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Abstract: Bayesian therapeutic drug monitoring (TDM) software uses a reported pharmacokinetic
(PK) model as prior information. Since its estimation is based on the Bayesian method, the estimation
performance of TDM software can be improved using a PK model with characteristics similar to
those of a patient. Therefore, we aimed to develop a classifier using machine learning (ML) to select
a more suitable vancomycin PK model for TDM in a patient. In our study, nine vancomycin PK
studies were selected, and a classifier was created to choose suitable models among them for patients.
The classifier was trained using 900,000 virtual patients, and its performance was evaluated using
9000 and 4000 virtual patients for internal and external validation, respectively. The accuracy of
the classifier ranged from 20.8% to 71.6% in the simulation scenarios. TDM using the ML classifier
showed stable results compared with that using single models without the ML classifier. Based
on these results, we have discussed further development of TDM using ML. In conclusion, we
developed and evaluated a new method for selecting a PK model for TDM using ML. With more
information, such as on additional PK model reporting and ML model improvement, this method
can be further enhanced.

Keywords: population pharmacokinetics; simulation; Bayesian method; XGBoost; classifier

1. Introduction

Since its introduction into clinical practice in 1958, vancomycin has been widely used for
penicillin-resistant Gram-positive bacterial infections, especially those caused by methicillin-
resistant Staphylococcus aureus (MRSA) [1]. Adverse reactions to vancomycin typically include
Red Man syndrome, nephrotoxicity, and ototoxicity. Since the adverse effects of vancomycin
are related to the dosage and concentration of the drug, it can be used relatively safely under
adequate monitoring [2]. Therefore, vancomycin is a representative drug for which thera-
peutic drug monitoring (TDM) is recommended. TDM is a clinical process that measures
the concentration of a drug in the blood and interprets the resulting pharmacokinetic (PK)
parameters to draw appropriate conclusions regarding drug concentration and dose adjust-
ment [3]. A recently revised guideline recommends monitoring the area under the drug
concentration-time curve (AUC) using Bayesian TDM software programs embedded with a
PK model based on vancomycin data as the Bayesian prior [4].
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Bayesian TDM software uses PK models reported in the existing literature as prior
information, integrates patient data, and calculates patient PK parameters through sta-
tistical estimation [5]. Patient data typically include height, weight, dosing history, and
drug concentration, but data on the number of blood collections in clinical practice are
often limited. Hence, it is important to select an appropriate PK model to be used as prior
information to correctly estimate the PK parameters from limited data. This is due to the
fact that TDM performance varies depending on the PK model, even when the same patient
data are used [6,7].

As vancomycin has been widely used for a long time, reported population PK studies
of vancomycin for various patient groups can be used as a prior model [8]. Therefore, stud-
ies have been conducted to evaluate the predictive performance of TDM in PK models [6,7].
In particular, a study on the methods for averaging/selecting a model using goodness-of-fit
has been reported [9]. The model selection and averaging approach have the advantages of
reducing uncertainty that may arise from a single model assumption [9–11].

Machine learning (ML) has led to various breakthroughs in science and has been
introduced into medicine, owing to data availability and the growth of computational
power. ML is more flexible and scalable than traditional statistical methods. Thus, it has the
capability of accomplishing tasks such as classification [12,13]. Although several studies
have reported using ML to improve TDM performance, to the best of our knowledge, no
studies have applied ML to select the appropriate PK models to be used [14–16].

Accordingly, the aim of this study was to develop a classifier for TDM using ML
to select a vancomycin PK model appropriate for a patient (given limited data). Nine
vancomycin PK studies were chosen, and a classifier to sort the patients into the PK models
of those studies was created. The performance of TDM with the classifier applied was
evaluated using the populations generated from nine PK models or those generated from
four PK models in another study (Figure 1).

Figure 1. Overview of the study. The results of pharmacokinetic (PK) parameter estimation for TDM
can be varied using a PK model as prior information. Therefore, the classifier was created to select a
vancomycin PK model more suitable for the patient given the limited data among the nine models.
The performance of TDM with the classifier applied was evaluated using the populations generated
from nine PK models used as classifiers (internal validation) or from four PK models in another study
(external validation).
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2. Materials and Methods
2.1. Classifier Development

First, PK studies were selected as labels to create classifiers. Next, virtual patients
were generated as learning data using the selected PK studies, and features were created.
Finally, the classifier was trained using learning data.

2.1.1. PK Models for the Classifier

Nine of the fifty-four vancomycin population PK studies presented in two review
articles were selected, if they met the following criteria: (1) studied population: adult;
(2) compartment of PK model: two-compartment model; and (3) covariates included in
the PK model: age, sex, height, weight, or renal function markers (serum creatinine [sCr],
creatinine clearance [CrCL], modification of diet in renal disease [MDRD], and Chronic
Kidney Disease Epidemiology Collaboration [CKD-EPI]) [17,18]. Studies in which the PK
model consisted covariates that did not fall under (3) were excluded. The characteristics of
the nine selected studies are listed in Table S1 [19–27].

2.1.2. Virtual Patients for the Classifier

The demographics of 100,000 patients were generated based on representative values
obtained from the internal data of the Kyung Hee University Hospital Clinical Trial Center.
The mean ± SD of internal data for age (years), height (cm), weight (kg), and sCr (mg/dL)
was calculated as 50.2 ± 17.1, 165.1 ± 8.7, 65.1 ± 10.2, and 0.8 ± 0.2, respectively. Sex was
set as a 1:1 balance between men and women. The continuous demographic values were
assumed to be from a multivariate normal distribution. The sample correlation matrix of
the internal data was used for the correlation structure.

A total of 900,000 patients were generated by integrating the demographic characteris-
tics of 100,000 patients into each of the nine selected population PK models. First, individual
PK parameters were generated by integrating demographic characteristics into each popu-
lation PK model with inter-individual variability. Subsequently, true concentrations were
calculated from the individual PK parameters for each simulation scenario. Finally, the
observed concentrations (COBS) were generated by incorporating the residual unexplained
variability into the true concentrations. Inter-individual variability was assumed to follow
a log-normal distribution, and the residual unexplained variability was assumed to follow
a normal distribution. The characteristics of the PK model are presented in Table S1.

The dosing of vancomycin was assumed to be an intravenous infusion of 1000 mg at
1-h intervals for 12 h based on the drug label provided by the Ministry of Food and Drug
Safety in Korea (MFDS) [28]. The blood sampling point was set to four cases: trough (12 h);
peak and trough (2, 12 h); peak, mid, and trough (2, 5, 12 h); and every hour (1, 2, 3, . . . ,
12 h), which were applied for both single-dose and steady-states. The R package mrgsolve
was used to generate the PK parameters and concentrations [29].

2.1.3. Features and Labels

Features for classifier learning were created by dividing the population predicted
concentration (CPRED) by the observed concentration (COBS) (Figure 2). The CPRED was
calculated by integrating the nine PK models in Table S1 and the patient covariates (a
priori) without incorporating any variability. The CPRED could be represented as follows:
Ci

PRED,m, tPRED
, where i is the number of the ith patient of a total of 900,000 patients, m is

the number of the mth PK model of a total of nine PK models, and tPRED is the time for
every hour from 1 to 12 h. Therefore, the CPRED values were generated every hour for 12
h using the population-predicted PK parameters calculated by integrating the covariate
of individual patients into each of the nine PK models; hence, a total of 108 CPRED values
were obtained for each patient. CPRED generation was performed using the R package
mrgsolve [29]. The observed concentrations could be represented as follows: Ci

OBS, tOBS
where i is the number of the ith patient of a total of 900,000 patients and tOBS is the
concentration observed time for each blood sampling point.
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Figure 2. An illustrative example of feature creation. The yellow, olive, and brown lines are the
time-concentration profiles of the population predicted concentration (CPRED) using the three models.
The round dots represent the CPRED of each PK model every hour for 12 h. The red squares represent
the observed concentration (COBS) at each blood sampling time. The black squares represent the
imputed COBS at the unobserved time from the observed time. CP,m,tP represent the CPRED for a
patient, where m is the number for the mth PK model of a total of nine PK models and tP is the time
every hour from 1 to 12 h. CO,tO represents the COBS for a patient, where tO is the concentration at
the time observed in each blood sampling scenario. The features for classifier learning were created
by dividing the CPRED by the COBS for each scenario. (A) In the trough sampling scenario, all CPRED

from 1 to 12 h were divided by CO,12; (B) in the peak and trough sampling scenario, the CPRED from
1 to 6 h and the CPRED from 7 to 12 h were divided by CO,2 and CO,12, respectively; (C) in the peak,
mid, and trough sampling scenario, the CPRED from 1 to 4 h, CPRED from 5 to 8 h, and CPRED from
9 to 12 h were divided by CO,2, CO,5, and CO,12 respectively; (D) in the every-hour sampling scenario,
the CP,m,t was divided by CO,t at each time t.

Thus, the CPRED can be created every hour, but the COBS can only be known at a
limited time, depending on the blood sampling time. Therefore, to match the CPRED and
COBS at the same time and to make the number of features equal in all scenarios, the COBS
at the observed time was imputed to the COBS at the unobserved time. Thus, the CPRED can
be divided by COBS at the observed time and by the imputed COBS at the unobserved time.
This is the same as matching and dividing CPRED in a specific range of times and COBS at an
observation time for each scenario. In the case of the trough sampling scenario, all CPRED,m
for each mth PK model from 1 to 12 h were divided by COBS,12. For the peak and trough
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sampling scenarios, the CPRED,m from 1 to 6 h and CPRED,m from 7 to 12 h were divided
by COBS,2 and COBS,12, respectively. In the case of the peak, mid, and trough sampling
scenarios, the CPRED,m from 1 to 4 h, CPRED,m from 5 to 8 h, and CPRED,m from 9 to 12 h
were divided by COBS,2, COBS,5, and COBS,12 respectively. In the case of the every-hour
sampling scenario, CPRED,m,t was divided by COBS,t at each time t.

Labels for individual patients comprised one of the nine population PK models used
to generate PK parameters for each patient. Therefore, the 900,000 patients used as learning
data consisted of nine groups of 100,000 patients, each with different labels. Additionally,
eight different learning datasets for each scenario were generated for 900,000 patients since
the composition of the features differed depending on the simulation scenario.

2.1.4. Classification Model

To develop the classifiers, we first compared the prediction performances of three
ML methods: Decision Tree (DT), Random Forest (RF), and XGBoost. ML models were
developed using each R package as follows: (1) DT: rpart; (2) RF: ranger; and (3) XGBoost:
xgboost [30–32]. The hyperparameters were then determined using 10-fold repeated cross-
validation and grid search (Table S2). Since the learning data were generated based on
statistical distribution, it was assumed that the characteristics of the data for hyperpa-
rameter tuning were retained even if sampled data were used. Thus, considering the
computation time, 10% (n = 90,000) of the total learning data were randomly sampled for
hyperparameter tuning. Cross-validation was applied to the training data by splitting
the sampled learning data into training (70%) and test subsets (30%). Cross-validation
was performed using the R package mlr [33]. Subsequently, the accuracies of these three
models were calculated using the internal validation process described in Section 2.2. As a
result, XGBoost, which had higher accuracy, was selected as the ML model for the classifier
(Table 1). A classifier based on the tuned XGBoost model was used to calculate the predicted
probability of each class for individual patients, which was obtained by minimizing the
negative log-likelihood using the XGBoost parameter, objective (=“mult:softprob”) and
eval_metric (=“mlogloss”).

Table 1. The accuracy of the ML models in each scenario.

Scenarios Trough (%) Peak and
Trough (%)

Peak, Mid, and
Trough (%) One-HourInterval (%)

Decision Tree

Single Dose 21.0 22.2 30.5 31.1
Steady State 16.8 20.7 22.9 27.0

Random Forest

Single Dose 23.4 30.7 42.6 68.6
Steady State 19.1 27.0 33.3 54.4

XGBoost

Single Dose 24.6 31.8 42.7 71.6
Steady State 20.8 27.8 33.7 56.6

2.2. Validation of TDM Performance

To validate the TDM performance when the classifier was applied, the AUC of van-
comycin for virtual patients was predicted using a single model or an ML-selected/weighted
model and compared. Therefore, new virtual patient populations were generated for val-
idation. The PK parameters were estimated using the nine models used to generate the
classifier. Subsequently, the AUC was calculated using the estimated PK parameters for
each model. Additionally, the AUC was calculated from the model selected or weighed
using the ML classifier. The estimated and true AUC were then compared.
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2.2.1. PK Models and Virtual Patients for Validation

The PK model was used to generate virtual patients for validation. Internal and
external validations were performed and distinguished based on the PK model (Figure 1).
The PK models for internal validation were the nine models used to develop the classifier.
The PK models for external validation were the four models that did not overlap with the
PK model for internal validation in the 54 vancomycin population PK studies presented in
two review articles [17,18]. The PK model for external validation was selected when it met
criteria (1) to (3) in Section 2.1.1. However, a PK model for external validation that also met
the additional criteria of including discrete covariates, such as renal replacement therapy
(RRT), was selected. The PK characteristics of the four selected studies are presented in
Table S3 [34–37].

The virtual patient generation process for evaluation was the same as the patient
generation process for classifier development, except for the number of patients and PK
models. First, the demographic information of 1000 patients was generated using data
from the Kyung Hee University Hospital Clinical Trial Center. Then, the demographics
of 1000 patients were integrated into nine PK models for internal validation to generate
9000 patients and integrated into four PK models for external validation to generate
4000 patients. The vancomycin dosing and blood sampling scenarios were the same as
those used for classifier development. Virtual patient generation was performed using the
R package mrgsolve [29].

2.2.2. PK Parameter Estimation

The PK parameters of the patients were estimated based on the Bayesian method, a
computational combination of the patient demographics, dosing regimen, drug concentra-
tion per simulation scenario, and the PK model as prior information [5]. The PK models for
estimation used the same nine models as those used to develop the classifier. Therefore,
nine sets of PK parameters were obtained for each PK model for each patient. The R
package mapbayr was used for PK parameter estimation [38].

The AUC predicted by each single model was calculated from the estimated PK
parameters, giving nine values for each PK model. The AUC was calculated using the R
package mrgsolve [29]. The time for calculating the AUC was set as the next dosing interval
from the time of the concentration observation. In other words, the AUC was calculated
between 12 and 24 h after the first dose.

2.2.3. ML Application

For TDM performance evaluation using the ML classifier, the classifier was applied
for AUC prediction in two methods: model selection and the weighted average of the
models. Given the patient information for TDM, such as patient demographics, dosing
regimen, and drug concentrations, the classifier calculated the probability that the patient
was generated from a specific PK model among the nine label models. The model selection
method picked out one PK model with the highest probability as calculated by the classifier.
The AUC predicted by the selected model was used as the predicted value. The weighted
average method used the probability of each PK model calculated by the classifier as
the weight. The predicted AUC for each model was averaged using the weights of the
corresponding models.

To compare the TDM performance using the ML classifier, two additional meth-
ods were used to predict the AUC. First, the perfect model selection method assumes
that the classifier perfectly knows the PK model used to generate for individual patients
(i.e., the accuracy of the classifier is 100%). In this method, the predicted AUC was the
AUC predicted using the model used to generate the patient. This method was applied
only to patients in the internal model, where the PK models used for patient generation
were the same as those used for classifier development. Thus, it can be applied only to
virtual patients for comparison purposes and not to real patients. Second, the non-weighted
averaging method arithmetic averages the AUC predicted by the nine models without
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weights. This method was applied regardless of whether the model was internal or external.
Hence, it can also be applied to both real and virtual patients.

Apart from the methods using the ML classifier, another model selection and weighted
average method was applied to the evaluation data of this study [9]. In this method, the
objective function values (OFVs) for estimating the PK parameters for each model were
processed and used as weights. The OFVs were then calculated using the R package
mapbayr for PK parameter estimation [38]. The OFV was processed to a weight using the
following equation:

WOFVm =
e−0.5×OFVm

∑m=9
m=1 e−0.5×OFVm

where m is the number of the mth PK model out of the nine models used for parameter
estimation. The weights of the OFVs were applied to the AUC predictions in two ways:
model selection and the weighted average of the models. The PK model with the highest
weight was selected, and the AUC was averaged using that weight.

2.2.4. Performance Evaluation

The performance of the ML models was assessed using the metrics accuracy, precision,
recall, and F1 − score. These metrics are calculated as follows:

Accuracy = TP+TN
TP+TN+FP+FN ,

Precision = TP
TP+FP ,

Recall = TP
TP+FN ,

F1 − score = 2 × Precision×Recall
Precision+Recall

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives in the confusion matrix
obtained for each classification outcome of the internal validation. The confusion matrix
was constructed using the R package caret [39].

TDM performance was assessed based on the mean percent error (MPE) and the
relative root mean squared error (rRMSE) of the predicted AUC relative to the true AUC
of each simulation scenario, which is defined as follows:

MPE = 1
N

N
∑

i=1

Predicted AUCi−True AUCi
True AUCi

× 100%

rRMSE =

√
1
N

N
∑

i=1

(Predicted AUCi−True AUCi)
2

(True AUCi)
2 × 100%

where i is the number of the ith patient of a total of N patients in each simulation scenario.
For each simulation scenario, the total number of patients in the internal and external
validations were 9000 and 4000, respectively. The types of predicted AUC were as follows:
the AUC predicted by each model out of the nine PK models, AUC selected by the ML
classifier, AUC weighted by the ML classifier, perfect selection AUC, and non-weighted
averaging AUC. The true AUC was calculated from the true PK parameters generated for
each patient.

3. Results

The classifier was created using learning data from 900,000 virtual patients based
on nine PK studies and learning using the XGBoost model. The patient characteristics
are presented in Table S1. The mean AUC of the learning patients by population was
178.06–290.47 mg·h/L for a single dose and 268.2–406.50 mg·h/L for the steady-state.
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Table 1 lists the accuracy of the classifiers and Tables S4, S6, and S8 provide the details of
the confusion matrices for each ML model by scenario. Between ML models, the XGBoost
model showed the highest accuracy, and the DT model showed the lowest accuracy in all
scenarios. In the XGBoost model classifier, the accuracy ranged from 24.6% to 71.6% for a
single dose and 20.8% to 56.6% for the steady-state. The accuracy improved as the number
of blood samples increased, and all of the ML models showed the same tendency. Similarly,
in all ML models, the single-dose values were more accurate than the steady-state values.
Additionally, the precision, recall, and F1-score in the ML models for each class improved
as the number of observed concentrations increased (Tables S5, S7, and S9). Meanwhile, the
feature importance plot of each scenario in the XGBoost model is shown in Figures S1 and S2.

For validation, the performance of TDM with the classifier was evaluated using the
predicted AUC of 13,000 virtual patients (from 9000 patients in the internal validation
and 4000 patients in the external validation) based on 13 PK studies. Table S1 shows the
characteristics of the patients included in the internal validation. The mean AUC of the
patients in the internal validation was similar to that of the patients for learning data. The
characteristics of the patients in the external validation are listed in Table S3. The mean
AUC of the patients in the external validation was 165.18–237.77 mg·h/L for a single dose
and 317.16–691.72 mg·h/L in the steady-state.

The TDM performance of the internal validation is presented in Figure 3 and Table 2.
The predicted AUC of the perfect selection method showed better results for both MPE and
rRMSE in most scenarios than when estimating using a single model. Except for the trough
blood sampling scenario, TDM using the classifier performed better than using a single
model. As the number of observed concentrations increased, the MPE and rRMSE in cases
where the classifier was used approached the values of the perfect selection method. In
most scenarios, the weighted average method exhibited better TDM performance than the
model selection method. The non-weighted average method also showed stable results
without value jumps compared to single model estimation.

Table 2. The mean percent error (MPE) and relative root mean squared error (rRMSE) of the
predicted AUC relative to the true AUC of each simulation scenario for internal validation.

Measures MPE (%) rRMSE (%)

Scenarios Trough Peak and
Trough

Peak, Mid,
and Trough

One-Hour
Interval Trough Peak and

Trough
Peak, Mid,
and Trough

One-Hour
Interval

Single Dose Model

Lim et al., 2014 [19] −8.16 −6.40 −5.50 −1.15 19.36 16.40 14.36 8.75
Llopis-Salvia et al., 2006 [20] −1.39 −2.24 0.32 2.10 19.18 17.92 17.03 13.70

Moore et al., 2016 [21] 8.02 2.31 −0.44 −3.11 22.93 17.98 15.58 9.83
Mulla et al., 2005 [22] 15.97 9.91 4.49 −1.02 30.25 22.75 16.93 8.97
Okada et al., 2018 [23] −4.86 −3.53 −5.76 −4.79 18.25 16.23 15.14 9.56

Purwonugroho et al., 2012 [24] −5.33 −4.96 −1.86 1.59 23.52 19.72 16.63 10.25
Sánchez et al., 2010 [25] 14.31 11.88 9.90 5.42 28.29 24.89 20.94 13.46

Yamamoto et al., 2009 [26] −4.32 −2.45 −1.13 0.38 19.03 16.89 13.94 8.64
Yasuhara et al., 1998 [27] 2.27 1.01 4.40 2.64 21.05 17.42 15.64 9.39
Perfect Model Selection 0.65 −0.23 −0.26 −0.35 13.19 11.62 10.44 6.25
Model Selection by ML 2.22 −0.31 −0.60 −0.46 21.10 16.15 13.12 7.09

Weighted Average by ML 2.00 0.59 0.19 −0.27 18.60 15.07 12.32 6.84
Non-weighted average 1.83 0.61 0.49 0.23 18.97 16.04 13.71 8.22

Steady-State Model

Lim et al., 2014 [19] −9.02 −7.21 −5.78 −3.13 17.70 14.40 11.60 6.33
Llopis-Salvia et al., 2006 [20] 2.85 1.55 3.32 8.73 24.55 19.89 22.46 34.66

Moore et al., 2016 [21] 11.12 5.65 3.45 3.02 22.06 15.08 11.68 7.00
Mulla et al., 2005 [22] 7.02 3.00 0.87 0.82 21.23 14.63 10.80 5.63
Okada et al., 2018 [23] −4.74 −2.40 −3.39 −1.14 17.73 13.57 11.55 6.35

Purwonugroho et al., 2012 [24] −2.11 −1.84 0.26 0.60 18.45 14.89 11.57 6.00
Sánchez et al., 2010 [25] 6.52 4.00 3.64 3.48 21.83 17.32 13.98 9.08

Yamamoto et al., 2009 [26] −7.40 −5.06 −3.62 −2.91 17.78 13.87 10.92 6.43
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Table 2. Cont.

Measures MPE (%) rRMSE (%)

Scenarios Trough Peak and
Trough

Peak, Mid,
and Trough

One-Hour
Interval Trough Peak and

Trough
Peak, Mid,
and Trough

One-Hour
Interval

Yasuhara et al., 1998 [27] −0.59 −1.25 0.84 −0.36 17.81 13.86 11.19 5.78
Perfect Model Selection −0.35 −0.99 −0.79 −0.48 13.51 10.76 9.07 4.94
Model Selection by ML 0.25 −0.11 −0.77 −0.42 17.17 12.95 10.28 5.28

Weighted Average by ML 0.27 −0.64 −0.61 −0.40 16.11 12.40 9.87 5.18
Non-weighted Average 0.41 −0.39 −0.05 1.01 16.59 12.87 10.56 6.80

Figure 3. The mean percent error (MPE) and relative root mean squared error (rRMSE) of the
predicted AUCs relative to the true AUCs of each simulation scenario for internal validation [19–27].
The prediction method (using a single model, ML application, and comparison) is distinguished by
yellow, olive, and brown colors, respectively. The red dashed horizontal line is the value obtained
using the non-weighted average method. (A) Single dose; (B) steady-state.
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The TDM performance of the external validation is shown in Figure 4 and Table 3. In
the trough sampling scenario, the non-weighted average method performed better than both
the model selection method and weighted average method using the ML classifier. However,
as the number of observed concentrations increased, TDM performance using the classifier
led to better outcomes than the non-weighted average method. The model selection method
outperformed the weighted average method in terms of the MPE, but the weighted average
method outperformed the model selection method in terms of the rRMSE.

Figure 4. The mean percent error (MPE) and relative root mean squared error (rRMSE) of the
predicted AUCs relative to the true AUCs of each simulation scenario for external validation [19–27].
The prediction method (using a single model, ML application, and comparison) is distinguished by
yellow, olive, and brown colors, respectively. The red dashed horizontal line is the value obtained
using the non-weighted average method. (A) Single dose; (B) steady-state.
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Table 3. The mean percent error (MPE) and relative root mean squared error (rRMSE) of the
predicted AUC relative to the true AUC of each simulation scenario for external validation.

Measures MPE (%) rRMSE (%)

Scenarios Trough Peak and
Trough

Peak, Mid
and Trough

One-hour
Interval Trough Peak and

Trough
Peak, Mid

and Trough
One-hour
Interval

Single Dose Model

Lim et al., 2014 [19] 1.03 −2.92 −1.56 2.35 26.98 22.23 18.97 12.62
Llopis-Salvia et al., 2006 [20] 10.26 6.81 9.22 9.15 32.41 28.91 29.97 24.11

Moore et al., 2016 [21] 19.04 2.69 2.73 3.41 38.48 25.67 22.43 16.30
Mulla et al., 2005 [22] 29.24 15.97 10.05 1.81 49.13 33.94 25.69 12.62
Okada et al., 2018 [23] 4.77 2.78 0.52 0.40 27.58 24.37 21.31 12.88

Purwonugroho et al., 2012 [24] 5.31 −1.82 1.32 2.05 35.64 27.92 24.13 14.28
Sánchez et al., 2010 [25] 28.13 23.84 20.07 15.89 48.98 43.01 34.17 23.44

Yamamoto et al., 2009 [26] 5.42 0.42 0.77 −1.33 29.37 23.46 20.07 11.96
Yasuhara et al., 1998 [27] 11.54 2.40 5.07 0.43 33.43 23.16 21.08 12.22
Model Selection by ML 15.91 1.65 2.95 1.37 38.21 26.37 23.11 11.53

Weighted Average by ML 13.90 3.89 4.27 1.78 33.91 24.34 21.41 11.04
Non-weighted average 12.75 5.58 5.36 3.79 32.49 24.20 20.67 12.49

Steady-State Model

Lim et al., 2014 [19] −4.15 −4.73 −2.86 −0.25 21.48 17.13 13.76 7.28
Llopis-Salvia et al., 2006 [20] 6.02 3.43 6.16 12.11 40.31 33.66 35.01 54.27

Moore et al., 2016 [21] 18.54 7.16 5.82 4.97 31.51 19.18 15.40 8.94
Mulla et al., 2005 [22] 10.82 3.97 2.67 2.69 33.25 21.63 15.89 7.97
Okada et al., 2018 [23] −0.85 −0.05 −0.20 2.37 23.11 18.78 15.38 8.83

Purwonugroho et al., 2012 [24] 4.21 −2.49 0.79 0.32 29.06 20.40 16.35 8.11
Sánchez et al., 2010 [25] 8.66 5.46 5.43 8.17 35.34 26.83 20.84 15.27

Yamamoto et al., 2009 [26] −0.56 −2.45 −1.41 −1.94 21.37 16.68 13.64 7.59
Yasuhara et al., 1998 [27] 3.28 −0.77 1.26 −0.49 25.72 19.08 16.15 7.98
Model Selection by ML 7.32 1.84 1.73 1.21 25.97 18.34 14.83 7.62

Weighted Average by ML 6.74 1.48 2.02 1.46 25.80 17.68 14.56 7.61
Non-weighted Average 5.11 1.06 1.96 3.11 26.34 19.06 15.77 11.20

Table S10 shows the TDM performance of the method using the OFVs [9]. The method
using the OFV of the selection or weighted average methods showed more stable results
without value jumps than a single model for patients from both internal and external
validation sets. In patients in the internal validation set, the performance of TDM with the
ML classifier applied was better than that of the OFV method (Table 2). In the patients in
the external validation set, the method using OFV performed better than the method using
the ML classifier until two concentrations were observed, but showed similar performance
as the number of concentrations increased (Table 3).

4. Discussion

Since estimations for TDM software are mostly based on Bayesian methods, estimation
performance can be improved using a PK model with PK characteristics similar to those of
a patient as prior information [6,9,15]. Therefore, the purpose of classifier generation was
to create a classifier that would give the patient the best TDM model (i.e., the model that
most closely resembles the patient’s PK characteristics). For this purpose, the PK models
used to generate the patient PK parameters were used as labels for the classifier. However,
it was essential to check whether estimating the parameters with the PK model used to
generate the patients could improve the performance of TDM. Therefore, as a result of
testing the perfect model selection method that estimates parameters using the model used
to generate the patient, it was confirmed that it showed better performance than a single
model in the AUC prediction of internal validation patients (Table 2, Figure 3).

For real-world patients, there is no generation model, and the available data are
limited. Therefore, the perfect model selection is impossible. Hence, we created a new
feature using the ratio of CPRED to COBS to enable classification is based on the available
information. This is due to the fact that the trend of CPRED change over time was assumed
to differ by population. If so, the more similar the patient PK characteristic is to a specific
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PK model, the more similar the trends of change over time of the COBS (reflecting individual
characteristics) may be to those of the specific CPRED (reflecting population characteristics).
For example, in the every-hour sampling scenario, if the patient’s characteristics were
similar to the PK model used for calculating the CPRED, it can be assumed that the ratio of
CPRED to COBS would maintain a constant value every hour. The classification using these
features showed high accuracy (71.6% at a single dose, every-hour sample) despite the
many selection options from the nine models (Table 1). Moreover, the COBS at unobserved
time points can also be used for features in our study due to the assumption that the CPRED
differs between populations. For example, if two patients were observed with the same
trough concentration but had different covariates, the CPRED cannot be identical even when
using the same model. Thus, if the CPRED calculated at the peak time with model X is too
high for the observed trough concentration for a patient (and another patient does not),
model X can be excluded from the classifications that can be used for this patient. Although
the accuracy was lower than when hourly samples were used, classification was possible
with 24.6% accuracy (at a single dose) even when only a trough sample was used (Table 1).

In the present study, 12 sampling points for every hour within one dosing interval
were used to calculate the CPRED for each model. However, an additional feature selection
process may improve the classification performance [40]. The features with high importance
value in our study showed that most of the time points of CPRED and COBS were similar
(Figures S1 and S2). In addition, the PK model has information on specific PK parameters
depending on the time point [41]. Therefore, future studies will require feature selection
using only the appropriate sampling points for CPRED calculation.

The results of the TDM performance evaluation using the classifier were reasonable in
most scenarios. However, there is one point to be considered. Between the two methods
of applying ML, the weighted average method showed better MPE and rRMSE than the
model selection method for both internal and external validations, except for the MPE for
external validation. Patients from the external validation included special populations,
such as patients with burns, continuous renal replacement therapy (CRRT), and hemodial-
ysis (HD) [34–37]. Therefore, the AUC of the external validation set showed a different
range than that of the internal model patients and had large standard deviations in some
models (Tables S1 and S3). These differences in PK characteristics may have biased the
results of some single-model estimates, and these biased values may be summed up when
averaging the predicted AUC. Therefore, when performing TDM in patients belonging
to special populations, the model selection method can be considered first. Furthermore,
it is also possible to include covariates related to the special patient population during
classifier generation.

In conclusion, we created and tested a classifier that could select PK models using ML
and applied it to TDM to facilitate safe vancomycin administration. In general, probabilistic
model selection and averaging used values related to the goodness-of-fit of the models, such
as the Akaike information criterion (AIC) and Bayesian information criterion (BIC) [42].
Since the PK model is also a model for fitting data, it is possible to select a PK model based
on probabilistic model selection; such a study was recently reported [9]. However, our
study proposed a new method for model selection to find a model that provides better TDM
performance with limited patient data, such as sex, age, height, weight, and concentration,
without model fitting.

In the era of big data, our research method with ML-based classification is expected
to further develop as the amount of available information increases. The results of our
study showed that regardless of internal and external validation, increasing the number of
observed concentrations resulted in better classification accuracy (Table 1). In particular,
internal validation showed better TDM performance than the previously reported method
(using OFVs) in almost all scenarios (Table 2 and Table S10). To assume the clinical practice
where limited patient information is available, we only selected nine PK models with easily
measurable covariates for classifier generation in our study. Theoretically, if all PK models
were built for all vancomycin patient populations and were included in a classifier, TDM
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with the classifier applied will always achieve better performance than TDM using a single
model. Additionally, if additional covariates not used in our study were used to generate a
classifier, a classifier with more information can be created. Furthermore, our ML-based
approach can be easily applied to the TDM of any drug using the same procedure as
creating the classifier for vancomycin, particularly if various PK models can be used as
prior information.

It was also observed that the classification performance improved when the improved
algorithm, XGBoost, was used since it is an optimized distributed gradient boosting library
designed to be more efficient and scalable than traditional classification models, such as DT
(Table 1) [43]. Since the main purpose of this study was not to improve the performance of
classification, only three ML models were used and compared. Therefore, future studies
may also consider using a super-runner model to improve classification performance. In
addition, computing and ML techniques are developing rapidly, and these advances can
help improve the selection of ML-based TDM models.

Although we developed a new method for TDM model selection and evaluated
the method, it had certain limitations. Currently, it applies only to scenarios in which the
classifier is trained in advance. Therefore, further studies are needed to apply our method to
commercial TDM programs. For example, depending on the hospital, generating classifiers
by learning only frequently used scenarios in advance may be considered. To apply a
general multiple dosing regimen, it is also possible to create a classifier using patient data
that changes when the renal function changes over time, considering the PK characteristics
of vancomycin excreted by the kidneys. Moreover, it is possible to develop a new set
of features that can classify the PK model regardless of the scenario. Another method
is to find an appropriate amount of training data and features to speed up computation,
creating a new classifier for a new patient every time. Currently, it takes approximately
2 min to create one XGBoost classifier with data from 900,000 virtual patients using a 64-bit
Windows 11 platform with an Intel i7-9700 CPU, 16 GB RAM, and NVIDIA TITAN Xp with
12 GB VRAM. As an additional limitation, all processes in this study were only based on
simulations. The entire process was conducted based on simulations, and the obtained
values were compared with the true values in various scenarios. Nevertheless, to make the
values similar to real-world patients, demographic information was generated using the
internal data. However, further studies are required to validate the performance of TDM
with an ML classifier applied to real patients. Further studies overcoming these limitations
can help improve the TDM performance for safe vancomycin administration.

5. Conclusions

In this study, we created and tested a classifier that selects PK models using ML and
applied it to TDM to ensure safe vancomycin administration. The accuracy of the classifier
ranged from 20.8 to 71.6% in various simulation scenarios. The TDM performance using
the ML classifier showed stable results compared with using single models. In the era of
big data, this new method for TDM model selection will develop further as the amount of
available information increases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14051023/s1, Table S1. PK model and patient char-
acteristics used for classifier training and internal validation. Table S2. Hyperparameter ranges
used for tuning the machine learning (ML) models. Table S3. PK model and patient characteris-
tics in the external validation set. Table S4. The confusion matrix of the decision tree (DT) model
in each scenario. Table S5. The precision, recall, and F1-Score of the decision tree (DT) model in
each scenario. Table S6. The confusion matrix of the random forest (RF) model in each scenario.
Table S7. The precision, recall, and F1-Score of the random forest (RF) model in each scenario.
Table S8. The confusion matrix of the XGBoost model in each scenario. Table S9. The precision, recall,
and F1-Score of XGBoost in each scenario. Table S10. The mean percent error (MPE) and relative
root mean squared error (rRMSE) of the predicted AUC relative to the true AUC of each simula-
tion scenario using objective function values (OFVs) for model selection and weighted averaging.
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Figure S1. The feature importance plot of the XGBoost model in a single dose. The x-axis represents
the XGBoost importance value of the feature, whereas the y-axis represents the concentration used
for feature creation. Out of the 108 features created, 10 features with the highest importance values
are presented. (A) Trough, (B) peak and trough, (C) peak, mid, and trough, and (D) one-hour interval
sampling. Figure S2. The feature importance plot of the XGBoost model in the steady state. The
x-axis represents the XGBoost importance value of the feature, whereas the y-axis represents the
concentration used for feature creation. Out of the 108 features created, 10 features with the highest
importance values are presented. (A) Trough, (B) peak and trough, (C) peak, mid, and trough, and
(D) one-hour interval sampling.
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