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Abstract

Breast cancer in young women is more aggressive with a poorer prognosis and overall survival compared to older women
diagnosed with the disease. Despite recent research, the underlying biology and molecular alterations that drive the
aggressive nature of breast tumors associated with breast cancer in young women have yet to be elucidated. In this study,
we performed transcriptomic profile and network analyses of breast tumors arising in Middle Eastern women to identify
age-specific gene signatures. Moreover, we studied molecular alterations associated with cancer progression in young
women using cross-species comparative genomics approach coupled with copy number alterations (CNA) associated with
breast cancers from independent studies. We identified 63 genes specific to tumors in young women that showed
alterations distinct from two age cohorts of older women. The network analyses revealed potential critical regulatory roles
for Myc, PI3K/Akt, NF-kB, and IL-1 in disease characteristics of breast tumors arising in young women. Cross-species
comparative genomics analysis of progression from pre-invasive ductal carcinoma in situ (DCIS) to invasive ductal carcinoma
(IDC) revealed 16 genes with concomitant genomic alterations, CCNB2, UBE2C, TOP2A, CEP55, TPX2, BIRC5, KIAA0101,
SHCBP1, UBE2T, PTTG1, NUSAP1, DEPDC1, HELLS, CCNB1, KIF4A, and RRM2, that may be involved in tumorigenesis and in the
processes of invasion and progression of disease. Array findings were validated using qRT-PCR, immunohistochemistry, and
extensive in silico analyses of independently performed microarray datasets. To our knowledge, this study provides the first
comprehensive genomic analysis of breast cancer in Middle Eastern women in age-specific cohorts and potential markers
for cancer progression in young women. Our data demonstrate that cancer appearing in young women contain distinct
biological characteristics and deregulated signaling pathways. Moreover, our integrative genomic and cross-species analysis
may provide robust biomarkers for the detection of disease progression in young women, and lead to more effective
treatment strategies.
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Introduction

Breast cancer is the most common type of cancer among

women worldwide with an estimated 1,300,000 new cases and

465,000 deaths annually [1]. Breast cancer is the major cause of

morbidity and mortality among females in Saudi Arabia [2].

Clinical observations indicate that 45% of all female breast cancers

in Saudi Arabia developed before the age of 45 years, compared to

9.6% in the United States of America [2,3]. Breast cancer

diagnosed in young women is more aggressive in nature with a

poorer prognosis and disease free survival compared to older

counterparts [4,5,6,7]. Indeed, it has been shown that survival in

younger women is significantly worse for all stages of breast cancer

in comparison to older women [8,9]. Although previous studies

have described young age is an independent predictor of poor

prognosis, the underlying biology driving the aggressive nature of

breast cancer arising in young women remains to be elucidated

[10,11,12,13].

Typically, the most common histologic type of breast cancer

initiates as a premalignant lesion known as atypical ductal
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hyperplasia (ADH), then progresses into the preinvasive stage

called ductal carcinoma in situ (DCIS), and culminates in invasive

ductal carcinoma (IDC) [14]. Though it is a multistep process

during which genetic alterations accumulate, molecular and

pathological evidence suggests that DCIS is a precursor to invasive

disease [15,16,17,18]. A genome-wide microarray-based gene

expression analysis would be expected to provide an opportunity

to discover genes specifically activated or inactivated during the

course of breast cancer progression. Despite recent research, the

mechanisms underlying tumorigenesis and progression of breast

cancer in young women is still not clear [19,20]. In particular, the

identification of ‘‘progression markers’’ is crucial for determining

which lesions are likely to become invasive.

A cross-species comparative genomics approach represents a

powerful strategy to identify target genes that may play a role in

tumor initiation and progression to malignancy and thus has great

therapeutic potential [21,22,23,24,25]. Previous studies have used

this approach successfully to understand the molecular pathogen-

esis of various cancers and disease progression [23,24,26,27]. The

rationale is that genomic aberrations and altered pathways

involved in oncogenesis are conserved by evolution across different

species [24,26,28], and a number of important driver mutations in

various cancers have been identified using comparative genomic

approaches [24,28,29]. For example, cross-species gene-expression

analysis of mouse and human data uncovered gene expression

signatures that demonstrate K-Ras oncogene activation in human

lung cancers [24]. In another example, Scott Lowe and colleagues

identified two oncogenes that are co-amplified and cooperate to

promote tumorigenesis by comparing gene amplifications in

mouse and human hepatocellular carcinomas [29].

There are areas of genomic instability reported in many

cancers, including breast cancer, and some regions commonly

exhibit either deletion or increased gene dosage, leading to

changes in DNA copy number (CN) [30,31,32,33]. Integrating

gene expression with CN data is an effective strategy for

interpreting DNA and RNA level anomalies in cancer to identify

genes involved with tumor initiation and progression [33,34,35].

Hence, integrating cross-species comparative analysis of human

and animal models of breast cancer progression with genomic

DNA copy number alterations may lead to robust biomarkers for

breast cancer disease progression [32,33,36,37,38].

In this study, we analyzed whole-genome mRNA expression

profiling from breast tumors and adjacent normal tissues from

Middle Eastern women (n = 113 samples) in age-specific cohorts to

characterize the underlying biology of aggressive breast cancers

appearing in young women. Moreover, we performed an

integrative and cross-species comparative genomics approach to

identify evolutionarily conserved marker genes for disease

progression in young women and validated its prognostic

potential.

Materials and Methods

Patients and Samples
In this study, we focused on breast cancer patients diagnosed

with infiltrating ductal carcinoma (IDC) and ductal carcinoma in

situ (DCIS). Breast cancer samples were collected from primary

tumors of 76 patients who sought treatment and underwent

surgery (breast conservation surgery or total mastectomy) at the

King Faisal Specialist Hospital and Research Center. Signed

informed consent was obtained from all patients. On excision of

tissues by a surgeon, an anatomic pathologist obtained a sample of

the tumor tissue and adjacent normal breast tissue from the same

breast having the tumor. 113 samples were collected from patients

and fully consented according to institutional review board

approved protocols (KFSHRC IRB Protocol). The study was

approved by the research ethics board at our institution (RAC#
2031091). Fresh surgical samples including tumors and adjacent

disease free tissues were placed in RNAlaterTM (Ambion, Inc) and

stored at 220uC after micro dissection had been performed for

pathological confirmation. All normal breast tissues were con-

firmed by the pathologist to have normal morphology before the

results were analyzed. Whenever possible depending on the

quantity of the surgical samples, a piece of every sample was also

snap frozen in liquid nitrogen and then stored at 280uC for

subsequent isolation of DNA and proteins. The majority of

samples received no prior chemotherapy; only two had chemo-

therapy and were excluded from further analysis.

Histological assessment of tumors and axillary lymph nodes

were done by using formalin-fixed, paraffin-embedded breast

cancer samples for HER2, estrogen receptor (ER), and progester-

one receptor (PR) status. ER status was determined by immuno-

histochemistry and measured as a percentage and intensity of

positive nuclear staining. The estrogen and progesterone receptors

were stained with relevant specific antibodies (Novocastra, New-

castle upon Tyne, UK). For HER2 immunohistochemistry,

HercepTestTM (Dako Denmark A/S, Glostrup, Denmark) was

used with scores of 0 and 1+ considered negative and 2+ equivocal

and 3+ considered positive.

Cancers were categorized as luminal A (ER-positive and/or PR-

positive and HER2- and either histologic grade 1 or 2); luminal B

(ER-positive and/or PR-positive and HER2+ or ER-positive and/

or PR-positive, HER2- and grade 3); HER2 (ER-negative and PR-

negative and HER2+); and triple negative (ER-, PR-, and HER2-)

as defined previously [39]. Description of the clinicopathological

characteristics of patients and breast cancer subtypes for luminal

A, luminal B, HER2, and triple negative based on the histological

evaluations are shown in Table 1.

Array Hybridization
Total RNA was extracted from tumor and adjacent normal

tissue from patients with standard protocols. Sample handling,

cDNA synthesis, cRNA labeling and synthesis, hybridization,

washing, array (GeneChipH Human Genome U133Plus 2.0 Array,

Affymetrix Inc., Santa Clara, CA, USA) scanning, and all related

quality controls were performed according to the manufacturer’s

instructions. The Affymetrix GeneChip/GCOS software (Affyme-

trix Inc.) was used to calculate the raw expression value of each

gene from the scanned image. The total RNA quality was assessed

by the values of the 39–59 ratios for actin and glyceraldehyde- 3-

phosphate dehydrogenase (GAPDH). DChip [40,41] outlier

detection algorithm was used to identify outlier arrays. 104

samples/chips passed the above mentioned quality controls and

were used for further analyses. The CEL files were utilized for

further analysis using dChip [40,41], MEV [42,43], and PARTEK

Genomics Suite (PartekH software, Partek Inc., St. Louis, MO,

USA).

Microarray Analysis
Global expression profiling of samples from tumor, IDC

(n = 64) and DCIS (n = 7), and adjacent disease free tissues

(n = 33) were probed using Affymetrix’s GeneChipH Human

Genome U133 Plus 2.0 Arrays representing over 47,000

transcripts and variants using more than 54,000 probe sets.

The open source R/Bioconductor packages, (Fred Hutchinson

Cancer Research Center, Seattle, WA, USA) [44] were

employed to normalize the data by the GC Robust Multi-array

Average (GC-RMA) algorithm [45,46]. The GC-RMA takes
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into account the GC content of the probe sequences when

comparing the expression intensities of the different probe sets.

To determine significant differences in gene expression levels

among different age groups (young women (#45 years), 45 to

55 years (pre) and $55 years (elderly) cohorts), we performed a

multi-factor ANOVA including ER, PR, HER2, and grade

status as additional factors in a linear additive model, as

described previously [47]. We used tumor samples data with

complete pathological reports in this model (n = 67). Addition-

ally, we used all tumor and normal samples (n = 104), and

performed two-way ANOVA by taking age (young, pre, and

elderly), type (tumor or normal), as well as their interaction into

the model [47]. In this model, we compared transcriptomes of

the tumor tissue and normal tissue for each age group

separately. Significantly modulated genes were defined as those

with an absolute fold change .2.0 and adjusted p-value ,0.05.

Multiple hypothesis testing was controlled by applying the

Benjamini-Hochberg false discovery rate (FDR) correction.

Unsupervised two-dimensional hierarchical clustering using

Euclidean distance as well as Pearson’s correlation with average

linkage clustering was performed. Biological themes associated

with the differentially expressed genes was identified by using

DAVID Bioinformatics Resources [48], Expression Analysis

Systematic Explorer (EASE) [49], and Ingenuity Pathways

Analysis (IPA) 6.3 (Ingenuity Systems, Mountain View, CA).

Using these bioinformatics tools, we were able to gain greater

biological insights into activated or repressed functional

processes and altered pathways in the disease pathogenesis

compared to the listing of differentially expressed genes.

Categorical variables and differences in rates between groups

Table 1. Age-specific patients’ characteristics.

Characteristic All Patients No (%) Very young (#35) No (%) Young (35–45) No (%) Pre (45–55) No (%) Old ($55) No (%)

Type

IDC 64(90.1) 5(83.3) 24(85.7) 12 (92.3) 23(95.8)

DCIS 7(9.9) 1(16.7) 4(14.3) 1 (7.7) 1(4.2)

Normal 33 (100) 3(9.1) 15(45.5) 7(21.2) 8(24.8)

ER

positive 49 (69.0) 6(100.0) 15(53.6) 9(69.23) 19(79.2)

Negative 18 (25.4) 0(0) 10(35.7) 4(30.8) 4(16.7)

Missing 4 (5.6) 3(10.7) 1(4.2)

PR

positive 38(53.5) 5(83.3) 13(46.4) 7(53.9) 13(54.2)

Negative 29(40.9) 1(16.7) 12(42.9) 6(46.1) 10(41.7)

Missing 4(5.6) 3(10.7) 1(4.2)

Grade

1 3(4.2) 0(0) 0(0) 2(15.4) 1(4.2)

2 38(53.5) 5(83.3) 12(42.9) 7(53.9) 14(58.3)

3 24(33.8) 1(16.7) 12(42.9) 3(23.1) 8(33.3)

missing 6(8.5) 0(0) 4(14.3) 1(7.7) 1(4.2)

HER2

Positive 33(46.5) 4(66.7) 13(46.4) 6(46.2) 10(41.7)

Negative 34(47.9) 2(33.3) 12(42.9) 7(53.9) 13(54.2)

Missing 4(5.6) 3(10.7) 1(4.2)

Lymph Node

positive 38(53.5) 2(33.3) 13(46.4) 9(69.2) 14(58.3)

Negative 28(39.4) 3(50.0) 13(46.4) 3(23.1) 9(37.5)

Missing 5(7.0) 1(16.7) 2(7.1) 1(7.7) 1(4.2)

LIVI

seen 35(49.3) 4(66.7) 10(35.7) 8(61.5) 13(54.2)

absent 31(43.6) 2(33.3) 15(53.6) 4(30.8) 10(41.7)

missing 5(7.0) 0(0) 3(10.7) 1(7.7) 1(4.2)

Subtypes

Luminal A 24(33.8) 2(33.3) 7(25.0) 6(46.2) 9(37.5)

Luminal B 25(35.2) 4(66.7) 7(25.0) 3(23.1) 11(45.8)

HER2 14(19.7) 0(0) 8(28.6) 4(30.8) 2(8.3)

Triple negative 3(4.2) 0(0) 2(7.1) 0(0) 1(4.2)

Missing 5(7.0) 0(0) 4(14.3) 0(0) 1(4.2)

doi:10.1371/journal.pone.0063204.t001
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were analyzed using the x2 test. The Fisher exact test was used

when expected cell counts were less than 5 using the Monte

Carlo method as implemented in SAS. A P-value of ,0.05 was

considered significant. Statistical analyses were performed by

using SAS 9.2 (SAS Institute, Cary, NC), MATLAB (The

MathWorks), and PARTEK Genomics Suite softwares. All

microarray data reported here are MIAME compliant and have

been submitted to the NCBI Gene Expression Omnibus (GEO)

database (GSE29044), according to MIAME standards [50].

Independent Datasets
For cross-species analysis, the murine markers of disease

progression are taken from Kretschmer et al (Table S4 in [37],

GSE21444). Online analysis tools and databases developed by

Gyorff et al [51] containing gene expression data and survival

information from over 1800 breast cancer patients were

obtained and downloaded from Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo/). These were used to

assess the prognostic potential of our gene signature (details of

the datasets included in the database are given in the original

publication [51]). In addition, The Cancer Genome Atlas

(TCGA) data from breast invasive carcinoma (n = 536) and

matched normal (n = 63) (https://tcga-data.nci.nih.gov/tcga/),

and datasets from GSE7390 [52] and GSE12093 [53] through

the canEvolve web portal (www.canevolve.org/) were used for

independent validation analyses. The Miller et al. [54] dataset

(GSE3494) was also reanalyzed for validation of our gene

signature. The GeneSigDB database [55] was used to find the

overlap/overrepresentation of our gene signatures with previ-

ously published gene signatures for various cancers, including

breast cancer. Finally, multiple large genomic data sets with

DNA copy number alterations associated with breast cancer

were retrieved from the Gene Expression Omnibus database

through canEvolve (GSE7545, GSE16619, and GSE9154 data

sets) and cBio Cancer Genomics Portals [56] (TCGA, Nature

2012 data [30]) for integrative genomic analysis.

Functional Pathway and Network Analysis
Functional pathway, gene ontology and network analyses

were executed using Ingenuity Pathways Analysis (IPA) 6.3

(Ingenuity Systems, Mountain View, CA), a web-delivered

application that enables the discovery, visualization, and

exploration of molecular interaction networks in gene expression

data. The differentially expressed gene lists were mapped to

their corresponding gene objects in the Ingenuity pathway

knowledge base. These so-called focus genes were then used as

a starting point for generating biological networks. A score was

assigned to each network in the dataset to estimate the

relevance of the network to the uploaded gene list. This score

reflects the negative logarithm of the P that indicates the

likelihood of the focus genes in a network being found together

due to random chance. Using a 99% confidence level, scores of

$2 were considered significant. A right-tailed Fisher’s exact test

was used to calculate a p value determining the probability that

the biological function (or pathway) assigned to that data set is

explained by chance alone.

Realtime RT-PCR Experiments
Confirmatory realtime RT-PCR experiments were performed

using the ABI 7500 Sequence Detection System (Applied

Biosystems). 50 ng total RNA procured from the same microarray

study samples were transcribed into cDNA using a Sensicript Kit

(QIAGEN Inc., Valencia, CA, USA) under the following

conditions: 25uC for 10 min, 42uC for 2 hrs, and 70uC for

15 min in a total volume of 20 ml. Five differentially expressed

genes (ESR1, IL1RN, SEPP1, TIAM1, and SCD) were selected and

primers designed using Primer3 software. After primer optimiza-

tion, realtime PCR experiments were performed with 6 ml cDNA

using Quantitech SyBr Green Kit (QIAGEN), employing GAPDH

as the endogenous control gene. All reactions were conducted in

triplicates and the data was analyzed using the delta delta CT

method [57,58].

Immunohistochemistry
Validation of protein expression was done using immunohisto-

chemistry. Immunohistochemical staining was performed using

standard techniques. Monoclonal anti-TGF-a antibody (Calbio-

chem, clone 213-4.4, dilution 1:50), monoclonal anti PI3 kinase

P85 alpha antibody (Abcam, Cambridge, UK, clone ep380y,

dilution 1:20) and polyclonal anti IL1 Receptor I antibody

(Abcam, Cambridge, UK, Protein G purified, dilution 1:20) were

run manually. Slides were deparaffinized by routine techniques.

Antigen retrieval was done in Tris/EDTA buffer, pH 9 heated at

95uC in a microwave for 25 minutes. After blocking endogenous

peroxidase activity with a 3% aqueous H2O2 solution for 5

minutes, the sections were incubated with primary antibodies

overnight at 4uC. Labeling was detected with Envision Plus

Detection Kit (Dako, cat. No. K4001). Reaction was detected

either by DAB (3, 3-diaminobenzidine, sigma, cat. No. D5905-

100TAB) or by AEC (3- amino-9-ethylcarbozale, sigma, cat. No.

A-5754). The sections were counterstained with Harris hematox-

ylin (Acros Organics). Staining was visualized using the DAKO

Envision kit according to the instructions of the manufacturer

(DAKO, Carpinteria, CA).

Results

Global Expression Profiling in Different Age Cohorts
Genome-wide gene expression profiling provides a comprehen-

sive view of the transcriptional changes that occur during the

carcinogenic process and enables the understanding of biology

beyond what may be apparent from studies assessing only

clinicopathologic features. Here, we first analyzed the whole-

genome mRNA expression profile from tumors (n = 71) and

adjacent disease free tissues (n = 33) and compared tumor with the

normal tissue in each age cohort, young women (#45 years), 45 to

55 years (pre) and $55 years (elderly), separately. We identified

2632, 2029 and 2842 significantly dysregulated genes (up- or

down-regulated) present in tumors from young, pre and elderly

cohorts (adjusted p value ,5% and FC .2), respectively (Figure

S1A). To obtain deeper insight into tumor pathogenesis in each

age cohort, we performed gene ontology (GO) enrichment and

interaction network analyses by using Expression Analysis

Systematic Explorer (EASE) [49] and the Ingenuity knowledge

base. The network analysis indicated activation of MYC, NF-kB

and TGF-b signaling pathways in young, pre and elderly cohorts,

respectively (Figure S1B).

Genomic Signature Specific to Tumors Arising in Young
Women

We next compared the transcriptomes of tumors across three

age cohorts using a multi-factor ANOVA, controlling for ER, PR,

HER2, and grade of the tumors (n = 67). The ANOVA identified

567 genes that were significantly modulated among three age

groups (unadjusted p,0.01). The unsupervised principal compo-

nent analysis (PCA) using 567 genes separated samples according

to their age group, hence supporting the conclusion that there are

distinct gene expression changes associated with tumors that are
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dependent on the age of the patient (Figure 1A). We then analyzed

overrepresentation of any clinicopathologic or tumor subtype

among the age groups, and found no statistically significant

associations.

The gene signature specific to tumors in young women (#45

years) were obtained by overlapping gene lists. When comparing

two groups of samples to identify genes differentially expressed in a

given group, we used p-value and the fold change (FC) between

two groups as the cut-off criteria. As shown in Figure 1B, each

circle in the Venn diagram represents the differential expression

between two ‘‘age groups’’. This Venn diagram approach revealed

that 79 probes were common to both #45 vs 45–55 and #45 vs

.55 comparisons, and 77 probes (corresponding to 63 genes) were

specific to tumors in the young group of patients (Y) (shown in

pink, in Figure 1B, listed in Table 2) that have significantly higher

or lower expression in young women compared to their older

counterparts. The unsupervised two-dimensional hierarchical

clustering using 63 genes revealed clear patterns of gene

deregulation defining two main transcriptome clusters, one was

mainly composed of primarily younger women, and the other one

was composed primarily of older patients (Figure 1C). The

Microarray Literature-based Annotation (MILANO) database

[59] search indicated 98% of those 63 genes had a published

association with cancer. Moreover, we tested 63 young age-specific

gene signatures against the published gene signatures in Gene-

SigDB database [55], and found overrepresentation of our gene set

in over 500 gene signatures for various cancers, including breast

cancer (adjusted p-value ,0.05). The GO and functional analyses

revealed significant enrichment of categories, including carcino-

genesis, tissue development, cellular development, cellular growth

and proliferation, tumor morphology, and cell death (Figure 2A).

The network analysis indicated alterations in a number of cancer

related pathways, including p38 MAPK, PI3K/AKT, ERK/

MAPK and NF-kB signaling pathways, and a potential role of

TGFA, ErbB2, and IL-1/IL-1R in young women with breast

cancer (Figure 2B).

Figure 1. Identification of genes specific to young women with breast cancer. (A)The unsupervised principal component analysis (PCA)
separated samples according to their age group hence supporting the conclusion that there is a distinct gene expression changes associated with
the tumor in different age groups. The red spheres refer to young patients (#45; Young), green for 45–55 years (Pre), and blue for $55 years (Post).
(B) Venn diagram characterizing differential gene expression between and specific to different age groups. The red circle (left) shows the 804 probes
that are differentially expressed between Young and Post; 77 probes (corresponding to 63 genes) were found to be specific to tumor in young
women only (circled in light pink). (C) Unsupervised two-dimensional hierarchical clustering of all tumor samples based on their gene expression
similarity using young-age-specific 77 probes was performed using Pearson’s correlation with average linkage clustering. The hierarchical clustering
revealed clear pattern of genes deregulation defining two main transcriptome clusters, one was mainly composed primarily younger cases, and one
was composed of primarily elderly women. Samples are denoted in columns and genes are denoted in rows (gene symbols listed on the right). The
expression level of each gene across the samples is scaled to [24, 4] interval. These mapped expression levels are depicted using a color scale as
shown at the bottom of the figure, as such highly expressed genes are indicated in red, intermediate in black, and weakly expressed in green.
doi:10.1371/journal.pone.0063204.g001
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Genomic Signature Specific to Breast Cancers in Very
Young Woman

In Saudi Arabia, almost 50% of all the breast cancer patients

were reported to be less than 45 years old. Accordingly, we

performed additional analyses within the young women’s subset

comparing transcriptomes of women younger than 35 years (very

young) to two other age cohorts: 35 to 45 years and .45 years. We

identified genes that were specific to tumors in very young women

using the same methodology that was described previously. The

heat map clearly shows significantly higher or lower expression of

these genes in very young women compared to the two older age

cohorts (Figure S2). The enriched biological processes associated

with significantly dysregulated genes that are unique to very young

patients include, among others, mitotic cell cycle (p-value = 0.02),

morphogenesis (p-value = 0.01), cell proliferation (p-value = 0.03),

and death (p-value = 0.049). Similar to young women, network

analysis indicated alterations in p38 MAPK, PI3K/AKT and NF-

kB signaling pathways, and potentially important roles of IL1RN,

ESR1, and ErbB2 in very young women (Figure 2C and Figure

S2).

Cross-Species Comparative Genomics Analysis Coupled
with Genomic Alteration Data to Identify Genes that may
Play a Role in Cancer Development and Progression in
Young Women

Ductal carcinoma in situ (DCIS) is heterogeneous group of pre-

invasive tumors which may progress rapidly or slowly to invasive

cancer. Therefore, an ability to identify which DCIS lesions are

likely to progress to the potentially life threatening stage of invasive

ductal carcinoma (IDC) would greatly help in the treatment plan

and prognosis of the disease. To identify the putative genes

involved in disease progression in young women, we performed

genome-wide gene expression profiles characteristic of the

sequential disease stages (DCIS and IDC) of breast cancer and

compared them to age-matched normal controls in young women

(#45 years). We defined potential progression genes as genes that

are significantly altered in both DCIS and IDC as these likely

Figure 2. Functional and network analyses of genes specific to young women. (A) The gene ontology and functional analysis of young-
age-tumor specific genes (up/down-regulated) were performed using the Ingenuity knowledge base. X-axis indicates the significance (-log P value) of
the functional/pathway association that is dependent on the number of genes in a class as well as biologic relevance. The threshold line represents a
P value of 0.05. (B–C) Gene interaction network analyses of genes specific to young women and very young women, respectively. Top scoring gene
interaction networks with high relevancy scores (with highest relevance score) are shown. Green/red indicates decreased/increased mRNA expression
in younger patients compared to older counterparts. The color intensity is correlated with fold change. Straight lines are for direct gene to gene
interactions, dashed lines are for indirect ones (D) QRTPCR validation. Grey bars represent microarray hybridizations, and, and dark bars represent
values from qRT-PCR. Ratio of expression for each gene in older group (.45) to very young group (#35) is shown as fold change. A significant
correlation existed between the microarray and realtime RT-PCR results.
doi:10.1371/journal.pone.0063204.g002
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Table 2. Differentially expressed genes between young women and two older cohorts.

Gene Symbol Gene Title FCa FCb

Genes with significantly higher expression in the young cohort

FCRLB Fc receptor-like B 3.71 3.62

COBL cordon-bleu homolog (mouse) 3.37 2.91

GLRB glycine receptor, beta 2.74 2.18

ITGA6 integrin, alpha 6 2.64 2.40

AQP3 aquaporin 3 (Gill blood group) 2.45 3.25

DEFB1 defensin, beta 1 2.33 4.06

SERPINA5 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), membe 2.30 4.24

SLC26A3 solute carrier family 26, member 3 2.27 2.82

WNT4 wingless-type MMTV integration site family, member 4 2.21 2.77

IGSF1 immunoglobulin superfamily, member 1 2.14 2.15

TGFA transforming growth factor, alpha 2.08 2.75

PLCB4 phospholipase C, beta 4 2.06 2.17

ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma de 2.00 2.99

NDRG2 NDRG family member 2 1.96 2.07

MRPL30 mitochondrial ribosomal protein L30 1.93 1.54

AFF3/MLL AF4/FMR2 family, member 3///myeloid/lymphoid or mixed-lineage leukemia (tritho 1.93 2.19

ST6GALNAC2 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide 1.90 2.32

CCL28 chemokine (C-C motif) ligand 28 1.85 3.23

FAM150B family with sequence similarity 150, member B 1.84 1.88

FXYD3 FXYD domain containing ion transport regulator 3 1.80 1.99

TFAP2C transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma) 1.79 1.81

IRF6 interferon regulatory factor 6 1.77 1.88

COPA coatomer protein complex, subunit alpha 1.77 1.87

ITGB4 integrin, beta 4 1.71 1.83

STEAP4 STEAP family member 4 1.70 1.68

MAP7 microtubule-associated protein 7 1.69 1.53

SLC34A2 solute carrier family 34 (sodium phosphate), member 2 1.68 1.83

RELN reelin 1.68 1.80

C3orf52 chromosome 3 open reading frame 52 1.68 1.97

RDH13 Retinol dehydrogenase 13 (all-trans/9-cis) 1.67 1.56

ADORA1 adenosine A1 receptor 1.65 2.64

TSPAN12 tetraspanin 12 1.65 2.07

NIPSNAP1 nipsnap homolog 1 (C. elegans) 1.62 1.57

ELL3 elongation factor RNA polymerase II-like 3 1.61 2.12

SSFA2 sperm specific antigen 2 1.60 1.78

EPHA4 EPH receptor A4 1.58 2.22

GCAT glycine C-acetyltransferase (2-amino-3-ketobutyrate coenzyme A ligase) 1.58 1.95

FDFT1 farnesyl-diphosphate farnesyltransferase 1 1.55 1.62

CYB561 cytochrome b-561 1.55 1.59

Genes with significantly lower expression in the young cohort

DOK3 docking protein 3 21.52 21.54

TBX3 T-box 3 21.55 22.21

EMP3 epithelial membrane protein 3 21.58 21.64

BIC BIC transcript 21.61 21.75

SLC44A1 solute carrier family 44, member 1 21.61 21.72

C2 complement component 2 21.62 21.60

LOC441108 hypothetical gene supported by AK128882 21.63 21.66

NINJ2 ninjurin 2 21.64 22.04
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represent the earliest molecular steps in acquiring the capacity for

invasion [15,19,37]. We identified 1015 and 4873 genes differen-

tially expressed (up and down-regulated) in DCIS and IDC

compared to normal, respectively, and 697 probes (corresponding

to 484 unique genes) that had significantly altered expression in

both DCIS and IDC (Figure 3A).

We next performed cross-species comparative genomics analysis

to identify potential gene markers for DCIS progression to IDC

that are conserved in mouse and human. This approach has been

shown to lead to robust markers that may play a role in cancer

development and progression. Indeed, driver mutations that are

important in cancer have been identified using this strategy

[23,24,25,27,29,36]. We used gene expression data from Kretsch-

mer et al. [37] for murine markers of disease progression. The

comparison of our progression gene signature with the murine

markers (human orthologous) revealed 16 genes that were

conserved between mouse and human (p,0.001) (Table 3). GO

analyses using both EASE and IPA tools revealed that these genes

are mainly involved in biological processes such as cell cycle,

mitosis, embryonic development, DNA replication, growth and

apoptosis (Figure 3B). The top five significantly altered canonical

pathways include Cell cycle: G2/M DNA Checkpoint Regulation

(p value = 1.161025), Mitotic Roles of Polo-Like Kinase (p

value = 3.361025), ATM Signaling (p value = 1.561023), Cyclins

and cell cycle regulation (p value = 2.961023), and Sonic

hedgehog signaling (p value = 0.03). The network analysis

illustrated activated pathways as well as interactions of genes that

may potentially play a role in disease progression (Figure 3C). A

literature-based search of 16 genes using the MILANO database

[59] demonstrated the association of these genes with cancer

progression, tumor development and invasion in various cancers,

including breast cancer [22,37,60,61,62,63,64].

The presence of altered DNA CN may contribute to cancer

formation and progression and could include transcriptional

control mechanisms that locally impact gene expression levels

[31,33,65,66]. Integrating the gene expression data with CN

alterations may identify novel early breast cancer markers of

malignant transformation and progression [33,34,35]. Hence, we

integrated our cross-species conserved progression gene signature

with four independent studies of genome copy number alter-

ationsin human breast tumors (as detailed in ‘‘Materials and

Methods’’ section) and found that our gene signature has

concomitant DNA alterations [30,31,32] (Table 3, Figure 3D).

Comparison of DCIS and IDC Transcriptome in Young
Women

Comparison of expression profile characteristics between IDC

and DCIS in young women revealed dysregulation of 143 genes,

96% of which had significantly higher expression in DCIS

compared to those in IDC (Figure 3A). These genes were enriched

within functional categories including immune response, tissue

morphology, cellular growth and proliferation, cell death and

cellular movement. The network analysis highlighted alterations in

PI3K/Akt, NFkB, Jnk, and ERK pathways (Figure S3).

The Venn diagram approach resulted in 27 genes and 94

probes (corresponding to 72 genes) that were unique to IDC and

DCIS, respectively (Table S1, Figure S3). Interestingly, 85% of

genes specific to IDC were down-regulated compared to normal

controls. The IDC gene signature, including DUSP6, PTGDS,

IFNGR1, PIK3R1, FCER1A, P2RY14, PVRL2, SELP, and TFPI

were involved in cell death, immune response, cellular movement

and tissue development. The interaction network and pathway

analyses revealed alterations in G-Protein Coupled Receptor

Signaling, PI3K Signaling, and ERK/MAPK Signaling (Figure

S3). In contrast to IDC, 97% of DCIS specific genes were up-

regulated in DCIS vs normal, including genes such as CD22,

IGHM, MS4A1, BCR, RBL2, and MAP3K5 (Table S1 and Figure

S3).

In silico Independent Validations
To validate our results, we used four independently performed

microarray datasets as well as data available in the database

developed by Gyorffy et al. [51]. The first validation dataset was

generated by The Cancer Genome Atlas ((https://tcga-data.nci.

nih.gov/tcga/). This dataset is composed of samples from invasive

breast carcinoma patients (n = 536) and matched normal controls

(n = 63). Our cross-species conserved 16-progression gene signa-

ture was significantly up-regulated in patients compared to normal

Table 2. Cont.

Gene Symbol Gene Title FCa FCb

IRF1 interferon regulatory factor 1 21.64 21.70

SLAMF8 SLAM family member 8 21.66 21.87

RPL7 ribosomal protein L7 21.68 21.51

CXCR4 chemokine (C-X-C motif) receptor 4 21.70 21.76

PTGIS prostaglandin I2 (prostacyclin) synthase 21.72 22.08

TNFAIP8 tumor necrosis factor, alpha-induced protein 8 21.73 22.01

SLC2A14/SLC2A3 solute carrier family 2 (facilitated glucose transporter), member 14///solute 21.74 21.70

SLC2A3 solute carrier family 2 (facilitated glucose transporter), member 3 21.77 21.73

IGL@ immunoglobulin lambda locus 21.86 21.79

BCAT1 branched chain aminotransferase 1, cytosolic 21.97 22.30

FAM110B family with sequence similarity 110, member B 22.08 22.82

TMC5 transmembrane channel-like 5 22.15 22.70

IL1RN interleukin 1 receptor antagonist 22.34 21.82

aFC was calculated between the mean values of expression observed in young women (#45 years) and $55 years.
bFC was calculated between the mean values of expression observed in young and 45–55 years.
doi:10.1371/journal.pone.0063204.t002

Age-Specific Gene Signatures for Breast Tumors

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63204



controls (adjusted P-value ,1.19610232) and was sufficient to

cluster and differentiate samples as tumor versus normal controls

(data not shown).

We then assessed the prognostic capability of our genes on

independent microarray datasets involving large numbers of breast

cancer patients with survival data. We confirmed the prognostic

significance of all of our 16 genes for recurrence free survival

(RFS;n = 2324), overall survival (OS;n = 464), and distant metas-

tasis free survival (DMFS; n = 673) in datasets from Gyorffy et al.

[51]. The high expressions of these genes were significantly

associated with poor disease outcome (Table 3). Moreover, the

prognostic significance of 16 genes were tested on additional two

datasets of breast cancer patients from GSE7390 [52] and

GSE12093 [53]. The GSE7390 dataset consisted of 198 lymph

node-negative (N-) patients [52]. The purpose of this analysis was

to identify patients at high risk of early distant metastases. The

data from Zhang et al (GSE12093) [53] included 136 breast

cancers that were treated with tamoxifen to classify high-risk

patients that benefit from adjuvant tamoxifen therapy. We found

that thirteen of our genes were significantly associated with a high

risk patient group with distant metastases in at least two of the

datasets tested (Table 3). Six genes (RRM2, BIRC5, TOP2A,

NUSAP1, TPX2, and CCNB2) were of significant clinical

relevance in all the datasets tested, especially for identifying a

high risk patient group (Table 3, Figure S4).

As a further validation of our results, we re-analyzed an

independently performed microarray dataset from Miller et al

[54].This dataset was composed of 251 human breast cancer

samples, of which 31 were derived from young women, which

were used in this re-analysis. We evaluated the performance of the

16-progression gene signature on this dataset. Unsupervised

clustering was performed and we found that our gene signature

Figure 3. Progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) in young women. (A) The Venn diagram
illustrates that there are 1015 genes differentially expressed (up- or down-regulated) in DCIS compared to normal, whereas 4873 genes differentially
expressed in IDC compared to normal controls. 143 genes differentially regulated between IDC and DCIS (green circle). (B) The functional analysis of
16 potential progression genes identified through cross-species comparative genomics analysis. Y-axis indicates the significance (-log P value) of the
functional association that is dependent on the number of genes in a class as well as biologic relevance. The threshold line represents a P value of
0.05. (C) Gene interaction networks and pathways analyses of 16-gene progression signature. Green/red indicates decreased/increased mRNA
expression in IDC compared to normal controls. The color intensity is correlated with fold change. Straight lines are for direct gene to gene
interactions, dashed lines are for indirect ones. (D) Invasive breast tumor cases (from TCGA, Nature 2012 [30]) displayed altered amplification/
homozygous deletion/up-or down-regulation (RNA) or mutation in our 16-progression gene signature. Cases are denoted in columns, and genes in
rows (gene symbols are listed on the left).
doi:10.1371/journal.pone.0063204.g003
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was sufficient to separate patients into two clusters which differed

significantly by p53 mutation status (Figure S4). The cluster which

had high expression of these genes comprised nearly of all the p53

mutant tumors. Intriguingly, TP53 mutations in breast cancer are

associated with poor survival independent of other risk factors

[67].

The Microarray Literature-based Annotation (MILANO) data-

base [59] search revealed that all of the 16 genes were associated

with tumor progression, development, and invasiveness in various

cancers, including breast cancer [60,61,62,63]. Moreover, com-

paring the 16-gene signature with gene signatures available in the

GeneSigDB database [55] revealed statistically significant overlap

(P-value ,0.05, corrected for multiple testing) with over 400

published cancer gene signatures for various cancers, including

161 gene signatures for breast cancer. Furthermore, these genes

were also mapped to human genomic CN alterations associated

with invasive breast tumors in independent genomic studies,

implicating the involvement of these genes in malignant transfor-

mation and progression [33,34,35].

Validation of Microarray Data by qRT-PCR and
Immunohistochemistry

To confirm the microarray results by an independent method,

we selected five significantly dysregulated genes (ESR1, IL1RN,

SEPP1, TIAM1, and SCD) in very young (#35 years) and/or

young (#45 years) women compared to older cohorts and

validated the expression levels using qRT-PCR. A significant

correlation existed between the microarray and realtime RT-PCR

results, (Figure 2D and Figure S2 (Pearson’s r .0.76). This

correlation was stronger when comparing the older group (.45

years) to the very young women cohort (#35 years) (r = 0.99;

Figure 2D) versus comparing the young woman group (35–45

years) to the very young women cohort (r = 0.77; Figure S2).

Moreover, we performed immunohistochemical staining in

breast cancer patient samples using antibodies directed against

TGFA, IL1RN and PI3K. The TGFA positivity was significantly

associated with young age (Fisher’s exact test, p value = 0.02). In

fact, 90% of young patients (n = 10) tested positive, which is in

concordance with the microarray result. IL1RN was found to have

higher expression in older cohorts compared to young patients in

our microarray analysis, which was also validated by qRT-PCR

(Figure 2D). Indeed, five of the six samples that tested positive by

immunohistochemical staining were from older patients. Testing

for protein expression of PI3K revealed that it was not expressed

in all of the IDC cases (n = 10), but positive for DCIS, which is also

in concordance with the microarray result (Figure S3). Hence, the

immunohistochemistry verified the protein expression of the

selected candidates. Representative images of positively stained

tumors are shown in Figure 4A–C, respectively).

Discussion

Numerous studies have shown that younger women with breast

cancer have a poorer prognosis and disease free survival compared

to their older counterparts [4,5,6,7,13,68]. Indeed, young age has

been shown to be an independent predictor for poor prognosis

even after controlling for different histopathological features

[13,69]. However, the biology driving this disease process and

the molecular pathways that contribute to aggressive tumors in

younger women are largely unknown. Clinical observations

indicate that 45% of all female breast cancers in Saudi Arabia

appear in women younger than 45 years of age [2]. Hence, in this

study, we sought to understand the molecular underpinnings of

breast cancer in an age-specific manner in order to elucidate genes

and pathways giving rise to aggressive tumors in young women

using a transcriptomic approach. Furthermore, we explored

molecular alterations of breast cancer progression from DCIS to

potentially lethal stages of IDC in young women and identified

potential progression marker genes using cross-species compara-

tive genomics analysis.

We performed two different approaches to identify gene

signatures for different age cohorts of women with breast cancer.

In the first approach, we compared whole-genome mRNA

expression profile from tumors and disease free normal tissues in

three age cohorts of young women (#45 years), 45 to 55 years (pre)

and $55 years (elderly). The network analyses of significantly

dysregulated genes revealed the activation of MYC [68,70,71],

NF-kB [72] and TGF-b signaling [73,74] pathways in young, pre

and elderly cohorts, respectively. In the second approach, we

compared transcriptomes of tumors arising in young women to

those from two older counterparts, and identified 63 genes that

had distinct expression patterns in young women. By performing

these approaches, we gained important insights into pathways and

genes that were specifically altered in young women. The pathway

analysis indicated alterations in PI3K/Akt [75,76], MYC

[68,70,71] and NF-kB [72] signaling pathways, and potential

critical roles for TGFA [77,78], ErbB2 [7,79,80,81], and IL-1/IL-

1R [82,83,84] which may promote angiogenesis, tumor growth,

and metastasis and hence cause the aggressive phenotype observed

in young women. Previous reports have shown in experimental

models that Interleukin 1 (IL-1) promotes angiogenesis, tumor

Figure 4. Protein expression of selected genes by immunohistochemical staining in breast cancer patients’ samples using
antibodies directed against (B) TGFA, (C) IL1RN, and (D) PI3K. Representative images of positively stained tumors are shown (magnification,
6200).
doi:10.1371/journal.pone.0063204.g004
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growth, and metastasis [85], and its presence in some human

cancers is associated with aggressive tumor biology [86]. The

activation of IL-1/IL-1R though autocrine or paracrine mecha-

nisms can lead to a cascade of secondary tumorigenic cytokines,

which can subsequently contribute to angiogenesis, tumor-cell

proliferation and tumor invasion [82]. For example, these

inflammatory cytokines can regulate the proliferation of breast

cells through estrogen production by the steroid catalyzing

enzymes in breast tissues [87]. Interestingly, mutant alleles of

IL1RN were associated with shortened disease-free and overall

survival among Caucasian women with breast cancer [83].

Similarly, IL-1 expression has been shown to be an adverse

prognostic factor [84,88]. NF-kB signaling has been shown to be

activated in various tumors, including human breast cancers. Most

recently, it has been shown in mouse models that epithelial NF-kB

is an active contributor to tumor progression, inhibition of which

could have a significant therapeutic impact even at later stages of

mammary tumor progression [89]. Our data also indicated that

the levels of expression of TIAM1 and VANGL2 in very young

women are significantly lower than in their older counterparts.

The expression of TIAM1 has been shown to be associated with

increased invasiveness and progression of breast carcinomas [90].

Recently, it has been reported that VANGL2 promotes migration of

cells by a metalloproteinase-dependent invasion of extra cellular

matrix and therefore influences invasion and perhaps metastasis

[91].

Previous studies have shown that important driver mutations in

various cancers can be identified using comparative genomic

approaches [21,23,24,28,29]. Such studies suggest that the

conserved changes across species may be mechanistically essential

for cancer development and progression, and hence they may be

critical targets for therapeutic intervention [22,28,92]. Therefore,

focusing on differentially expressed genes derived from these

comparative approaches along with concomitant altered DNA

copy number changes may identify novel early breast cancer

markers of malignant transformation and progression [33,34,35].

One of the major contributions of this study is the identification of

16 potential disease progression marker genes, including CCNB2,

UBE2C, TPX2, KIF4A, BIRC5, NUSAP1, and RRM2, using

integrative and cross-species comparative genomics analysis.

These genes are related to mitosis, cell cycle, embryonic

development, DNA replication, cell division and proliferation.

Our findings are consistent with previously performed indepen-

dent studies of breast cancer progression [15,20,37]. However, the

novelty of our results is that genes identified in this study were

evolutionarily conserved across species, and along with genomic

alterations, and we provide evidence for the potential role of

previously reported genes as well as new genes in the progression

of young women’s breast cancer progression.

Testing our genes on independent microarray datasets using

samples from over 3000 breast cancer patients demonstrated

that high expression of these genes are significantly associated

with poor outcome. Intriguingly, our 16-gene signature sepa-

rated patients in Miller et. al.’s study into two clusters that

differed significantly in their TP53 mutation status. The cluster

which had high expression of these genes comprised nearly of

all the p53 mutant tumors. Previous studies have reported that

TP53 mutations in breast cancer are associated with poor

survival independent of other risk factors [67] and have a strong

association with hormone receptor negative, HER2+ and basal-

like subgroups [93,94]. Furthermore, a Microarray Literature-

based Annotation database [59] search indicated the involve-

ment of our 16 genes in tumor development, progression, and

invasiveness in various cancers, including breast cancer

[22,37,60,61,62,63,64]. Taken together, these observations

suggest that the 16-progression-gene signature has the potential

to classify tumors which may have invasive capacity and may be

crucial for determining which lesions are more likely to become

invasive.

Differential expression analysis of DCIS and IDC in young

women revealed significant down regulation of PI3K, DUSP6,

CD22, RB, BCR, MS4A1 (also known as CD20), and MAP3K5 as

well as alterations in PI3K/Akt, NFkB, Jnk, and ERK pathways.

The PI3K/Akt pathway is involved in regulation of cell

proliferation and implicated in carcinogenesis [95]. The network

analysis also indicated a central role of the retinoblastoma tumor

suppressor (RB), which may be potentially important in tumor

progression. This gene has been found to be functionally

inactivated in the majority of human cancers, and aberrant in

nearly half of breast cancers [96]. Deficiency in RB function

compromises cell cycle checkpoints, and contributes to aggressive

tumor proliferation [96]. Comparison of IDC and DCIS

transcriptomes resulted in 27 signature genes that are unique to

IDC, and differentiated from DCIS in young women. The

majority of these genes (85%) were repressed (or down-regulated)

compared to normal controls, except for few genes, such as

Poliovirus receptor-related 2 (PVRL2, CD112). PVRL2 has been

found to have enhanced expression in various tumors, and it has

been suggested to have a role in tumor invasion and migration

[97,98].

In summary, to our knowledge this study provides the first

comprehensive transcriptomic analysis of breast tumors that

characterizes the underlying biological mechanisms in an age-

specific manner in a cohort of Middle Eastern women, and

coupled with an integrative cross-species comparative genomics

approach has identified genes that could be potential biomarkers

for tumor progression in young women. Our global expression

profiling resulted in 63 genes that are specific to young women’s

breast tumors. The network analyses illustrated the interaction of

potential critical genes and the altered pathways associated with

breast cancer that specifically appear in young women. The

implication from these findings is that these genes may be

contributing to the aggressive tumor behavior often present in

these patients. Our results confirm previous studies as well as

provide additional insights into young age (#45 years) and very

young age (#35 years) specific oncogenic alterations that may be

promoting tumorigenesis. Our cross species data analyses coupled

with genomic copy number alterations may provide robust

biomarkers for the detection of disease progression in young

women and may lead to improved diagnosis and therapeutic

options.

Supporting Information

Figure S1 (A) Comparison of each age cohort, young women

(#45 years), 45 to 55 years (pre) and $55 years (post), with the

age-matched normal controls. We identified 2632, 2029 and 2842

significantly dysregulated genes (up or down) due to tumor in

young, pre and old cohorts respectively (adjusted p value ,5%

and FC .2). (B) Gene interaction networks analysis of

differentially expressed genes associated with tumor in each age

cohort. Green/red indicates decreased/increased mRNA expres-

sion in patients compared to age-matched normal controls. The

color intensity is correlated with fold change. Straight lines are for

direct gene to gene interactions, dashed lines are for indirect ones

(top scoring networks are shown).

(DOCX)
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Figure S2 (A) Heatmap of very young-specific tumor genes

across all tumor samples. Samples are denoted in columns and

genes are denoted in rows. The heatmap clearly shows that those

set of genes were significantly up- or down-regulated in tumor

samples from very young women. The expression level of each

gene across the samples is scaled to [-3, 3] interval. These mapped

expression levels are depicted using a color scale as shown at the

top of the figure, as such highly expressed genes are indicated in

red, intermediate in black, and weakly expressed in green. (B)

Validation of microarray data by realtime RT-PCR. Ratio of

expression for each gene in Young (age 35 to 45) to very young

(, = 35). Red bars represent microarray hybridizations, and, and

blue bars represent values from qRT-PCR. (C) Gene interaction

networks analysis of genes specific to very young women tumor.

Green/red indicates decreased/increased mRNA expression in

younger patients compared to older counterparts. The color

intensity is correlated with fold change. Straight lines are for direct

gene to gene interactions, dashed lines are for indirect ones.

(DOCX)

Figure S3 I. Comparison of the expression profile characteris-

tics of IDC and DCIS. (a) 143 genes have significantly different

levels of expression between DCIS compared to IDC. (b)

Functional enrichment analysis of genes whose expression altered

between DCIS and IDC. (c-d) The network analysis of 143 genes.

Green/red indicates decreased/increased mRNA expression in

IDC compared to normal controls. II. Network analyses of genes

specific to DCIS or IDC in young women (A) Venn diagram

illustrating 27 genes and 94 probes (corresponding to 72 genes)

that are specific to IDC and DCIS, respectively. (B) Network

analyses of genes specific to IDC. Green/red indicates decreased/

increased mRNA expression in IDC compared to normal controls.

(C) Network analyses of genes specific to DCIS (top two significant

networks shown). Green/red indicates decreased/increased

mRNA expression in DCIS compared to normal controls. The

color intensity is correlated with fold change. Straight lines are for

direct gene to gene interactions, dashed lines are for indirect ones.

DCIS: ductal carcinoma in situ; IDC: invasive ductal carcinoma.

( )

Figure S4 In Silico Independent Validation Analysis. (A)

Re-analyzed dataset from Miller et al [54] that was composed of

251 human tumor samples, of which 31 were derived from young

women, which was used in the re-analysis. Our progression

signature gene list was sufficient to separate patients in Miller et.

al.’s study into two clusters which differed significantly with the

p53 mutation status. The cluster which had high expression of

these genes comprised nearly of all the p53 mutant tumors. (B)

GSE7390 [52] and GSE12093 [53] datasets were used for

independent validation analyses. Genes, including RRM2, BIRC5,

TOP2A, NUSAP1, TPX2, and CCNB2 were of significant clinical

relevance for identifying patients at high risk patients groups (result

for RRM2 has been shown).

(DOCX)

Table S1 Gene signatures specific to malignant stage of
invasive ductal carcinoma (IDC) and pre-invasive ductal
carcinoma in situ (DCIS) in young women.
(DOCX)
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