the cell-of-origin interpretation of the AK/

cSCC subtypes. Furthermore, epigenomic data analyses using a

mitotic-like clock and the stratification of an expanded dataset,

which included BCC and other yet unstratified epidermal entities,

suggested a more invasive phenotype and higher metastatic

potential for tumors arising from undifferentiated keratinocytes. All

in all, our DNA methylation-based tumor stratification strategy may

represent an important advance in the risk assessment of KC

patients.

Results

Single-cell multi-omics analysis of healthy human epidermis

To investigate differentiation-related epigenomic changes in the

human epidermis at the single-cell level, we used a combination of

single-cell multi-omic and transcriptomic approaches. First of all,

we generated a single-cell multi-omics (scATAC-seq + scRNA-seq)

dataset from two sun-protected healthy epidermis samples (55 and

72 y/o, male). A total of 5,565 cells passed the quality control for

both genomic layers and were integrated into a common dataset to

avoid batch effects (Fig EV1A). Unsupervised clustering identified

10 cell clusters, which were visualized using a joint uniform mani-

fold approximation and projection (UMAP) representing both gene

expression and chromatin accessibility (Fig EV1B). To identify the

cell identity of each cluster, we also generated a reference scRNA-

seq dataset by combining our own data generated from a sun-

protected healthy epidermis sample from a 30 y/o male donor

(Appendix Fig S1A and B), with a matching subset of sun-protected

healthy epidermis from three donors (Cheng et al, 2018a; Data ref:

Cheng et al, 2018b). All four samples were obtained from the trunk

area and did not display significant differences. The integrated

dataset contained 32,272 high-quality cells and their unsupervised

clustering defined 13 cell clusters, which comprised cells from all

donors (Appendix Fig S1C and D). These included six archetypical

keratinocyte populations: two basal undifferentiated populations,

two mitotic clusters, and the well-differentiated spinous and granu-

lar keratinocytes (Fig EV2A and B, and Dataset EV1). Highly spe-

cialized keratinocyte populations such as channel or pro-

inflammatory keratinocytes were also detected (Fig EV2A and B,

and Dataset EV1). Lineage inference using RNA velocity analysis

was possible with our own dataset and placed the Basal 1 popula-

tion at the beginning of the differentiation process (Fig EV2C and

Appendix Fig S2). The trajectory then progressed to the mitotic ker-

atinocytes and, lastly, to the well-differentiated spinous population

(Fig EV2C). Hence, these results suggest that the main EpSC popula-

tion is contained in the Basal 1 cluster.

After cell annotation based on the reference scRNA-seq dataset,

most keratinocyte populations identified in the scRNA-seq experi-

ment were also detected in the multi-omics dataset (Fig 1A). Of

note, our multi-omics analysis showed the expected chromatin

accessibility and gene expression dynamics for several estab-

lished epidermal differentiation markers. For instance, ATAC peaks

associated with either the basal keratinocyte gene marker KRT5 or

the suprabasal differentiated keratinocyte gene marker KRT10, lost

or gained accessibility as they became less or more expressed along

the differentiation trajectory, respectively (Fig 1B). Consistently,

we observed an increase in co-accessibility in the epidermal
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differentiation complex (EDC), a genomic region containing multiple

genes related to terminal differentiation and cornification (Kypriotou

et al, 2012), in terminally differentiated keratinocytes (Spinous and

Granular, cluster 3) compared with basal undifferentiated ker-

atinocytes (Basal 1, cluster 2, Fig 1C).

To further characterize differentiation-related changes occurring

at the chromatin level, we compared the genome accessibility in

basal undifferentiated keratinocytes (Basal 1, cluster 2) and in termi-

nally differentiated keratinocytes (Spinous and Granular, cluster 3).

This comparison identified 3,838 differentially accessible peaks, of

which 1,659 were only accessible in undifferentiated keratinocytes

and 2,179 were only accessible in differentiated keratinocytes

(Fig 1D, Dataset EV2). Motif enrichment analysis for each set of

accessible peaks identified cell-type-specific overrepresentation of

transcription factor (TF) binding motifs (Fig 1D). For example, TF-

binding motifs associated with key regulators of epidermal stem cell

proliferation and differentiation such as TP63 (Soares & Zhou, 2018)

and OVOL1 (Lee et al, 2014) were enriched in peaks that were
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specific to undifferentiated keratinocytes (Fig 1D). In contrast, TF-

binding motifs from members of the CEBP family, which are associ-

ated with terminal differentiation in keratinocytes (Borrelli et al,

2007; Lopez et al, 2009), were enriched in peaks specific to differen-

tiated keratinocytes (Fig 1D). To refine our multimodal analysis, we

then combined motif activity scores calculated using chromVAR and

gene expression data in order to identify the transcription factors

with specifically enriched expression and motif accessibility in each

cell cluster. This identified key regulators of the basal undifferenti-

ated keratinocytes, including MEF2A, TEAD1, IRF1, TP63, and

NFKB and key transcription factors of terminally differentiated ker-

atinocytes, including GRHL1, RORA, CEBPA, NR1D1, or SREBF2

(Fig 1E and F). While most of these transcription factors have been

previously found to play important roles in epidermal differentiation

(Truong et al, 2006; Dai et al, 2013; Gulati et al, 2013; Mlacki et al,

2014; Yuan et al, 2020), MEF2A has not yet been associated with

this process. Gene regulatory networks analysis using single-cell

regulatory network inference and clustering (SCENIC) (Aibar et al,

2017) on the transcriptomics data of our multi-omics dataset also

identified MEF2A and TEAD1 as key transcription factors for undif-

ferentiated keratinocytes, and SREBF2, CEBPA, GRHL1, and NR1D1

for differentiated keratinocytes (Fig 1G). Altogether, our multi-

omics data recapitulated known accessibility and gene expression

dynamics during epidermal differentiation and identified potential

new key regulators, such as MEF2A.

DNA methylation at differentially accessible regions defines AK/
cSCC subtypes

To investigate whether the differentially accessible peaks detected

during epidermal differentiation corresponded to regulatory regions,

such as gene promoters or enhancers, we made use of published

ChIP-seq data for several histone marks generated on normal

human epidermal keratinocytes (NHEK). Accessible peaks from

basal and differentiated keratinocytes showed no enrichment for the

repressive chromatin mark H3K27me3, in agreement with their

open state (Fig 2A). On the contrary, differentiated keratinocyte-

specific peaks showed a strong correlation with H3K27ac and

H3K4me1, two histone marks that are associated with active enhan-

cers (Creyghton et al, 2010) (Fig 2A). Furthermore, undifferentiated

keratinocyte-specific peaks were enriched for H3K27ac and

H3K4me2/me3, histone marks that are associated with gene pro-

moters and actively transcribed regions (Bernstein et al, 2005;

Orford et al, 2008) (Fig 2A). Altogether, our analyses indicate that

the differentially accessible regions identified in our scATAC-seq

data correspond to regulatory regions associated with key regulators

of epidermal differentiation.

DNA methylation cooperates with chromatin accessibility to

establish and maintain cellular identity (Guo et al, 2016; Li et al,

2021). Furthermore, DNA methylation patterns at regulatory regions

have been used to define the cellular origin of several human cancer

types (Kulis et al, 2013; Moran et al, 2016; Hoadley et al, 2018). To

assess whether the methylation patterns at the differentially accessi-

ble regions between undifferentiated and differentiated ker-

atinocytes would be informative for identifying the cellular origin of

epidermal tumors, we extracted the CpGs located in the 3,838 differ-

entially accessible peaks and that can be interrogated with probes

on the Infinium EPIC array. This identified 2,925 CpG probes located

in undifferentiated keratinocyte-specific peaks and 1,426 CpG

probes located in differentiated keratinocyte-specific peaks. These

probes covered 914 and 864 peaks accessible exclusively in undiffer-

entiated or differentiated keratinocytes, respectively. In agreement

with the histone modifications landscape of each set of accessible

regions, the CpGs located in undifferentiated keratinocyte-specific

peaks were mostly located in promoter-associated CpG islands while

the CpGs located in differentiated keratinocyte-specific peaks were

mostly located in OpenSea regions, which are often associated

with enhancers (Fig 2B). We then combined 21 newly generated AK

and cSCC methylomes with a published dataset comprising healthy,

AK and cSCC epidermis samples (Rodr�ıguez-Paredes et al, 2018a;

Data ref: Rodr�ıguez-Paredes et al, 2018b). Unsupervised clustering

of all 12 healthy, 20 AK and 35 cSCC epidermal samples based on

the methylation patterns of either the 914 undifferentiated

keratinocyte-specific peaks or the 864 differentiated keratinocyte-

specific peaks clearly stratified the AK and cSCC methylomes into

two groups, one with EpSC-like features and another one with

keratinocyte-like features (Fig 2C). The two subclasses were also

clearly separated in a Principal Component Analysis (PCA) based on

all CpG probes (Fig 2D). Importantly, this separation was not

related to differences in sample purity, as both subclasses showed a

very high degree of tumor cell purity (Appendix Fig S3).

Single-cell methylation analysis of keratinocyte differentiation

To further refine the cells-of-origin of AK/cSCC, we combined these

bulk methylation datasets with single-cell methylation data from

◀ Figure 1. Single-cell multi-omics characterization of human epidermal differentiation.

A Joint UMAP plot depicting both scATAC-seq and scRNA-seq data from 5,355 keratinocytes from sun-protected human epidermis (n = 2). Color depicts the unsupervised
clustering (left) as well as cell-type annotation based on the reference scRNA-seq dataset (right).

B Representative examples of chromatin accessibility and gene expression of KRT5 and KRT10, two key epidermal differentiation-related genes, in the main keratinocyte
populations.

C Co-accessibility at the human epidermal differentiation complex (EDC) in undifferentiated (cluster 2) and differentiated (cluster 3) keratinocytes. Only connections
(arcs) with a co-accessibility score above 0.25 are plotted. Gray boxes below tracks represent scATAC-seq peaks.

D Left: Heatmap displaying the differentially accessible peaks between undifferentiated (cluster 2) and differentiated (cluster 3) keratinocytes. Number of Tn5 insertion
sites in each region was scaled by row. Right: DNA sequence motifs for the top six overrepresented transcription factor (TF) motifs in undifferentiated (cluster 2) and
differentiated (cluster 3) keratinocyte-specific accessible peaks.

E Heatmaps displaying the predicted top five transcription factors in each cell cluster using chromVAR motif activity (left) and gene expression (right).
F chromVAR deviations (in quantiles) and gene expression for representative enriched TF projected onto the joint UMAP plot of keratinocytes from the single-cell multi-

omics dataset.
G Heatmap showing the top five active regulons in each cell cluster, based on the expression data of the multi-omics dataset. TF regulons also identified by other

approaches are highlighted.
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human epidermal cells. Thus, we performed single-cell combinato-

rial indexing for methylation analysis (sci-MET) (Mulqueen et al,

2018) from a sun-protected healthy epidermis sample that was

obtained from a 62 y/o male donor. In order to obtain a dataset with

a higher sequencing coverage, we generated three sci-MET libraries

containing only around 200 epidermal cells each. This resulted in

the detection of 554 cells after read alignment and single-cell demul-

tiplexing, with an average CpG coverage per cell of 0.85% (0.14–

6.88%), in agreement with published data (Mulqueen et al, 2018).

Single cells showed a detectable heterogeneity and subclustering as

well as differences in their methylation content, suggesting methyla-

tion changes within the population (Appendix Fig S4). We then per-

formed a multidimensional scaling (MDS) analysis with the 554

single-cell methylomes and the 55 AK/cSCC and 12 healthy epider-

mis EPIC samples. Of note, 548 single-cell methylomes grouped

closely with the healthy epidermis and keratinocyte-like tumors,

while six cells clustered with the EpSC-like tumors (Fig 3A). To

assess whether these two cell clusters represented EpSC and differ-

entiated keratinocytes, respectively, we examined their average

methylation level at different genomic regions based on the NHEK

ChromHMM segmentation (see Materials and Methods for details)

(Ernst et al, 2011). Consistent with their keratinocyte identity, both

cell clusters displayed low methylation levels in promoter regions

that were designated as active in NHEKs and high methylation in

regions that were designated as actively transcribed in NHEKs

(Fig 3B). Also, repressed, heterochromatic, and repetitive regions

displayed high methylation levels in both cell groups, as expected

(Deplus et al, 2014) (Fig 3B). In agreement with the loss of DNA

methylation in lineage-specific regulatory elements upon epidermal

differentiation seen in mice (Bock et al, 2012) and humans (Sen

et al, 2010), enhancer regions, and especially strong enhancers,

were found to be less methylated in cells clustering with

keratinocyte-like tumors (Fig 3B). These findings further support

the notion that the two cell clusters represent EpSCs and differenti-

ated keratinocytes, respectively. Importantly, the genomic regions of

AK/cSCC showed very similar methylation patterns compared with

the single-cell profiles, with keratinocyte-like tumors displaying sub-

stantial enhancer hypomethylation (Fig 3C). Taken together, these

results provide important confirmation for the cell-of-origin interpre-

tation of the methylation-based AK/cSCC subclasses.
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Figure 2. Epidermal differentiation-specific accessible regions define AK/cSCC subclasses.

A Average histone modification profiles of undifferentiated and differentiated keratinocyte-specific peaks using previously published data generated on NHEK cells
(ENCODE). The normalized signal of H3K27ac, H3K4me1/me2/me3, and H3K27me3 were measured in a window of � 10,000 base pairs (bp).

B Fractions of CpGs located within epigenomic substructures for the 4,351 InfiniumEPIC CpG probes found within undifferentiated and differentiated keratinocyte-
specific peaks.

C Unsupervised hierarchical clustering of 12 healthy, 20 AK, and 35 cSCC epidermal samples based on the methylation status at undifferentiated and differentiated
keratinocyte-specific peaks. Each row represents the average methylation value of all CpGs contained in a particular peak.

D Principal Component Analysis (PCA) of 67 AK/cSCC and healthy controls performed with all detected CpGs after filtering (n = 632,778). Coloring is according to sample
type and shape is according to cell-of-origin-related subclass.

Data information: AK: actinic keratosis, cSCC: cutaneous squamous cell carcinoma, DK: Differentiated keratinocytes, UK: undifferentiated keratinocytes.
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While we only detected two epidermal differentiation stages in

our single-cell methylation analysis, we observed a higher number

using single-cell transcriptomics and chromatin accessibility analy-

ses. To assess whether the DNA methylation patterns represent sev-

eral transcriptomic states and to further explore the keratinocyte

composition of AK/cSCC, we used computational deconvolution of

cell-type fractions in the bulk DNA methylation datasets based on

scRNA-seq data (Teschendorff et al, 2020). After characterization of

the reference scRNA-seq dataset (Fig EV2), we generated the refer-

ence expression and DNA methylation matrices for bulk methylome

deconvolution (Fig 3D; see Materials and Methods). Cell fraction

estimation revealed an overall similar keratinocyte composition in
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Figure 3. Single-cell methylomics validates cell-of-origin-based stratification for AK/cSCC.

A Multidimensional Scaling (MDS) analysis of the 67 bulk DNA methylomes from AK/cSCC and healthy samples, and the 554 single-cell methylomes obtained with
sci-MET.

B, C Average DNA methylation in the 15 chromatin states defined by ChromHMM in NHEK for (B) both EpSC and Keratinocytes from the sci-MET single-cell dataset, or
for (C) EpSC-like and keratinocyte-like AK/cSCC from the EPIC dataset. ChromHMM state 1: active promoter; state 2: weak promoter; state 3: inactive/poised pro-
moter; state 4: strong enhancer; state 5: strong enhancer; state 6: weak/poised enhancer; state 7: weak/poised enhancer; state 8: insulator; state 9: transcriptional
transition; state 10: transcriptional elongation; state 11: weak transcription; state 12: polycomb-repressed; state 13: heterochromatin/low signal; state 14: repeti-
tive/copy number variation; state 15: repetitive/copy number variation.

D Heatmaps displaying the gene expression (upper) and the imputed promoter DNA methylation (lower) reference matrices for keratinocyte populations involved in
terminal differentiation, calculated by EpiSCORE. The weight of each gene in the reference DNA matrix is also depicted.

E Boxplots displaying estimated cellular fractions of the keratinocyte populations involved in the differentiation trajectory in keratinocyte-like and EpSC-like AK/cSCC
as well as in healthy epidermis.

Data information: in Boxplots, the central bar, boxes, and whiskers represent the median, first and third quartiles, and 1.5-time interquartile range (IQR), respectively.
Statistical analyses in (B) and (C) were performed using a Wilcoxon Rank Sum test comparing the average methylation values in genomic states 4 and 5 between EpSC
(n = 6) and keratinocytes (n = 548) (B) or EpSC-like (n = 22) and keratinocyte-like (n = 33) AK/cSCC samples (C). Statistical analysis in (E) was performed using a Wilcoxon
Rank Sum test, comparing the Basal 1, Spinous and Granular fractions between cell-of-origin-related subclasses (EpSC-like: n = 22; keratinocyte-like: n = 33). *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.
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healthy epidermis and keratinocyte-like tumors, with higher propor-

tions of well-differentiated spinous and granular keratinocytes

(Fig 3E). In contrast, EpSC-like AK/cSCC showed enrichment for the

EpSC-containing Basal 1 population (Fig 3E). Collectively, these

results indicate that the two methylation profiles reflect transcrip-

tionally distinct epidermal differentiation stages. Furthermore, the

methylation-based AK/cSCC subclasses display a differential enrich-

ment for keratinocyte populations at the start and end of the lineage

trajectory. These findings thus provide further confirmation for their

EpSC-like and keratinocyte-like origin, respectively.

Methylation-based subclasses display distinct phenotypic
features

To further characterize the two cell-of-origin-based subclasses iden-

tified in the bulk methylome analysis, we used mitotic clock algo-

rithms (Teschendorff, 2020). We observed an increased mitotic age

in both tumor types in comparison with healthy epidermis (Fig 4A).

This increase was more pronounced in the keratinocyte-like sub-

group, while the EpSC-like tumors showed a more moderate effect

(Fig 4A). Subsequent calculations of the intrinsic stem cell division

rate (SCDR) estimated an SCDR of 10.35 divisions per stem cell and

year in the healthy epidermis (Fig 4B). This is similar to experimen-

tally assessed division rates for human EpSC (Maeda, 2017). In

agreement with the increased mitotic age, we also observed an

increase in the SCDR in AK/cSCC, with a more pronounced effect in

keratinocyte-like tumors (SCDR = 39.7; Fig 4B). On the contrary,

the EpSC-like tumor subclass again showed a more moderate effect

(SCDR = 25, Fig 4B). These results suggest different proliferation

rates for the two cell-of-origin-based subclasses.

Cellular proliferation and invasion are known to be two indepen-

dent processes with a high degree of anticorrelation in cancer cells

(Gao et al, 2005; Hoek et al, 2008; Hecht et al, 2015). Thus, we

hypothesized that a less proliferative phenotype in EpSC-like tumors

could indicate a higher invasiveness in these cases. Following this

line of thought, we investigated whether the EpSC-like tumors dis-

played epigenetic features of an invasive phenotype by analyzing

the methylation status of three miRNAs known to be silenced by

promoter hypermethylation in cancer cells displaying epithelial-to-

mesenchymal transition (EMT) (Wiklund et al, 2011; Davalos et al,

2012). Indeed, promoter regions for the MIR200C/141 cluster and

MIR205 were found to be highly methylated, specifically in the

EpSC-like subclass (Fig 4C). Furthermore, immunofluorescence

staining of ZEB2, an EMT-driving transcription factor repressed by

the miR200 family and miR205 (Gregory et al, 2008; Park et al,

2008), showed an increase in ZEB2-positive nuclei in EpSC-like

cSCC samples (Fig 4D). These results are consistent with distinct

proliferative and invasive characteristics for the two AK/cSCC cell-

of-origin-based subclasses.

Methylation-based subclasses display distinct clinical features

To assess whether the phenotypic differences observed between

cell-of-origin-based subclasses also resulted in distinct clinical fea-

tures, we analyzed the DNA methylation patterns of additional epi-

dermal tumors with different metastatic potentials. Thus, we

generated new EPIC datasets containing 11 in situ squamous cell

carcinoma (Bowen’s disease; BD), another type of pre-invasive

lesion leading to invasive cSCC, 14 basal cell carcinoma (BCC), the

most common KC in the general, immunocompetent population,

and 10 non-cancerous senile warts (seborrheic keratosis, SK). These

newly generated datasets were combined with our dataset contain-

ing healthy, AK and cSCC samples. Tumor stratification based on

methylation patterns at the differentiated keratinocyte-specific

accessible regions identified in our scATAC-seq uncovered the two

previously described cell-of-origin-related subclasses, which could

again be observed in a PCA performed with all CpG probes (Figs 5A

and EV3A). Similar to AK and cSCC samples, BD lesions were also

stratified into the two cell-of-origin-based subclasses (Fig 5A).

Moreover, further analyses indicated almost indistinguishable

methylomes between precursor AK lesions, in situ carcinomas, and

cSCC arising from the same cell type, but highlighted major epige-

netic differences between cell-of-origin-based subclasses (Fig EV4).

In contrast, rarely metastatic BCC and non-cancerous SK cases were

almost exclusively classified as keratinocyte-like (Figs 5A and

EV3A). Our analysis thus stratifies all the main keratinocyte cancer

entities according to two main initiating cells-of-origin and suggests

a bias toward lower metastatic potential for the more differentiated

subclass.

In addition, we investigated a published dataset comprising five

sclerodermiform BCC (sBCC) tumors (Sand et al, 2019a; Data ref:

Sand et al, 2019b). sBCC is considered particularly aggressive as it

presents high recurrence rates as well as higher local invasiveness

(Sand et al, 2019a; Conforti et al, 2021), which predicted an enrich-

ment of EpSC-like methylation patterns. Indeed, methylation pat-

terns at the accessible regions identified three out of five samples as

EpSC-like (Figs 5B and EV3B). When these datasets were integrated

with our BCC datasets, which also included three sBCCs, only four

out of 19 samples were classified as EpSC-like, three of which were

from the sBCC subtype (Appendix Fig S5). These results indicate an

enrichment for aggressive sBCC cases in the EpSC-like BCC sub-

class.

Furthermore, we analyzed a published EPIC dataset consisting of

12 common warts (verruca vulgaris; VV), another type of benign

epidermal tumor linked to human papillomavirus infection (Al-Eitan

et al, 2020). In accessible regions, methylation patterns of VV sam-

ples indicated a more differentiated cell-of-origin that was highly

similar to those present in healthy epidermis (Figs 5C and EV3C).

VV methylation patterns also appeared similar to those in SK, thus

indicating a differentiated keratinocyte-like cell-of-origin for both

senile (SK) and common (VV) warts.

Lastly, we stratified another published dataset, consisting of

five AK and a collection of 18 invasive cSCC samples, ranging

from initially invasive to metastatic (Herv�as-Mar�ın et al, 2019a;

Data ref: Herv�as-Mar�ın et al, 2019b). Strikingly, this dataset was

classified completely as EpSC-like (Figs 5D and EV3D), further

suggesting a more invasive phenotype in EpSC-like cSCCs. To fur-

ther validate these observations, we profiled the methylome of

eight cSCC metastases and three metastasizing primary cSCC.

These samples were obtained as formalin-fixed paraffin-embedded

(FFPE) sections, and tumor tissue was isolated by laser microdis-

section to ensure high sample purity (Appendix Fig S6). Methyla-

tion analysis of differentiated keratinocyte accessible regions

classified all 11 samples as EpSC-like (Figs 5E and EV3E), thus

again suggesting the higher invasiveness and metastatic potential

of this subclass.
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Discussion

The roles of chromatin accessibility and DNA methylation in estab-

lishing cell identity throughout lineage differentiation are well

accepted (Guo et al, 2016; Greenberg & Bourc’his, 2019; Li et al,

2021). Moreover, cancer methylomes reflect the epigenetic pro-

grams of the tumor-initiating cell, which can be used to define dis-

tinct cell-of-origin-based tumor subclasses, often with clinical

implications (Kulis et al, 2013; Moran et al, 2016; Hoadley et al,

2018). Our results show that DNA methylation patterns found at dif-

ferentially accessible regions between undifferentiated and differen-

tiated keratinocytes define human KC subtypes through their cells-

of-origin. These results confirm previous observations for AK and

cSCC (Rodr�ıguez-Paredes et al, 2018a) with an analytical framework

that is completely based on single-cell data from human epidermis

samples. It is important to notice that the set of differentially
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Figure 4. AK/cSCC cell-of-origin-based subclasses present distinct mitotic ages and EMT-related methylation features.

A Boxplots representing the total number of cumulative stem cell divisions per sample (mitotic age) as calculated with epiTOC2 in each AK/cSCC cell-of-origin-related
subclass.

B Boxplots representing the stem cell division rate per stem cell and year in each entity and cell-of-origin-based subclass.
C Upper: Heatmaps displaying the unsupervised clustering of 67 AK/cSCC and healthy controls based on the methylation patterns of the MIR200C/141 cluster and the

MIR205 gene. Lower: Bar plots showing the quantification of the methylation values at CpGs located at promoter regions in each cell-of-origin-based subclass. For
the MIR200C/141 cluster, probes located at the regulatory CpG island are depicted with green arrows. For the MIR205 gene, all probes shown in the heatmap are part
of the promoter region and were used for quantification.

D Left: Representative images of EpSC-like (n = 5) and Keratinocyte-like (n = 5) cSCC tumors stained for the EMT-marker ZEB2 (green) and the keratinocyte marker TP63
(red). Nuclei were counterstained with DAPI. Images are shown at 40x original magnification. Scale bar, 50 lm. Right: Quantification of ZEB2-positive tumor cells
(TP63-positive) in three independent regions per sample. Each dot represents a region with at least 500 tumor cells (TP63-positive) counted.

Data information: In Boxplots in (A and B), the central bar, boxes and whiskers represent the median, first and third quartiles, and 1.5-time interquartile range (IQR),
respectively. Barplots in (C) represent the mean and error bars represent the standard error of the mean (SEM). Statistical analyses in (A–C) were performed using a Wil-
coxon Rank Sum test, comparing each subclass (EpSC-like: n = 22; keratinocyte-like: n = 33) to healthy samples (n = 12), or between cell-of-origin-related subclasses
(depicted by a line). Statistical analysis in (D) was performed using an unpaired two-sided t-test (EpSC-like: n = 5 samples, 15 technical replicates; keratinocyte-like:
n = 5 samples, 15 technical replicates). Central bar represents the mean and error bars represent the standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. AK: actinic keratosis, cSCC: cutaneous squamous cell carcinoma.
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accessible peaks identified in our analysis shows little overlap with

the set of enhancers defined in an in vitro system of epidermal stem

cell differentiation (Rinaldi et al, 2016) (Appendix Fig S7), which

further highlights the importance of our in vivo approach.

Paired multimodal single-cell profiling provides new opportuni-

ties to study differentiation processes and for characterizing impor-

tant cell states. Furthermore, combining various genomic read-outs

is important for the identification of key transcription factors

involved in differentiation trajectories. Our single-cell multi-omics

analysis of the healthy human epidermis identified several well-

known transcription factors associated with undifferentiated ker-

atinocytes (i.e., TP63, TEAD1, and IRF1) (Truong et al, 2006; Yuan

et al, 2020) and with terminally differentiated keratinocytes (i.e.,

CEBPA, GRHL1, and SREBF2) (Maytin & Habener, 1998; Gulati
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Figure 5. Epidermal tumors with lower metastatic potential arise from more differentiated cells-of-origin.

A Left: Principal Component Analysis of 12 healthy, 10 SK, 14 BCC, 20 AK, 11 BD, and 35 cSCC epidermal samples using all CpGs after filtering (n = 632,778). Coloring is
according to sample type and shape is according to cell-of-origin-related subclass. Right: Unsupervised hierarchical clustering of 102 epidermal tumors and healthy
controls based on the methylation status at differentiated keratinocyte-specific peaks.

B–E Unsupervised hierarchical clustering based on the methylation status at differentiated keratinocyte-specific peaks of (B) Five sBCC samples from Sand et al (2019a),
Data ref: Sand et al (2019b); (C) 12 averaged VV samples from AL Eitan et al.(Al-Eitan et al, 2020); (D) Five AK and 18 cSCC samples from Herv�as-Mar�ın et al (2019a),
Data ref: Herv�as-Mar�ın et al (2019b); (E) Eight cSCC metastases and three primary metastatic cSCC, together with 12 healthy samples from our cohort.

Data information: AK: actinic keratosis, BCC: basal cell carcinoma, BD: Bowen’s disease, cSCC: cutaneous squamous cell carcinoma, sBCC: sclerodermiform basal cell
carcinoma, SK: seborrheic keratosis, VV: verruca vulgaris.
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et al, 2013; Mlacki et al, 2014). Of note, this approach also identi-

fied MEF2A as one of the key regulators for undifferentiated basal

keratinocytes. MEF2A has been previously reported to exert impor-

tant roles in the differentiation of several cell lineages such as the

skeletal muscle and neuronal systems (Estrella et al, 2015; Zhu

et al, 2018). However, it has not been linked to epidermal differenti-

ation yet.

Single-cell DNA methylation approaches hold great potential to

further explore the role of this epigenetic modification in the context

of cellular differentiation. However, their development is still in

early stages, with limited applicability (Karemaker & Vermeulen,

2018). Combinatorial indexing (Adey et al, 2014; Amini et al, 2014)

could provide a solution to many current limitations due to its high

scalability. However, the published protocol for single-cell combina-

torial indexing to whole-genome bisulfite sequencing (Mulqueen

et al, 2018) contains important inaccuracies and methodological

gaps that have so far precluded a wider application of the method.

After successfully addressing these shortcomings, we generated a

sci-MET library containing 554 single cells with an average CpG cov-

erage of 0.85%. Single-cell methylomes of human epidermal cells

showed differences in average methylation content as well as a cer-

tain degree of dissimilarity, thus suggesting dynamic methylation

changes upon differentiation in vivo. Single-cell DNA methylation

studies are also critically important for identifying the exact cell type

that provides the tumor cell-of-origin. Thus, we combined our

extensive bulk AK/cSCC methylation dataset with the 554 single-cell

methylomes, which identified six out of the 554 cells as EpSCs and

clustered them with the EpSC-like tumors. Human EpSCs have been

previously estimated to represent approximately 1% of the epider-

mal cells (Rachidi et al, 2007). Our results are consistent with these

numbers and validate the cell-of-origin-based stratification of

human AK/cSCC.

We also used scRNA-seq data from more than 32,000 epidermal

cells to define the main keratinocyte populations along the epider-

mal differentiation trajectory. We identified a cell composition that

was similar to previous reports (Ji et al, 2020; Cheng et al, 2018a).

However, contrary to the multiple branches identified in another

scRNA-seq analysis using a graph-based approach (Cheng et al,

2018a), our RNA velocity analysis suggests a single differentiation

trajectory. Interestingly, our results suggest that only one of the two

basal populations found in adult human epidermis (Basal 1) is

located at the beginning of the differentiation trajectory, followed by

the mitotic and more differentiated keratinocyte populations.

KRT19-expressing Basal 2 cells were not part of the trajectory,

which is consistent with previous reports (Michel et al, 1996;

Pontiggia et al, 2009). Such keratinocytes are known to be

self-renewing but not involved in terminal differentiation and might

represent a stem cell reservoir for the interfollicular epidermis

(Pontiggia et al, 2009). Deconvolution of bulk AK/cSCC methylation

patterns using these scRNA-seq data detected distinct keratinocyte

populations in both keratinocyte-like and EpSC-like DNA methyla-

tion subclasses. These results indicate that the methylation profiles

defined by single-cell methylomics do not represent completely

homogeneous keratinocyte populations. Furthermore, tumor hetero-

geneity is also consistent with published scRNA-seq results of

human cSCC that revealed the presence of undifferentiated, mitotic,

and well-differentiated keratinocyte populations, even when they

share a common initiating cell (Ji et al, 2020). Importantly, our

approach also indicated a strong enrichment for Basal 1 ker-

atinocytes in EpSC-like tumors, while finding differentiated spinous

and granular cells in the keratinocyte-like cases.

DNA methylation clocks are compound biomarkers that are

increasingly used in cancer research (Yang et al, 2016; Duran-Ferrer

et al, 2020; Teschendorff, 2020). When we used DNA methylation

clocks to calculate the mitotic age and stem cell division rates

(SCDR) in epidermal tumors, our results revealed a general increase

in mitotic age and SCDR in AK/cSCC in comparison with the healthy

epidermis, as described for several other malignancies (Yang et al,

2016; Teschendorff, 2020). While we observed a substantial

increase in the keratinocyte-like subgroup, EpSC-like tumors

showed a more moderate increase, which we interpreted to reflect a

less proliferative but more invasive phenotype. This was confirmed

by methylation analysis of miRNAs from the miR-200 family (i.e.,

miR-200-c and miR-141) and miR-205, which play an essential role

in maintaining epithelial phenotypes by targeting the E-cadherin

transcriptional repressors ZEB1 and ZEB2 (Gregory et al, 2008; Park

et al, 2008). Silencing of these miRNAs by promoter hypermethyla-

tion has been described in several human cancer cell lines display-

ing EMT features (Neves et al, 2010; Davalos et al, 2012) and

invasive epithelial human malignancies, such as muscle-invasive

bladder cancer (MIBC) (Wiklund et al, 2011). Consistent with a

more invasive phenotype, we observed promoter hypermethylation

in MIR200C/141 and MIR205 genes and increased ZEB2-positive

nuclei in EpSC-like tumors. Hence, our analysis proposes cell-of-

origin-dependent differences in the invasive phenotype of AK/cSCC

and thus establishes novel opportunities for the development of risk

stratification biomarkers.

Following this line of thought, we expanded our DNA

methylation-based stratification to other epidermal tumor entities

with different metastatic potential, including in situ carcinoma (BD),

rarely metastatic BCC, and non-cancerous senile and common warts.

All entities could be stratified again into two subclasses displaying

either EpSC-like or keratinocyte-like methylation profiles, indicating

that the previously described bimodal cell-of-origin model can be

applied to a wide range of epidermal tumors. Importantly, our analy-

sis uncovered a prominent bias toward a more differentiated cell-of-

origin for entities bearing a lower metastatic potential such as BCC or

non-cancerous warts. In contrast, most EpSC-like tumors belonged to

entities with a higher metastatic potential (cSCC), including precursor

lesions (AK and BD) that can progress to metastatic cSCC if left

untreated. The consistent classification of invasive cSCC samples,

cSCC metastases and primary metastasizing cSCC samples entirely as

EpSC-like tumors further supported this notion.

Altogether, our study thus provides novel insight into the role of

chromatin accessibility and DNA methylation in epidermal differen-

tiation and KC initiation and proposes a general stratification strat-

egy for epidermal tumors that might improve patient risk

assessment.

Materials and Methods

Samples

For scRNA-seq, single-cell multi-omics and sci-MET experiments,

we obtained remnant clinically healthy whole skin from patients
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undergoing routine surgery at Heidelberg University Hospital. Sam-

ples were obtained from the sun-protected ilioinguinal region after

written informed consent by the patients, in compliance with cur-

rent legislation and as approved by the Ethics Committee of Heidel-

berg University (no. S-091/2011). All samples used for these

experiments were obtained from male donors.

Punch biopsies (4-mm) from four AK, 17 cSCC, 11 BD, 14 BCC,

and 10 SK samples (Table EV1) were obtained at the Department of

Dermatology of the Heidelberg University Hospital, as approved by

the ethics committee of Heidelberg University (protocol no. S-091/

2011). Moreover, 12 healthy, 16 AK, and 18 cSCC samples previ-

ously analyzed and used for publication were also included in this

study (Rodr�ıguez-Paredes et al, 2018a; Data ref: Rodr�ıguez-Paredes

et al, 2018b). All samples were immediately immersed in liquid

nitrogen after resection and stored at �80°C. Epidermal regions of

the tumors were separated from the dermis by heat-split (incubated

in pre-warmed PBS at 37°C for 1 min and then at 56°C for up to

5 min) and carefully dissected manually under a magnifying glass.

Only tumor samples for which proper epidermis isolation was

achieved were included in the study. DNA was isolated using the

QIAamp DNA Investigator Kit (Qiagen) following the manufac-

turer’s instructions.

Metastatic primary cSCC and cSCC metastasis samples

(Table EV1) were obtained as 7-lm FFPE sections provided by the

tissue bank of the National Center for Tumor Diseases (NCT Heidel-

berg, Germany) and the Department of Dermatology of Heidelberg

University Hospital, in accordance with the regulations of the tissue

bank and the approval of the ethics committee of Heidelberg Univer-

sity (protocol no. S-091/2011). Sections were placed on Mem-

braneSlide NF 1.0 PEN (Zeiss) slides, and tumor tissue was isolated

by laser microdissection using the Zeiss PALM MicroBeam system

(Zeiss). DNA was subsequently isolated using the QIAamp DNA

Micro Kit (Qiagen) following the manufacturer’s instructions.

Diagnosis and histopathological features of both fresh-frozen

(FF) and FFPE tumor samples obtained at Heidelberg University

Hospital were routinely established by an expert dermato-

histopathologist and reviewed before inclusion in this study.

Handling of samples and data was performed in a pseudony-

mized manner, also in strict compliance with the current legislation

and institutional guidelines for data protection and privacy of the

participating patients.

Single-cell multi-omics sequencing

Healthy whole skin biopsies were obtained from two male donors of

fair-skin type (55 and 72 y/o) and preserved in MACS Tissue Stor-

age Solution (Miltenyi Biotec). Samples were subsequently cut into

small pieces that were further processed using the Epidermis Disso-

ciation Kit, human (Miltenyi Biotec) and the Gentle MACS Dissocia-

tor (Miltenyi Biotec), following the manufacturer’s instructions.

Nuclei were isolated from the resulting single-cell suspension using

the lysis buffer recipe described in (Wysocka et al, 2001) In brief,

epidermal cells were resuspended in Buffer A (10 mM HEPES pH

7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol,

1 mM DTT, and 1X protease inhibitor cocktail) containing freshly

added Triton X-100 at a final concentration of 0.1%. Cells were

resuspended in a 1 × 106 cells/25 ll of Buffer A ratio and were incu-

bated for 10 min on ice. Nuclei were recovered by centrifugation at

1,300 g for 5 min at 4°C and resuspended in 1× Nuclei Buffer (10×

Genomics).

scATAC-seq and scRNA-seq libraries were generated using the

Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-

sion Reagent Kit (10× Genomics), as described by the manufacturer.

Approximately, 10,000 nuclei per sample were loaded into a Chro-

mium Single Cell Controller (10× Genomics) as initial input. Quan-

tification of the library was carried out using the Qubit dsDNA HS

Assay Kit (Life Technologies), and cDNA integrity was assessed

using D1000 ScreenTapes (Agilent Technologies). Paired-end

(28 + 90 bp) sequencing (100 cycles) was used for the scRNA-seq

libraries while paired-end (50 + 50 bp) sequencing (100 cycles) was

used for the scATAC-seq libraries, both performed with a NovaSeq

6000 device (Illumina).

Single-cell multi-omics sequencing data analysis

Raw sequencing data were processed with the Cell Ranger software

(version 2.1.0) from 10× Genomics, and downstream analysis was

performed using the Seurat (version 4.0.5) (Stuart et al, 2019) and

Signac (version 1.5.0) (Stuart et al, 2021) packages. Low-quality

cells were filtered out using Signac by removing those with less than

1,000 or more than 50,000 UMIs in the scRNA-seq and those with

less than 1,000 or more than 100,000 counts in the scATAC-seq

data. Furthermore, we also filtered out cells with a higher nucleo-

some signal than 2 and a transcriptional start site (TSS) enrichment

lower than 1. The final datasets thus contained 2,851 and 2,714 sin-

gle cells. We then used MACS2 to call the ATAC peaks on each sam-

ple independently. To ensure comparability between samples, we

created a common set of peaks by merging all intersecting peaks

using the GenomicRanges package (version 1.46.1) (Lawrence et al,

2013).

To avoid batch effects, we integrated the scRNA-seq datasets

from the two samples using the standard protocol described in

the Seurat package (Stuart et al, 2019) and as described above.

We used default parameters and 30 CCA dimensions for the inte-

gration. Data dimensionality was reduced, and cell embeddings

were calculated for both scRNA-seq and scATAC-seq data for the

integrated dataset using PCA and latent semantic indexing (LSI),

respectively. Then, the cell embeddings were integrated using the

IntegrateEmbeddings() function from Signac using the anchors

identified for the data integration of the scRNA-seq data. Lastly,

we generated a joint dimensional reduction combining both

scATAC-seq and scRNA-seq data using the weighted nearest

neighbor method from Seurat and using 50 dimensions for each

assay.

Unsupervised clustering of the integrated data was performed

on the scRNA-seq data using 50 PCA dimensions and 0.4 resolu-

tion, which resulted in 10 cell clusters that were visualized by

UMAP. Cell-type identity was established by transferring the cell

labels from the reference scRNA-seq dataset containing more than

30,000 epidermal cells. To that end, we used 30 PCA dimensions

for identifying the transfer anchors and for transferring the cell-

type labels to the multiome dataset. Differentially accessible

regions between undifferentiated (cluster 2) and differentiated ker-

atinocytes (cluster 3) were identified using the FindMarkers()

function. To assess the histone modification landscape at differen-

tially accessible regions, we made use of previously published
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ChIP-seq data of histone modifications generated on NHEK cells

(ENCODE) and available at the UCSC genome annotation data-

base. The analysis was performed using the ChipPeakAnno

(v.3.28.1) package (Zhu et al, 2010).

Cis-regulatory interactions at the epidermal differentiation com-

plex (EDC) were predicted by identifying co-accessible peaks in

undifferentiated (cluster 2) and differentiated keratinocytes (cluster

3) independently using Cicero (v.1.3.6) (Pliner et al, 2018). Only

Cicero connections with a co-accessibility score higher than 0.25

were plotted.

Overrepresented TF-binding motifs in differentially accessible

peaks were identified using the FindMotifs() function with default

parameters. In addition, motif activity was also calculated in each

individual cell using chromVAR (Schep et al, 2017). Then, cell-type-

specific gene markers and active motifs were identified using a Wil-

coxon rank-sum test and the area under the receiver operator curve

(auROC) with the presto package (v.1.0.0). Cell-type-specific tran-

scription factors were obtained by ranking transcription factors by

the average AUC statistic from both gene expression and motif activ-

ity for each cluster.

Regulatory gene network inference was performed using

pySCENIC (v0.11.2) (Kumar et al, 2021) with default parameters in

Phython (v3.7), following the previously described protocol (Aibar

et al, 2017; Kumar et al, 2021). In brief, potential regulatory interac-

tions were inferred based on the expression of predefined human

transcription factors and their target genes in the preprocessed gene

expression data from keratinocyte clusters defined by the single-cell

multi-omics approach, using the GRNBoost2 algorithm. These inter-

actions were then used to calculate TF-gene co-expression modules,

which were subsequently subjected to motif enrichment analyses.

Thus, only target genes that contained the corresponding TF-

binding site were kept in the module. The activity of the resulting

regulons was then assessed in individual cells using the AUCell

score method. Lastly, to identify cell-type-specific regulons, we cal-

culated a Z-score as previously described, and the top five regulons

per cell type were displayed as a heatmap.

Single-cell RNA sequencing

A healthy whole skin biopsy was obtained from a 30 y/o male donor

of fair-skin type and preserved in MACS Tissue Storage Solution

(Miltenyi Biotec). The skin sample was subsequently cut into small

pieces that were further processed using the Epidermis Dissociation

Kit, human (Miltenyi Biotec) and the Gentle MACS Dissociator (Mil-

tenyi Biotec), following the manufacturer’s instructions. The result-

ing cell suspension was then filtered through a 70-lm cell strainer

(Falcon) and depleted of apoptotic and dead cells with the Dead Cell

Removal Kit (Miltenyi Biotec).

We used the 10× Genomics platform to generate a sequencing

library with the Chromium Single Cell 3’ Reagent Kit, v2 chem-

istry (10× Genomics), as described by the manufacturer. Approxi-

mately, 20,000 cells were loaded into a Chromium Single Cell

Controller (10× Genomics) as initial input. Quantification of the

library was carried out using the Qubit dsDNA HS Assay Kit (Life

Technologies), and cDNA integrity was assessed using D1000

ScreenTapes (Agilent Technologies). Paired-end (26 + 74 bp)

sequencing (100 cycles) was finally performed with a HiSeq 4000

device (Illumina).

Single-cell RNA sequencing data analysis

Raw sequencing data were processed with the Cell Ranger software

(version 2.1.0) from 10× Genomics, and downstream analysis was

performed using the Seurat package (version 3.1.1) (Stuart et al,

2019). A total of 7,752 cells passed the quality control of Cell

Ranger. Further filtering of low-quality cells was carried out using

Seurat by removing those expressing < 200 genes or more than

2,500, as well as cells expressing more than 5% of mitochondrial

genes. The final dataset thus contained 7,143 single-cell transcrip-

tomes. Unsupervised cell clustering was performed using 20 PCA

dimensions and 0.5 resolution, which resulted in 10 clusters, and

visualized as uniform manifold approximation and projection

(UMAP) plots. Each cluster’s representative gene markers were

identified using the FindAllMarkers() function.

To combine our scRNA-seq sample with the three previously

published abdominal epidermis samples (Cheng et al, 2018a; Data

ref: Cheng et al, 2018b), we performed sample integration following

Seurat‘s standard protocol (Stuart et al, 2019). First, gene expres-

sion in each cell was normalized using a log-normalization of the

Unique Molecular Identifier (UMI) counts for each sample indepen-

dently. Also, the 2,000 most variable genes per sample were identi-

fied. These features were then used to find common anchors using

FindIntegrationAnchors(), with default parameters and 30 canonical

correlation analysis (CCA) dimensions. Final integration was subse-

quently achieved using these anchors in IntegrateData(), with 30

CCA dimensions and default parameters.

Unsupervised clustering of the integrated data was performed

using 30 PCA dimensions and 0.4 resolution, which resulted in 13

cell clusters that were visualized by UMAP projection. Cell-type

identity was established comparing the most representative genes

found by FindAllMarkers() and literature-based gene markers.

RNA velocity analysis

Spliced and unspliced reads from the in-house scRNA-seq dataset

were obtained by running the command line interface of velocyto

(version 0.17) (la Manno et al, 2018). For this analysis, we only

used the in-house dataset, as the not preprocessed raw data were

not available for the rest of the samples. Data were then prepro-

cessed by normalization, log-transformation, and identification of

highly variable genes, before calculating the RNA velocity. Addition-

ally, melanocytes and immune cells were removed from the dataset,

resulting in 7,068 keratinocytes that were used for further analysis.

RNA velocity was then estimated by the generalized dynamical

model of scVelo (version 0.2.3) (Bergen et al, 2020), using the

recover_dynamics() function with 100 maximum iterations. Lastly,

RNA velocities were projected and visualized onto the UMAP

embedding calculated by Seurat. The latent time was calculated

using the default values and manually assigning the root cells to

cluster Basal 1, based on the RNA velocity results.

DNA methylation analysis

DNA methylation data from epidermal tumors were obtained using

Infinium MethylationEPIC BeadChips (Illumina), according to the

manufacturer’s protocols, at the Genomics and Proteomics Core

Facility of the German Cancer Research Center (DKFZ, Heidelberg,
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Germany). For FFPE samples, a special restoration protocol was

applied during sample preparation to ensure good sequencing qual-

ity, following the manufacturer’s instructions.

Data processing and analysis were performed using the R Biocon-

ductor package minfi (version 1.34.0) (Aryee et al, 2014), as previ-

ously described (Rodr�ıguez-Paredes et al, 2018a). Briefly, raw

sequencing data were preprocessed by filtering out probes located in

sex chromosomes as well as low-detected, self-hybridizing, and SNP-

associated CpGs. Data normalization was performed using the func-

tion preprocessFunnorm(). Methylation levels for each individual CpG

were displayed as b values, which are calculated using the ratio of

methylated and unmethylated intensities per locus (b = methylated/

(methylated + unmethylated + 100)). Detection of differentially

methylated probes (DMPs) was carried out by fitting a linear model

and using an empirical Bayes method for statistical testing. Multiple

testing was corrected using the Benjamini-Hochberg method, and

DMPs were filtered by significance threshold (P-value < 0.05, F-test).

Gene Ontology analysis using differentially methylated probes

was performed using the R package methylGSA (version 1.6.1) (Ren

& Kuan, 2019). As promoters, we used CpG probes corresponding to

the TSS1500, TSS200, 1stExon, and 50UTR locations obtained from

the UCSC reference group of the Illumina annotation, contained in

the IlluminaHumanMethylationEPICanno.ilm10b4.hg19 R package

(Hansen, 2017).

Mitotic age and stem cell division rates (SCDR) were calculated

using the publicly available epiTOC2 R Script with default para-

meters (Teschendorff, 2020).

DNA methylation-based stratification of KC samples

CpG probes located at the set of differentially accessible regions

between undifferentiated and differentiated keratinocytes identified

by scATAC-seq and contained in the Infinium MethylationEPIC were

identified (n = 4,351). The number of CpG probes detected in peaks

from undifferentiated keratinocytes was significantly higher (2,925

probes) than in peaks from differentiated keratinocytes (1,426

probes). This was most likely due to the fact that peaks in undiffer-

entiated keratinocytes cover higher DNA sequences in general than

those in differentiated keratinocytes. Furthermore, peaks in differen-

tiated keratinocytes are enriched for enhancers, usually associated

with intergenic regions, which are underrepresented in EPIC arrays.

Then, methylation values for CpG probes located in the same region

were averaged for each sample. Tumor stratification was performed by

hierarchical clustering using complete-linkage and Euclidean distances.

Clustering was then visualized as heatmaps or dendrograms.

We used healthy epidermis methylation as a control as it mostly

represents the methylome of terminally differentiated keratinocytes.

Thus, we combined each previously published dataset with the 12

healthy epidermis samples from our cohort. Raw methylation data

were not available for the dataset published in AL Eitan et al., so we

used processed mean b values per group as provided in the original

publication (Al-Eitan et al, 2020). Stratification of these datasets

was performed as described above.

Tn5 activity assessment and transposome assembly

For the sci-MET experiment, a homemade Tn5 transposase pro-

vided by the Protein Expression and Purification Core Facility at

the European Molecular Biology Laboratory (EMBL; Heidelberg,

Germany) was used, and its activity was assessed as follows. First,

forward linker oligonucleotides (FC121-1030 and FC121-1031) and

the reverse linker Tn5MERev, obtained from (Picelli et al, 2014),

were resuspended at 100 lM in EB Buffer (Qiagen). Each forward

linker was then combined with the reverse oligo at a 1:1 ratio and

subsequently annealed in a thermocycler (95°C for 5 min, cool-

down to 65°C, 65°C for 5 min, cool-down to 4°C). Cool-down

steps were performed at a �0.1°C/s rate. Next, transposomes were

assembled by adding 0.5 ll of each annealed linker to 10 ll of

the Tn5 stock, followed by an incubation at 23°C for 1 h in a

thermocycler.

After assembly, transposomes were diluted in 50% glycerol at

different concentrations to assess the proper working concentration.

Tagmentation was performed in a 5 ll reaction containing 2.5 ll of
2× Tagmentation Buffer (20 mM Tris–HCl pH 7.5, 20 mM MgCl2,
50% DMF), 1.25 ll of the diluted Tn5, and 150 pg of cDNA as

input. Samples were incubated at 55°C for 3 min and subsequently

cooled down to 10°C. Then, reactions were stopped by adding

1.25 ll of 0.2% SDS followed by a 5 min incubation at room tem-

perature. Tagmented cDNA amplification was directly carried out by

adding 10 ll of the following PCR mixture: 6.75 ll of KAPA HiFi

HotStart ReadyMix (Roche), 0.75 ll of DMSO, 1.25 ll of 10 lM Illu-

mina i7 adapter (50-CAAGCAGAAGACGGCATACGAGATGTCTCGT
GGGCTCGG), and 1.25 ll of 10 lM Illumina i5 adapter (50- AA

TGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTC). The

amplification reaction was performed by an incubation for 3 min at

72°C and 30 s at 95°C, followed by 12 cycles of 20 s at 98°C, 15 s

at 58°C and 30 s at 72°C, ending with a final incubation of 30 s at

72°C.

Amplified DNA was then cleaned-up using AMPureXP Beads

(Beckman Coulter) at 1× volume. Samples were incubated for

5 min at room temperature and then placed in a magnetic rack

where beads were washed in 80% EtOH. Lastly, DNA was eluted

in 10 ll of H2O. The Tn5 activity was assessed by checking DNA

quantification and fragment size distribution using the Qubit

dsDNA HS Assay Kit (Life Technologies) and D5000 ScreenTapes

(Agilent Technologies), respectively. The 1:50 dilution was found

to provide the highest yield with an adequate fragment size distri-

bution for subsequent sequencing, so it was finally used for the

sci-MET experiment.

To assemble the sci-MET transposomes, the 96 unique Cytosine-

depleted linkers and the reverse complement primer described in

Mulqueen et al (2018) were resuspended at 100 lM in EB buffer

(Qiagen) and combined at a 1:1 ratio. Linkers were then annealed

as described above and diluted at 1:50 in EB Buffer (Qiagen). The

Tn5 stock transposase was also diluted at 1:50 in 50% glycerol.

Then, transposomes were assembled by adding one volume of the

diluted linkers to 10 volumes of the diluted transposase (i.e., 1 ll of
diluted linker to 10 ll of diluted Tn5), followed by an incubation for

1 h at 23°C and room temperature. Assembled transposomes were

stored at �20°C.

Single-cell combinatorial indexing for methylation analysis
(sci-MET)

A healthy whole human skin biopsy was obtained from the ilioin-

guinal region of a 62 y/o male donor of fair-skin type. The sample
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was immersed in MACS Tissue Storage solution (Miltenyi Biotec)

immediately after resection and was kept on ice until further pro-

cessing. The single-cell suspension from the epidermis was obtained

using the Epidermis Dissociation Kit, human (Miltenyi Biotec), fol-

lowing the manufacturer’s instructions. We then followed the previ-

ously published sci-MET protocol (Mulqueen et al, 2018), with

important modifications. Hence, cells were then fixed by incubation

with 1.5% formaldehyde (without methanol) in 1 ml of PBS for

10 min, with gentle shaking. The reaction was stopped by adding

80 ll of 2.5 M glycine followed by 5 min incubation on ice. The

sample was centrifuged at 550 g for 10 min at 4°C to recover fixed

cells.

Nuclear isolation was performed using the lysis buffer recipe

described in (Wysocka et al, 2001) and as described for the

single-cell multi-omics dataset. Recovered nuclei were subse-

quently subjected to nucleosome depletion. To do so, fixed nuclei

were resuspended in 800 ll of 1× NEBuffer 2.1 (New England

Biolabs) supplemented with 0.3% SDS, and incubated for 30 min

at 42°C with intense shaking. Then, 200 ll of 10% Triton X-100

was added to the sample, which was incubated for 30 min at

42°C with intense shaking. Nuclei were then centrifuged at 500 g

for 5 min at 4°C and filtered through a 40-lm cell strainer. The

nuclear stain TO-PROTM-3 Iodide (1:10,000; Invitrogen) was then

added, and we subsequently proceeded to fluorescence-activated

nuclei sorting (FANS).

In a first sorting step, we sorted 1,000 nuclei/well into a 96-

well plate containing 5 ll of 2× Tagmentation Buffer (20 mM

Tris–HCl pH 7.5, 20 mM MgCl2, 140 lM PitStop 2 (Sigma-

Aldrich), 20% DMF) and 5 ll of nuclear isolation buffer (10 mM

Tris–HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-

630 (Sigma-Aldrich), 1× protease inhibitors cocktail). Next, 4 ll
of a uniquely indexed transposome were added to each well, and

the plate was incubated at 55°C for 30 min in a thermocycler for

nuclear tagmentation. After this step, nuclei from the 96 wells

were pooled, mixed, and filtered through a 40-lm cell strainer

again. Fresh TO-PROTM-3 Iodide (1:10,000; Invitrogen) was added

for the second sorting step.

In this second sorting, we sorted 22 nuclei/well in a full 96-

well plate containing 5 ll of Zymo Digestion Reagent (2.5 ll of

Zymo M-Digestion Buffer, 2.25 ll of nuclease-free H2O, and

0.25 ll of Proteinase K), following the manufacturer’s instructions

of the EZ-96 DNA Methylation-Direct MagPrep Kit (Zymo

Research). Only 10 nuclei were sorted in three wells, where

35 pg of a barcoded-lambda DNA were added as spike-in con-

trols. The plate was incubated for 4 h at 50°C for nuclear diges-

tion. Bisulfite conversion was then performed by adding 32.5 ll
of Zymo CT Conversion Reagent in each well and incubating the

plate according to the manufacturer’s instructions (98°C for 8 min

and 64°C for 3.5 h).

After conversion, bisulfite-converted DNA was desulphonated,

washed, and recovered following the manufacturer’s instructions.

In brief, 5 ll of Zymo M-Binding Beads diluted in 150 ll of Zymo

M-Binding Buffer was added to each well, and the plate was

incubated for 5 min at room temperature for allowing the DNA to

attach to the beads. Beads were then washed with 80% ethanol,

resuspended in 50 ll of Zymo M-Desulphonation Buffer, and

incubated at room temperature for 15 min. Beads were then

washed again in 80% ethanol, and DNA was subsequently eluted

in 25 ll of Zymo M-Elution Buffer. Eluted DNA was transferred

to a 96-well plate containing 16 ll of nuclease-free H2O, 5 ll of

10× NEBuffer 2.1 (New England Biolabs), 2 ll of 10 mM dNTP

mix, and 2 ll of 9-nucleotide random primers (Mulqueen et al,

2018). DNA was subjected to four rounds of linear amplification

in a thermocycler by incubating at 95°C for 45 s to achieve denat-

uration. The plate was quickly placed on ice, and 10 U of Klenow

(30-50 exo-) polymerase (Biozym Scientific) was added per well.

The plate was placed again in the thermocycler for incubation at

4°C for 5 min, followed by incubation at 37°C for 90 min. Impor-

tantly, the temperature was increased to 37°C by 1°C/15 s. In

each amplification round, fresh reagents were added to each well

(1.25 ll of 4× NEBuffer 2.1(New England Biolabs), 1 ll of 10 lM
dNTP mix, and 1 ll of 9-nucleotide random primers (Mulqueen

et al, 2018)) as well as 10 U of Klenow (3’-5’ exo-) polymerase

(Biozym Scientific).

Amplified material was subsequently purified using AMPureXP

beads (Beckman Coulter) at a 1.1× volume. DNA was attached to

the beads, washed with 80% ethanol, and eluted in 21 ll of EB Buf-

fer (Qiagen). Eluted DNA was added to a 96-well plate containing

25 ll of 2× KAPA HiFi HotStart ReadyMix (Roche), 2 ll of 10 lM i7

index PCR primer, and 2 ll of i5 index PCR primer. Index PCR reac-

tion was performed in a thermocycler by incubating at 95°C for

2 min, then performing 18 cycles at 94°C for 80 s and, finally, incu-

bating at 65°C for 30 s and at 72°C for 30 s. The number of cycles

was determined by a qPCR reaction performed with additional wells

and could be up to 21 cycles. Libraries were then pooled to achieve

a particular cell number and purified using a double-sided size

selection step with AMPureXP Beads (0.6×–0.8×; Beckman Coulter).

The library was subsequently quantified with Qubit dsDNA HS

Assay Kit (Invitrogen), and fragment size was assessed using D5000

or D1000 ScreenTapes (Agilent Technologies). Paired-end (150 bp)

sequencing (100 cycles) was finally performed with a NextSeq550

High-Output (Illumina) system following a custom-made recipe

(Read 1: 100 imaged cycles; Index Read 1: 10 imaged cycles; Index

Read 2: 11 imaged cycles, 16 dark cycles and 10 imaged cycles).

Primer sequences for library preparation and sequencing are shown

in Appendix Table S1.

sci-MET data analysis

All single cells displaying a minimum of 100,000 sequencing reads

were kept for further analysis, which resulted in 554 cells. Reads

corresponding to these cells were trimmed by removing stretches of

bases with a quality score of < 30 at the end of the reads. Trimmed

reads were mapped using bsmap (Xi & Li, 2009). As a reference

sequence for the bisulfite mapping, we used the hg19 assembly of

the human genome. In order to achieve comparability with the

binary nature of single-cell methylation values, the b values of bulk

methylomes were binarized by setting every value ≥ 0.5 to 1 and

every value < 0.5 to 0. Methylation data of all 554 single cells were

then combined with the binarized data of the 67 bulk DNA methy-

lomes from AK, cSCC and healthy epidermal samples, and a 2-

dimensional multidimensional scaling (MDS) analysis was per-

formed. For the ChromHMM analysis, we used the Chromatin State

Segmentation by HMM from ENCODE/Broad for epidermal ker-

atinocytes (NHEK) (Ernst et al, 2011), provided by the UCSC

genome server (http://genome.ucsc.edu). Methylation values of all

14 of 18 Molecular Systems Biology 18: e11073 | 2022 � 2022 The Authors

Molecular Systems Biology Llorenç Sol�e-Boldo et al

http://genome.ucsc.edu


CpGs located within each of the 15 types of genomic segments were

averaged for each sci-MET cell-type and EPIC tumor subclass.

Bulk DNA methylation data deconvolution

Cell fraction estimation in bulk epidermal tumor methylation data

was performed using the EpiSCORE R package (version 0.9.2)

(Teschendorff et al, 2020). We used 15,000 keratinocytes from the

integrated scRNA-seq dataset as the input to generate a gene expres-

sion reference matrix with a maximum marker specificity score

(MSS) of 3. Only keratinocyte populations involved in the differenti-

ation trajectory defined by RNA velocity and also present in the

single-cell multi-omics dataset were included in this analysis. The

gene expression reference matrix comprised 784 marker genes and

was subsequently validated on a downsampled dataset containing

10,000 keratinocytes, showing an overall cell prediction accuracy of

74%. EpiSCORE then compared the expression-based reference gene

matrix to two available datasets containing paired gene expression

and DNA methylation data (Epigenomics Roadmap and SCM2) to

build an imputed reference DNA methylation matrix for human epi-

dermis, which contained 74 genes. This imputed matrix was then

used to estimate cell fractions in our bulk epidermal tumor methyla-

tion datasets.

Immunofluorescence stainings

Immunofluorescence stainings were performed with 4 lm sections

obtained from nine cSCC and one in situ cSCC (BD) previously

stratified based on their cells-of-origin, corresponding to five

keratinocyte-like and five EpSC-like tumors. Briefly, sections were

deparaffinized in xylene and rehydrated in a gradient of ethanol and

distilled water prior to heat-induced antigen retrieval. To this end,

slides were incubated for 30 min at 95°C in a water bath in 10 mM

citrate buffer (pH 6.0) containing 0.05% Tween-20. Subsequently,

non-specific antibody binding was blocked by incubation with 10%

normal goat serum for 1 h, followed by overnight incubation with

primary antibodies diluted in blocking solution at 4°C. Primary anti-

bodies used were rabbit anti-ZEB2 (Sigma-Aldrich, HPA003456,

1:100) and mouse anti-TP63 (Abcam, ab735, 1:100). After washing

with PBS with 0.1% Tween-20, sections were then incubated with

corresponding Alexa Fluor-conjugated secondary antibodies (Life

Technologies) for 2 h at room temperature. Nuclear counterstaining

was performed with DAPI, and slides were mounted using ProLong

Gold Antifade Mountant (ThermoFisher). Images were taken with

an Olympus VS200 slide scanner system (Olympus) using a 40× oil

immersion lens and were further processed using the Fiji software

(Schindelin et al, 2012).

The percentage of ZEB2-positive tumor nuclei (TP63-positive)

was calculated in three different regions per sample, counting at

least 500 tumor cells per region. Statistical analysis was performed

using an unpaired two-sided t-test using each region as an indepen-

dent value.

Data availability

The datasets generated in this study are available from the following

databases:

• scMultiome, scRNA-seq and sci-MET: Gene Expression Omnibus

GSE207337 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE207337).

• Bulk DNA methylation data: ArrayExpress E-MTAB-11856 (https://

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11856)

Expanded View for this article is available online.
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Expanded View Figures
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Figure EV1. Unsupervised clustering of the integrated single-cell multi-omics dataset.

A–C Joint UMAP plot depicting both scATAC-seq and scRNA-seq data from 5,565 cells from sun-protected human epidermis (n = 2) after data integration. Coloring is
according to donor (A), unsupervised clustering based on gene expression (B), and cell-type annotation based on the reference scRNA-seq dataset (C).
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Figure EV2. Single-cell RNA sequencing analysis of the human epidermis.

A Uniform manifold approximation and projection (UMAP) plot depicting single-cell transcriptomes from healthy sun-protected human epidermis (n = 4). Each dot rep-
resents a single cell (n = 32,272). Colors depict the six archetypical keratinocyte populations described in the text, as well as other minority cell types (Cheng et al,
2018a; Data ref: Cheng et al, 2018b).

B Average expression of the top five gene markers defining each cell population projected on the UMAP plot. Red indicates maximum average gene expression, while
blue indicates low or no expression of a particular set of genes in log-normalized UMI counts.

C Left: RNA velocities calculated using the 7,068 keratinocytes from the in-house generated dataset of healthy human epidermis, projected onto the UMAP embedding.
Right: UMAP plot displaying the latent time calculated by scVelo.

▸Figure EV3. Cell-of-origin-based tumor stratification strategy can be expanded to other epidermal tumor entities.

A–E Heatmaps displaying unsupervised hierarchical clustering based on the methylation patterns at differentiated keratinocyte-specific peaks of (A) 102 epidermal
tumors and healthy controls; (B) Five sBCC samples from Sand et al (2019a), Data ref: Sand et al (2019b); (C) 12 averaged VV samples from Al-Eitan et al (2020) (D)
Five AK and 18 cSCC samples from Herv�as-Mar�ın et al (2019a), Data ref: Herv�as-Mar�ın et al (2019b); (E) Eight cSCC metastases and three primary metastatic cSCC,
always together with the 12 healthy samples from our cohort. Each row represents the average methylation value of all CpGs contained in a particular peak. Heat-
maps correspond to the dendrograms shown in Fig 5A–E. AK: actinic keratosis, BCC: basal cell carcinoma, BD: Bowen’s disease, cSCC: cutaneous squamous cell carci-
noma, sBCC: sclerodermiform basal cell carcinoma, SK: seborrheic keratosis, VV: verruca vulgaris.
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A B C

Figure EV4. cSCC and precursor lesions from the same cell-of-origin subclass display almost identical methylomes.

A Scatter plots of pairwise comparisons between AK, BD, and cSCC methylomes from the keratinocyte-like (upper) or EpSC-like (lower) subclass.
B Scatter plot comparing AK, BD, and cSCC methylomes from each cell-of-origin subclass as a unique entity.
C Top five enriched Gene Ontology (GO) terms using genes with differentially methylated promoter regions between AK/BD/cSCC samples from distinct cell-of-origin

subclasses.

Data information: In the scatter plots, significantly differentially methylated CpG probes (P-value < 0.05, F-test) are depicted in blue. AK: actinic keratosis, BD: Bowen’s
disease, cSCC: cutaneous squamous cell carcinoma, DMP: differentially methylated probes.
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