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Abstract 

Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, 
and other essential factors. The well-known vascular endothelial growth factor (VEGF) signaling is crucial for sprout‑
ing angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has 
become therapeutic targets in clinical practice. However, the survival benefits gained from targeting VEGF signal‑
ing have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the 
most recent findings and understanding on how solid tumors evade VEGF-targeted therapy, with a special focus on 
vessel co-option, vessel remodeling, and tumor cell-derived vasculature establishment. Vessel co-option may occur 
in tumors independently of sprouting angiogenesis, and sprouting angiogenesis is not always required for tumor 
growth. The differences between vessel-like structure and tubule-like structure formed by tumor cells are also intro‑
duced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only 
widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer 
growth and metastasis.
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Background
Normal vasculature that is perfectly balanced by pro- and 
anti-angiogenic molecules is composed of mature vessels 
with hierarchical distribution of arterioles, capillaries, 
and venules. Abnormal tumor vasculature typically lacks 
hierarchical structure and is composed of immature dif-
ferentiated and undifferentiated vessels with increased 
permeability [1, 2]. The undifferentiated vessels fre-
quently present with either collapsed or an absent lumen 
[3, 4]. Consequently, tumor vasculature is inefficient in 
carrying blood flow, resulting in a hypoxic tumor micro-
environment, although the intra-tumoral microvessel 
density is commonly increased in contrast to the non-
cancerous counterpart tissue.

The rationale of antiangiogenic therapy for solid tumors 
is founded on the fact that tumor growth and metasta-
sis depend on the establishment of tumor vasculature, in 
which vascular endothelial growth factor (VEGF) sign-
aling has been revealed to be one of the critical mecha-
nisms [2, 5, 6]. Even while more anti-angiogenic agents 
become available in clinical practice, the survival benefit 
of cancer patients received from anti-angiogenic ther-
apy remains limited [7–10], indicating the complexity of 
tumor angiogenesis and the necessity of targeting addi-
tional key components of tumor vasculature establish-
ment [3, 11].

When the concept of tumor vasculature normaliza-
tion was first introduced, it was believed that along with 
the pruning of the immature and undifferentiated vessels 
in a solid tumor, the remaining vasculature would also 
undergo shrinkage and be eventually unable to support 
tumor growth. Consequently, the tumor growth would be 
stalled and the tumor could be kept in dormancy [12, 13]. 
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In an experimental treatment model of glioma using bev-
acizumab, an antibody targeting VEGF, the tumor vas-
culature could be normalized by low-dose bevacizumab 
treatment; however, no shrinkage was observed in the 
remaining vessels [14]. In contrast, the remaining vessels 
undergo remodeling and enlarge in size, supporting the 
continuous growth of the tumor [14]. This study clearly 
reveals two facts: first, tumor vasculature normalization 
itself cannot prevent solid tumor growth; second, after 
normalization, the remaining “normalized” vessels can 
undergo further remodeling and become more efficient 
in providing blood flow to support tumor growth.

In the present article, we discuss the origin of the 
remaining vessels after vasculature normalization treat-
ment, as well as the alternative cellular origins of tumor 
vasculature, which are of great interest for improving the 
efficacy of antiangiogenic therapy.

Co‑opted vessels are prone to survival after tumor 
vasculature normalization
Vessels co-option, a procedure of hijacking the blood ves-
sels in surrounding normal tissue along with the invasion 
of a solid tumor, has been recognized as an important 
approach to establish tumor vasculature, especially in 
more aggressive tumors [2, 15]. Vessel co-option may 
occur in tumors independently of sprouting angiogene-
sis, and sprouting angiogenesis is not always required for 
tumor growth.

The co-opted vessels are usually supported by peri-
cytes from outside of the vessels. Pericytes are the sup-
porting cells that stabilize blood vessels by accelerating 
the metabolism of lysophosphatidic acid [16, 17], while 
promoting endothelial cell survival via induction of auto-
crine VEGF-A signaling [18].

In human colorectal cancer metastasized to the liver, 
following antiangiogenic therapy with bevacizumab, the 
remaining resistant vessels are supported by pericytes and 
are much larger in diameter in comparison to capillary 
vessels, excluding the possibility of newly induced blood 
vessels by the tumor [19]. In mouse xenograft models of 
human ovarian and esophageal cancers, tumor vasculature 
normalization with bevacizumab treatment results in the 
increase of vessel pericyte coverage [20]. In a genetically 
engineered mouse model of pancreatic neuroendocrine 
tumors, long-term treatment with a vascular endothelial 
growth factor receptor-2 blocking antibody will generate 
refractory tumors. Inside the refractory tumors, the abun-
dance of pericyte-covered co-opted vessels is increased 
[21]. In another experimental neuroblastoma model, per-
sistent vessel co-option is the main mechanism for the 
tumor to evade antiangiogenic therapy [22].

Accumulating evidence suggests that the co-opted 
vessels can better survive after tumor vasculature 

normalization, and vessel co-option is an important 
approach of a solid tumor to evade antiangiogenic ther-
apy [23].

Vessel co‑option accompanies vessel remodeling
Tumor-induced vessel remodeling provides better sup-
port for primary tumor growth by providing more blood 
flow [24]. During the natural expansion process of a 
solid tumor in the primary lesion [15] or in the meta-
static lymph node [25], vessel remodeling always accom-
panies vessel co-option, as the co-opted vessel lumen 
enlarges prior to, and after co-option. The co-opted ves-
sels undergo vessel remodeling in response to vascula-
ture normalization, in observations dating to more than 
a decade past [22].

Important alterations during vessel remodeling to bet-
ter support tumor growth include: (1) the tumor-induced 
extra-tumoral angiogenesis, more specifically, the gen-
eration of arterioles supported by multiple layers of peri-
cytes, where the latter are believed to prevent vascular 
permeability and oxygen/nutrient exchange between cir-
culation and normal tissue; (2) enlargement of the lumen 
space in the extra-tumoral vessels prior to vessel coop-
tion; (3) following co-option indicated by the integra-
tion of the co-opted vessels and tumor vasculature along 
with the expansion of the tumor, the layers of pericytes 
become fewer, and eventually disappear, suggesting more 
feasibility of the oxygen/nutrient exchange between cir-
culation and tumor tissue [15].

Vessel remodeling inside metastatic lymph nodes has 
been recognized in the high endothelial venules (HEVs) 
[25, 26]. HEVs belong to a special type of vessel only 
residing in lymphoid tissues, except the spleen. The 
normal function of HEVs is to maintain immune func-
tion by guiding the extravasation of naïve and central 
memory T cells from circulation to lymphoid tissue [27]. 
The key molecule for inducing lymphocytes extravassa-
tion is peripheral node addressin (PNAD) expressed by 
HEV endothelial cells. l-selectin is the homing recep-
tor expressed on the cellular membrane of lymphocytes, 
which can recognize PNAD and induce localization and 
extravasation of the lymphocytes.

In the lymph node draining a solid tumor, the lack of 
conventional sprouting angiogenesis is accompanied by 
treatment resistance against bevacizumab [28]. Alter-
natively, dramatic remodeling of HEVs in the sentinel 
lymph node can be observed with larger lumen space, 
thinner wall, and more red blood cells inside the lumen 
compared with other non-sentinel lymph nodes, and all 
these changes can be induced by the primary tumor even 
before metastasis [25, 26]. After the arrival of metastatic 
cancer cells, the remodeled HEVs can be further co-
opted into tumor vasculature along with the expansion 
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of the tumor nests occupying the whole lymph node. The 
co-opted HEVs further undergo differentiation by losing 
their immunological marker PNAD, suggesting that fol-
lowing vessel co-option, the function of HEV has been 
switched from immune to carrying blood flow to better 
support the growing of metastatic tumor in the lymph 
node [25, 26]. In patients with squamous cell carcinoma 
of the tongue, increasing number of remodeled HEVs 
in the cervical lymph nodes associates with lymph node 
metastasis and poor patient survival [29]. Pioneering 
exploration on the underlying molecular mechanisms has 
revealed that bone morphogenetic protein-4 (BMP-4) is a 
negative regulator of HEV remodeling in the lymph node 
[30].

In summary, vessel co-option is commonly accompa-
nied by vessel remodeling, which aims to provide more 
blood flow for tumor progression.

Tumor cell‑derived vasculature establishment
The capability of cancer cells to integrate into tumor 
endothelium, with or without the participation of 
endothelial cells to form a vessel-like network, has been 
observed for decades and termed as vasculogenic mim-
icry [31, 32]. Cancer stem cells are believed to be the 
culprit behind this phenomenon [33]. For example, glio-
blastoma stem-like cells have been found to be able to 
form tumor vasculature via endothelial differentiation 
[34]. Moreover, the cancer cell-originated vasculature 
has been suggested as an important mechanism underly-
ing treatment resistance of anti-VEGF therapy [35]. For 
example, in an ovarian cancer mouse model, treatment 
of bevacizumab can inhibit tumor growth but accelerate 
metastasis with the formation of vasculogenic mimicry 
[36].

The multipotentiality of cancer cells in transformation 
and trans-differentiation has been reported in numer-
ous studies [37–39]. In addition to forming vessel-like 
structure, cancer cells with stem cell properties can also 
form branched tubular structure under certain circum-
stances. For example, T-47D breast cancer cells can form 
duct-like structure after the activation of c-MET recep-
tor in  vitro [40]. LA7 rat breast cancer cells with stem 
cell properties can form branched duct-like structure 
expressing luminal (K18), alveolar (β-casein) and myoep-
ithelial (K14) markers [41]. Therefore, it is necessary to 
distinguish these two phenomena derived from cancer 
cells: vessel-like structure versus tubule-like (also known 
as duct-like) structure. Figure 1 illustrates the structural 
differences of these two morphological transformations 
of cancer cells.

We believe that the formation of vessel-like structures 
and tubule-like structures are two different directions 
of cancer cell trans-differentiation, and only vessel-like 

structures are related to the formation of tumor vascu-
lature. The underlying molecular mechanisms of trans-
differentiation from cancer cells to endothelial-like cells 
forming the vessel-like structure are of great interest, and 
there are ongoing studies focusing on this phenomenon.

The underlying molecular mechanisms of tumor-cell 
derived vasculature formation are far less illustrated. The 
αvβ5 integrin expressed in neuropilin 1-positive mela-
noma cells, which are highly aggressive cells, has been 
found to be responsible for vasculogenesis mimicry in 
melanoma [42]. This phenotype can be inhibited by cilen-
gitide, a potent inhibitor of αν integrins activation [42]. 
As an epithelial-mesenchymal transition (EMT) regula-
tor, zinc finger E-box binding homeobox 2 (ZEB2) can 
promote vasculogenic mimicry form by hepatocellular 
carcinoma cells [43].

Some other molecules, most of which are also 
expressed by cancer stem cells, have been found to be 
associated with vasculogenic tumor cells, including VE-
cadherin, Nodal, hypoxia-inducible factor-1α, Rounda-
bout-4, Sema4D, Ephrin-A1, Ephrin-B1, Ephrin-B2, 
EphA2, EphB2, EphB4, fibroblast growth factor 2, fibro-
blast growth factor receptor 1, CD133, Notch1, Nodal, 
Dll4, sonic hedgehog, Runx-1, ETV2, Mig-7, Twist-
related protein 1, TIE1, uPA, TIE2, hepatocyte growth 

Tubule-like structure Vessel-like structure
a b

Fig. 1  Illustration of the differences between a tumor cell-derived 
tubule-like structure and a vessel-like structure. a A cross section 
of a tubule-like structure showing multiple cuboidal cells forming 
a tubular structure. This kind of structure might be able to express 
different proteins in the apical membrane (red) and basolateral mem‑
brane (green). Polarization of nuclei (yellow) might be observed. b A 
longitudinal section of a vessel-like structure showing elongated cells 
with alternative staggered distribution of the nuclei, resulting in only 
one nucleus or no nucleus in any cross section. Notably, the rod-like 
structure of the nuclei indicates the trans-differentiation tendency 
from cancer cells to the cells forming blood vessel. Moreover, the ves‑
sel lumen (light blue) might be absent depending on different stages 
of development
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factor, matrix metalloproteinase 2 (MMP2), MMP9, 
and angiogenin [44, 45]. However, how these molecules 
orchestrate the phenotype of vasculogenic mimicry is 
mainly undetermined.

The close relationship between cancer stem cells and 
tumor cell-derived vasculature development suggests 
that targeting the stemness characteristics of cancer cells 
might be able to ultimately diminish the vasculature for-
mation by cancer cell trans-differentiation.

Vasculogenic mimicry and tumor metastasis
The close relationship between vasculogenic mimicry 
formation and metastasis has been repeatedly reported. 
For example, active caspase-3 simultaneously enhances 
the capacities of cellular motility and vascular mimicry 
formation of melanoma cells [46]. MicroRNA-124 (miR-
124) represses both vasculogenic mimicry and motility 
of cervical cancer cells [47]. However, most of the stud-
ies could not validate that the cells contributing to vas-
culogenic mimicry are the same cells that metastasize to 
distant organs.

In a recent study, a causal relationship between vas-
culogenic mimicry and metastasis is proposed [48]. 
In this study using breast cancer animal models, the 
metastatic populations within a heterogenous tumor 
demonstrate their ability of forming vasculogenic mim-
icry to ensure other metastatic cells travel into circula-
tion. The two identified proteins secreted by metastatic 
tumor cells, SERPINE2 and secretory leukocyte pro-
tease inhibitor (SLPI), are responsible for promoting 
vasculogenic mimicry. However, the tumor cells form-
ing vascular network are morphologically altered to 
be thin layer cells similar to normal endothelial cells. 
There is no evidence to show that these cells could 
be transformed back to active metastatic tumor cells. 
Therefore, it is more reasonable to speculate that the 
metastatic cancer cell populations have a potential to 
form vasculogenic mimicry by sacrificing a small por-
tion within the population and ensuring metastasis 
of the remaining cells; the cells forming vasculogenic 
mimicry are the ones most likely undergoing differen-
tiation. This orchestrating action is partially supported 
by the evidence that in metastasis of pancreatic cancer 
cells, multiple clones of cancer cells occur in different 
phases of metastasis, indicating the heterotypic inter-
actions between tumor subpopulations contributing 
to metastasis progression [49]. Our previous studies 
have also found that the low-metastatic cancer cells can 
be promoted to possess more aggressive behaviors by 
high-metastasis cancer cells via serglycin and interleu-
kin-8 (IL-8) signaling [50–52].

In conclusion, establishing tumor vasculature is one 
of multiple events during the remodeling of tumor 

microenvironment for promoting tumor cell survival, 
growth, and spread. This attempt could be highly organ-
ized and coordinated among multipotent tumor cells and 
other normal host cells and host tissues. The well-known 
VEGF signaling pathway is crucial for sprouting angio-
genesis from existing capillary endothelial cells as well 
as recruitment of circulating progenitor endothelial cells 
to tumor vasculature, which has become therapeutic tar-
gets in several cancer types. However, vessel co-option, 
remodeling of co-opted vessels, and forming vessel-like 
structure from tumor cells are some of the alternative 
approaches for a solid tumor to establish tumor vascu-
lature as well as possible resistance against anti-VEGF 
therapy. The exploration of the underlying mechanisms 
of these alternative angiogenic approaches would not 
only widen our knowledge of tumor angiogenesis but 
could also provide novel therapeutic targets for better 
controlling cancer growth and metastasis.
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