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Abstract: Melanogenesis is the sequential process of melanin production by melanocytes in order to
protect the skin from harmful stimuli. Melanogenesis is disrupted by radiation exposure, which results
in the differentiation of melanocytes into melanoma. Recently, some methods have been developed to
maintain the instability of melanogenesis in melanoma by activating cellular autophagy. However,
there is still a lack of knowledge about how autophagy is involved in the regulation of melanogenesis
in melanoma cells. Here, we used rottlerin as an autophagy inducer to investigate the role of the cyclic
adenosine monophosphate (cAMP)/cAMP response element binding (CREB) signaling pathway in
melanogenesis. We found that rottlerin can inhibit melanin production by targeting cAMP, which is
initially activated by alpha-melanocyte stimulating hormone (α-MSH). Our findings suggest that
rottlerin has a pivotal role as an autophagy inducer in the regulation of melanogenesis by targeting
the cAMP/CREB signaling pathway.
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1. Introduction

Skin is the largest organ of the body and is divided into three layers—comprised of different
cell types—the epidermis, dermis, and hypodermis. The skin functions to protect and maintain
homeostasis in our body. One type of cell in the epidermis produces and stores a dark pigment
(melanin) and is called a melanocyte [1]. Melanogenesis is the complex processes, by which melanin
is produced [2]. In general, the function of melanin production is to protect the skin from harmful
stimuli such as UV rays, visible light, and infrared irradiation, by absorbing it and transferring it to
keratinocytes, which are surrounded by melanocytes, resulting in cell pigmentation and eventually,
protection against skin cancers [3,4]. However, abnormalities in melanin production and distribution
can result in hyperpigmentation by overregulating some dedicated cellular pathways involved in
melanogenesis, and transformation of melanocytes into malignant melanoma cells [5]. Therefore,
many methods to control the regulation of melanogenesis have been studied.

Recently, the relationship between melanogenesis and autophagy has become an interesting
target to regulate melanogenesis. Autophagy, known as a survival pathway with respect to
starvation, has a crucial role in the regulation of melanosome biogenesis by the activation of
MITF (microphthalmia-associated transcription factor) and melanosome removal [6]. Unfortunately,
the relationship between autophagy and melanogenesis regulation is not well understood.

Rottlerin (Figure 1) is a polyphenol compound abundant in a tropical plant found in India, Australia,
the Philippines, and some countries in Southeast Asia [7,8]. It is a known inducer of autophagy and cell
death by inhibiting the action of mTORC1 (mammalian target of rapamycin complex 1) through the
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AMPK/mTOR (adenosine monophosphate-activated protein kinase/mammalian target of rapamycin)
cascade [9]. Rottlerin plays various roles in the response of some cancer cells to autophagy [10,11].
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Figure 1. Chemical structure of rottlerin.

In this study, we examined how rottlerin—as an autophagy inducer—takes part in regulating
melanogenesis, particularly through the cyclic adenosine monophosphate (cAMP)/cAMP response
element binding (CREB) signaling pathway in melanoma cells. This study will provide further insight
into the relationship between autophagy and melanogenesis in melanoma.

2. Results

2.1. Effects of Rottlerin on Melanin Produced by Melanoma Cells

We examined the relationship between rottlerin concentrations and melanin production by B16-F10
melanoma cells, based on extracellular and intracellular melanin levels (Figure 2b,c, respectively).
Rottlerin concentrations of 5 and 10 µM inhibited melanin production when compared to the arbutin
positive control, without affecting cell viability (Figure 2a,b).
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Figure 2. Effect of rottlerin on alpha-melanocyte stimulating hormone (α-MSH)-induced melanogenesis
in melanoma cells. (a) and (b) Viability of B16-F10 cells after rottlerin treatment (5 and 10 µM) and
arbutin (1 mM at 48 h) was assessed with MTT solution. (c) Extracellular and (d) intracellular melanin
contents in B16-F10 cells (105 cells/mL) induced with α-MSH (100 nM), treated with rottlerin (5 and
10 µM) or arbutin (1 mM) as a positive control for 48 h were determined by spectrophotometry. All data
(a–c) are expressed as the mean ± the standard deviation (SD) of three replicates. * p < 0.05 compared
to control or normal groups.
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2.2. Effects of Rottlerin on the Expression of Some Genes Related to Melanogenesis

In order to investigate which genes, related to melanogenesis, are affected by the presence of
rottlerin, B16-F10 cells were treated with α-MSH to induce the expression of mRNA from some genes
related to melanogenesis, as reported previously [12–14]. Treatment with rottlerin at concentrations of
5 and 10 µM significantly decreased the level of MITF and TYRP1 (Tyrosinase related protein 1) mRNA
expression, but not that of tyrosinase (TYR) or TYRP2 (Figure 3a). These results imply that rottlerin
could inhibit melanogenesis by reducing the expression of some genes related to melanogenesis.
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expression of MITF, TYR (tyrosinase), TYRP1 (tyrosinase related protein 1), and TYRP2 in B16-F10 
cells (105 cells/mL) stimulated by α-MSH in the presence or absence of 5 and 10 µM of rottlerin. (b) 
and (c) B16-F10 cells (105 cells/mL) were transfected with CREB-luciferase (CREB-Luc) and beta-
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Figure 3. Effect of rottlerin on genes involved in melanogenesis and CREB (cAMP response element
binding) transcription factor. (a) Semi-quantitative PCR was carried out to measure mRNA expression of
MITF, TYR (tyrosinase), TYRP1 (tyrosinase related protein 1), and TYRP2 in B16-F10 cells (105 cells/mL)
stimulated by α-MSH in the presence or absence of 5 and 10 µM of rottlerin. (b) and (c) B16-F10
cells (105 cells/mL) were transfected with CREB-luciferase (CREB-Luc) and beta-galactosidase (β-gal,
0.8 µg) for 48 h, activated with α-MSH 24 h after CREB-Luc transfection, and (c) treated with forskolin
(200 nM) with or without 5 and 10 µM of rottlerin. All data (b,c) are expressed as the mean ± SD of
three replicates. ** p < 0.01 compared to control groups.

2.3. Effects of Rottlerin on CREB Transcription Factor Activation

Since rottlerin can reduce the gene expression of MITF, we performed a luciferase reporter assay to
investigate the relationship between MITF and the CREB signaling pathway. As shown in Figure 3b,c,
both 5 and 10 µM of rottlerin significantly decreased CREB-mediated luciferase activity induced by
α-MSH and forskolin, respectively, which indicated that rottlerin inhibited melanogenesis through the
cAMP/CREB signaling pathway.
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2.4. Effect of Rottlerin on the Melanogenesis-Related Signaling Pathway

We first examined the phosphorylation activity of CREB in the cytosol by immunoblotting,
to explore the exact mechanism by which rottlerin inhibits melanogenesis in B16-F10 melanoma cells
through the cAMP/CREB signaling pathway. As expected, Figure 4a shows that the phosphorylation of
CREB was downregulated by the presence of rottlerin at concentrations of 5 and 10 µM, after induction
by α-MSH, as well as the upstream of CREB, which is PKA (protein kinase A). Moreover, the cAMP
level in the cells was also reduced by treatment with rottlerin after induction with 100 nM of α-MSH
(Figure 4b), which implied that rottlerin inhibited melanogenesis in melanoma cells by targeting
cAMP/CREB signaling and reducing the process of melanin synthesis.
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Figure 4. Rottlerin inhibits melanogenesis via the cAMP/CREB signaling pathway. (a) B16-F10 cells
(105 cells/mL) were activated by α-MSH in the presence or absence of rottlerin (5 and 10 µM) or arbutin
(1 mM) for 48 h. Phosphorylated and total CREB were evaluated by immunoblotting. (b) Intracellular
cAMP levels were analyzed using a cAMP immunoassay kit. All data (b) are expressed as the mean± SD
of three replicates. WCL: Whole cell lysates. * p < 0.05 and ** p < 0.01 compared to control groups.

2.5. Effects of Rottlerin on the cAMP/CREB Signaling Pathway by Regulation of Autophagy

Since rottlerin is a well-known autophagy inducer in some cancer cells, we examined whether the
capacity of rottlerin to downregulate the cAMP/CREB pathway is due to the activation of autophagy
by rottlerin. We confirmed that rottlerin activates autophagy in B16-F10 melanoma cells by the
upregulation of LC3B-II level in the cytosol (Figure 5a). Moreover, we treated rottlerin concomitantly
with one well-known autophagy inhibitor, 3-MA, to understand whether this compound attenuates
rottlerin-mediated anti-melanogenesis activity. As shown in Figure 5b,c, 3-MA recovered the luciferase
activity mediated by CREB and reduced the inhibitory level of the intracellular melanin content
under rottlerin exposure in α-MSH-treated B16-F10 cells, which implied that rottlerin may target the
cAMP/CREB signaling pathway and positively regulate melanogenesis by the regulation of autophagy.
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Figure 5. Rottlerin downregulates CREB-mediated melanogenesis by the activity of autophagy.
(a) Confirmation of rottlerin as an autophagy inducer was achieved by assessing levels of
autophagy-related proteins, such as LC3 and ATG5, by immunoblotting analysis under the same
conditions for 24 h. (b) B16-F10 cells (105 cells/mL) were transfected with CREB-Luc and β-gal (0.8 µg)
for 24 h, activated with α-MSH 24 h after CREB-Luc transfection, and (c) treated with α-MSH with
or without 5 and 10 µM of rottlerin and 3-MA (10 mM). Luciferase activity was measured with a
luminometer. (c) B16-F10 cells (105 cells/mL) were induced by α-MSH in the presence or absence of
rottlerin (5 and 10 µM) or arbutin (1 mM) as well as 3-MA (10 mM) for 48 h, and level of intracellular
melanin content was measured by spectrophotometry. All data (b,c) are expressed as the mean ± SD
of three replicates. * p< 0.05 and ** p < 0.01 compared to control groups. # p < 0.01 compared to
selected groups.

3. Discussion

In this study, we aimed to investigate the role of rottlerin as an autophagy inducer in the regulation
of melanogenesis in melanoma cells. We observed how rottlerin-mediated autophagy modulated
melanogenesis through the cAMP/CREB pathway by targeting cAMP. Melanogenesis is the process by
which melanocytes produce melanin in order to protect the skin from harmful radiation, and it occurs
through several stages and involves several kinds of gene regulation pathways. One of the major factors
involved in this process is MITF, a transcription factor responsible for transcription of some genes
related to melanin synthesis in the melanosome, such as tyrosinase, TYRP1, and TYRP2 [15]. Activation
of MITF in the nucleus arises from one major receptor that determines skin pigment phenotype,
the melanocortin 1 receptor (MC1R), via interaction with the most important hormone secreted from
keratinocytes to induce melanogenesis, α-MSH. This interaction next activates signaling cascades by
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initiating cAMP production, leading to upregulation of CREB phosphorylation and activation of MITF
transcription in the nucleus [16,17].

In our study, we focused on the cAMP/CREB signaling pathway, which mediated melanogenesis
via induction of α-MSH to activate the cAMP/CREB cascade in B16-F10 murine melanoma cells.
We found that autophagy, represented by rottlerin as an autophagy inducer, decreased extracellular
and intracellular melanin content by inhibiting the production of melanin by B16-F10 melanoma cells
after induction by α-MSH. This finding suggests that rottlerin inhibits melanin production through
this cascade. Moreover, we found that rottlerin reduced the activity of CREB as a transcription factor in
the nucleus, subsequently decreasing the mRNA level of some genes related to melanogenesis, such as
MITF and TYRP1. These results support our hypothesis regarding autophagy’s role in regulating
melanogenesis, specifically through the cAMP/CREB pathway.

We determined the specific cellular protein inhibited by rottlerin, by examining the proteins in
the pathway, including CREB phosphorylation and the amount of cAMP in the cells. Since cAMP is
upstream of CREB, and our results showed that cAMP level was significantly decreased after rottlerin
treatment compared to arbutin treatment (a well-known commercially available skin whitening agent),
we concluded that rottlerin inhibited melanogenesis in melanoma cells by reducing cAMP production.

Rottlerin is a known regulator of autophagy and apoptosis [18]. It has several actions through
autophagy-related cascades, thereby regulating several diseases, including inflammation and various
cancers [7,10,19]. Thus, in the human melanoma cell line SK-Mel 28, the presence of protective
autophagy in the cell was found to cause the death of the cells by inhibition of mTORC1, resulting in
protein loss [20]. This inhibition turned on autophagy-inducing signaling by the lipidation of LC3 to
form autophagosome [21]. We confirmed that rottlerin could upregulate the expression of LC3 cellular
protein in melanoma cells, which is one of the crucial proteins responsible for the formation of the
autophagosome without involving the autophagy-related protein (ATG) system [21–23]. Moreover,
we also found rottlerin-mediated suppression of cAMP/CREB-mediated luciferase activity and that the
melanogenesis process is managed by autophagy activity (Figure 5b,c). Namely, co-treatment with
3-MA, an autophagy inhibitor displaying suppression of PI3K/AKT to inhibit mTORC1 [24], strongly
abrogated both CREB-mediated luciferase activity and the α-MSH-induced melanogenesis process
(Figure 5b,c), demonstrating that the process of melanogenesis was able to be regulated by autophagy.

In conclusion, rottlerin—as an autophagy inducer—played a role in inhibiting melanogenesis by
targeting cAMP in the cytosol through the cAMP/CREB signaling pathway (Figure 6). Future studies
examining the exact stage of autophagy, which inhibits melanogenesis in melanoma cells, are necessary
in order to understand the relationship between autophagy and melanogenesis in melanoma.
The findings may support autophagy as a target in skin cancer therapy.
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4. Materials and Methods

4.1. Materials

Rottlerin was purchased from Calbiochem (San Diego, CA, USA). B16-F10 cells are a murine
melanoma cell line from a C57BL/6J mouse (No. CCL-6475) from ATCC (Rockville, MD, USA).
The cell culture products used were: TRIzol, fetal bovine serum (FBS), penicillin/streptomycin,
DMEM as well as high modified DMEM were purchased from Gibco Products (Grand Island, NY,
USA). Phosphate-buffered saline (PBS) was from Capricorn Scientific (Ebsdorfergrund, Germany).
The luciferase constructs with cAMP response element binding (CREB) binding promoter sites were used
as previously reported in Reference [25]. The polyethyleneimine (PEI), alpha-melanocyte-stimulating
hormone (α-MSH), arbutin, tetrazole 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT), sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), dimethyl sulfoxide (DMSO),
and 3-methyladenine (3-MA) were obtained from Sigma Chemical Co. (St. Louis, MO, USA).
The RT-PCR primers were from Bioneer (Seoul, Korea). The phospho-specific and total antibodies
against: LC3B, ATG5, and PKA were from Cell Signaling Technology (Beverly, MA, USA); CREB was
from Abcam (Cambridge, UK); and β-actin was from Santa Cruz Biotechnology (Santa Cruz, CA,
USA).

4.2. Drug Preparation, Cell Culture, and Cell Viability Assay

A stock solution of rottlerin was prepared by dilution to a concentration of 10 mM using
DMSO. The B16-F10 melanoma cells were cultured in DMEM media supplemented with 1%
penicillin/streptomycin and 10% FBS. The cells were incubated at 37 ◦C and 5% CO2. To determine
cell cytotoxicity of the drug, the B16-F10 cells (1 × 105 cells/mL) were pre-incubated for 18 h and then
treated with rottlerin (5 and 10 µM). The cytotoxic effects of rottlerin were evaluated by the MTT assay
as previously reported [26].

4.3. Determination of Extracellular and Intracellular Melanin Content

The B16-F10 cells (1 × 105 cells/mL) were plated in 12-well plates and incubated overnight at 37 ◦C
and 5% CO2. The seeded cells were treated with or without rottlerin, α-MSH, 3-MA, and arbutin for
48 h using high-modified DMEM (10% FBS plus 1% penicillin/streptomycin) media. To determine
the extracellular melanin content, the media was removed after 48 h of incubation, transferred to
96-well plates, and the optical density was measured under 405 nm. The media was then removed
and cells were washed with PBS, lysed with lysis buffer—containing 20 mM Tris-HCl pH 7.4, 2 mM
ethyleneglycotetraacetic acid, 50 mM β-glycerophosphate, 1 mM sodium orthovanadate, 1 mM
dithiothreitol, 1% Triton X-100, 10% glycerol, 10 µg/mL aprotinin, 10 µg/mL pepstatin, 1 mM benzamide
and 2 mM PMSF—and incubated for 10 min before centrifugation. The supernatants were used as
whole cell lysates for immunoblotting and pellets containing intracellular melanin were solubilized in
1 M NaOH with 10% DMSO at 42 ◦C to be measured at 405 nm with an optical density reader.

4.4. Preparation of Cell Lysate for Immunoblotting

The supernatants, containing protein from the melanin content, were analyzed by immunoblotting
as previously reported [27,28]. The total and phosphorylated levels of LC3B (14,16), ATG5 (56),
CREB (phospho-form 46; total form 40), PKA (42) and β-actin (45) were visualized with an ECL system
(Amersham, Little Chalfont, Buckinghamshire, UK).

4.5. Measurement of mRNA Levels by Reverse Transcription-Polymerase Chain Reaction

To determine levels of expression of mRNA responsible for melanogenesis, B16-F10 cells were
treated with rottlerin (5 and 10 µM) and arbutin 1 mM as a control, with and without α-MSH (100 nM)
for 48 h. Total RNA was precipitated using TRIzol Reagent (Gibco RBL) according to the manufacturer’s
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instructions, and was kept at −70 ◦C until use. Semi-quantitative RT-PCR was conducted as previously
reported. The primers (Bioneer, Seoul, Korea) used are listed in Table 1.

Table 1. Sequences of primers (mouse) used in semi-quantitative RT-PCR.

Name Primer Sequence (5′ to 3′)

MITF
Forward AACTCATGCGTGAGCAGATG
Reverse TACCTGGTGCCTCTGAGCTT

TYR
Forward GTCCACTCACAGGGATAGCAG
Reverse AGAGTCTCTGTTATGGCCGA

TYRP1
Forward ATGGAACGGGAGGACAAACC
Reverse TCCTGACCTGGCCATTGAAC

TYRP2
Forward CAGTTTCCCCGAGTCTGCAT
Reverse GTCTAAGGCGCCCAAGAACT

GAPDH
Forward ACCACAGTCCATGCCATCAC
Reverse CCACCACCCTGTTGCTGTAG

4.6. Luciferase Reporter Gene Assay

The B16-F10 cells (1 × 105 cells/mL) were cultured for 18 h in a 24-well plate prior to transfection
with plasmids (0.8 µg/mL each well) encoding a luciferase gene under a CREB promoter by the PEI
method. After 24 h of stabilization, the transfected cells were treated with rottlerin concomitantly with
α-MSH and forskolin, respectively, for the next 24 h. The luciferase activity was assessed using the
Luciferase Assay System (Promega, Madison, WI, USA) as previously reported [29].

4.7. cAMP Assay

The cAMP level was determined using a cAMP immunoassay kit (Cayman Chemical Company,
Ann Arbor, MI, USA) as previously reported [30]. The B16-F10 cells were lysed in 0.1 M HCl to inhibit
the phosphodiesterase activity and incubated at room temperature for 30 min. Supernatants were
collected in the e-tube. The lysates were added to a 96-well plate coated with rabbit IgG polyclonal
antibody and incubated concomitantly with a constant concentration of cAMP-acetylcholinesterase
(Ache) conjugate (Tracer) as a competitor of cAMP in the well. After incubation at 4 ◦C for 18 h,
the wells were washed to remove the unbound cAMP and Ellman’s reagent was added to determine
the activity of cAMP. The optical density was read at 420 nm, as proportional to the amount of the
cAMP Tracer, yet inversely proportional to the concentration of cAMP in the wells.

4.8. Statistical Analysis

All data are presented as the mean ± standard deviation (SD) calculated from three samples.
For statistical comparison, all values were analyzed using ANOVA/Scheffe’s post hoc test as well as
the Kruskal–Wallis/Mann–Whitney test. Significance was reached when p-values were <0.05 or <0.01.
The statistical analyses were performed using SPSS software (Version 24, SPSS Inc., Chicago, IL, USA).
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Abbreviations

UV Ultraviolet
MITF Microphthalmia-associated transcription factor
PCR Polymerase chain reaction
mTOR Mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
α-MSH Alpha-melanocyte stimulating hormone
AMPK AMP-activated protein kinase
TYR Tyrosinase
TYRP1 Tyrosinase related protein 1
TYRP2 Tyrosinase related protein 2
cAMP Cyclic adenosine monophosphate
CREB cAMP response element binding
3-MA 3-methyladenine
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