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Using newborn screening analytes 
to identify cases of neonatal sepsis
Deshayne B. Fell1,2,3, Steven Hawken1,3,4, Coralie A. Wong3, Lindsay A. Wilson4, Malia S. Q. 
Murphy4, Pranesh Chakraborty5,6, Thierry Lacaze-Masmonteil7, Beth K. Potter1,3  
& Kumanan Wilson3,4,8

Neonatal sepsis is associated with high mortality and morbidity, yet challenges with available 
diagnostic approaches can lead to delays in therapy. Our study assessed whether newborn screening 
analytes could be utilized to identify associations with neonatal sepsis. We linked a newborn screening 
registry with health databases to identify cases of sepsis among infants born in Ontario from 2010–
2015. Correlations between sepsis and screening analytes were examined within three gestational age 
groups (early preterm: <34 weeks; late preterm: 34–36 weeks; term: ≥37 weeks), using multivariable 
logistic regression models. We started with a model containing only clinical factors, then added groups 
of screening analytes. Among 793,128 infants, 4,794 were diagnosed with sepsis during the neonatal 
period. Clinical variables alone or in combination with hemoglobin values were not strongly predictive of 
neonatal sepsis among infants born at term or late preterm. However, model fit improved considerably 
after adding markers of thyroid and adrenal function, acyl-carnitines, and amino acids. Among infants 
born at early preterm gestation, neither clinical variables alone nor models incorporating screening 
analytes adequately predicted neonatal sepsis. The combination of clinical variables and newborn 
screening analytes may have utility in identifying term or late preterm infants at risk for neonatal sepsis.

Neonatal sepsis, broadly defined as a systemic infection of predominantly bacterial origin in neonates1–3, is a 
leading cause of infant mortality and morbidity around the world1,4–10. Even in high-resource countries where 
the incidence of confirmed neonatal sepsis is relatively low (1–5 cases per 1,000 live births3,5,9,11,12) and all such 
infants would receive treatment, approximately 40% will either die or suffer major developmental disabilities13. 
Although reported incidence rates of neonatal sepsis from low-resource countries are generally higher14–16, cases 
are likely underascertained owing to many factors, including a lack of access to care, poor quality care, and a lack 
of adequate laboratory services16,17. In one review of community-based studies from low- and middle-income 
countries, incidence rates ranged from 49 to 170 cases per 1,000 live births across 11 studies16.

The successful clinical management of neonatal sepsis is predicated on early detection and prompt initiation of 
antibiotic therapy; however, this is difficult to achieve in practice owing to the non-specific signs and symptoms of 
sepsis, low sensitivity of the gold standard blood culture test (particularly following intrapartum antibiotic proph-
ylaxis), and delayed availability of culture results (approximately 48–72 hours after blood collection)7–9,12,18–21. To 
prevent negative health outcomes in the face of these diagnostic challenges, antibiotic therapy is generally initi-
ated in all clinically-suspected cases of neonatal sepsis22. However, concerns are being increasingly raised about 
this recommended approach22,23, as it contributes to unnecessary or prolonged antibiotic therapy, antimicrobial 
resistance, and heightened risk of nosocomial infection due to increased length of hospital stay while the infant 
is monitored10,12,24.

Given current challenges with diagnosis, and the high mortality and morbidity associated with neonatal sep-
sis, particularly in low-income countries, there is a need to develop novel approaches for identifying neonates at 
greatest risk. Numerous biomarkers have been studied to assess their ability to identify neonatal sepsis, but thus 
far no individual biomarkers have demonstrated adequate sensitivity and specificity3,8,12,23 and many have impor-
tant limitations that preclude their utility for neonatal sepsis diagnosis25. High-dimensional biology, including 
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the study of the metabolome, is increasingly being used to help provide insights on complex biological processes 
and disorders26. Newborn screening measures a diverse panel of analytes, including amino acids, acyl-carnitines, 
hemoglobin variants, and enzymatic and endocrine markers to identify infants with rare, treatable conditions. We 
hypothesized that newborn screening analytes — either individually or in combination12,25,27 — could be utilized 
beyond their traditional application to identify neonates at high risk for sepsis. For example, differences in these 
analytes could reflect underlying susceptibility to neonatal sepsis through suboptimal metabolic responses to the 
physiologic stress associated with infection. Alternatively, any differences could also represent the sequelae of 
early subclinical infection as a manifestation of associated catabolic stress. Our primary objective, therefore, was 
to assess whether there was any association between newborn screening analyte profiles and neonatal sepsis in a 
large, population-based cohort of infants.

Results
Characteristics of study population.  Overall, there were 793,128 infants in the full study cohort follow-
ing exclusions (Fig. 1), 4,794 of whom received a diagnosis of sepsis during the neonatal period (6.04 per 1,000 
screened infants; Table 1). Rates of sepsis were highest among infants born at early preterm gestation (86.6 per 
1,000) and decreased with increasing gestational age at birth. Almost 40% of the total number of cases of neonatal 
sepsis occurred among infants born prior to 37 weeks’ gestation (Table 1). Rates of sepsis were also higher among 
neonates with a birth weight under 2,500 grams and among those born from a multifetal gestation. The timing of 
sample collection was later among infants diagnosed with sepsis during the neonatal period (median of 44 hours) 
compared to the total population (median of 28 hours). After excluding 4,713 infants with missing gestational age 
information, there were 731,841 infants born at term gestation (92.8%), 44,754 late preterm infants (5.7%), and 
11,820 early preterm infants (1.5%). Corresponding rates of neonatal sepsis per 1,000 screened infants within 
each of these gestational age groups were: 4.03, 18.0, and 86.6, respectively. The distribution of baseline character-
istics in the term cohort subset was similar to the full group of term births (Table 2).

Model performance by gestational age.  Term subset (≥37 weeks).  The results from the predictive 
modelling are summarized in Table 3. In the term birth subset of 32,406 infants, the addition of the relative 
fetal-to-adult Hb level in Model 2 to the baseline model containing only clinical characteristics (Model 1) did 
not improve the fit of the model, as measured by the c-statistic. However, the fit improved substantially (adjusted 
c-statistic increased from 0.577 in Model 1 to 0.704 in Model 3) when select non-mass spectrometry derived new-
born screening analytes (17-OHP and TSH) were added, and improved further still (adjusted c-statistic of 0.848) 
when remaining analytes were added in the final model (Model 4). The addition of screening analytes in Models 
3 and 4 also significantly improved the predicted probabilities between events and non-events compared with the 

Figure 1.  Study flow diagram.
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preceding model (IDI values shown in Table 3). Higher levels of 17-OHP were associated with an increase in the 
likelihood of neonatal sepsis while higher TSH level was associated with a decreased likelihood even after other 
screening analytes were added in the final model.

Late preterm (34–36 weeks).  We observed similar patterns in model performance among infants born at late 
preterm gestational ages. Compared to the baseline model containing only clinical factors, the addition of the rel-
ative fetal-to-adult Hb level (Model 2) did not improve the model fit; however, the optimism-adjusted c-statistic 
increased when 17-OHP and TSH were added (from 0.685 in Model 2 to 0.725 in Model 3) and again when the 
additional screening analytes/analyte ratios were added to the final model (adjusted c-statistic increased to 0.782). 
The IDI also increased significantly in Models 2, 3, and 4 (comparing with Models 1, 2, and 3, respectively); how-
ever, to a lesser magnitude than the incremental improvements observed among the term infants (Table 3). Again, 
in this subgroup, 17-OHP was associated with an increase in the risk of neonatal sepsis; however, there was no 
association between TSH level and sepsis in the fully-adjusted final model.

Early preterm (<34 weeks).  Compared with the other gestational age subgroups, the models did not perform 
well in early preterm infants. The addition of the relative fetal-to-adult Hb level at birth did not improve the fit 

Characteristics

Full study population n = 793,128 Neonatal sepsis n = 4,794

n % n % Rate per 1,000 screened infants

All infants 793,128 100 4,794 100 6.0

Infant sex

  Female 387,221 48.8 2,084 43.5 5.4

  Male 405,901 51.2 2,710 56.6 6.7

  Unknown 6 0.0 0 0.0 —

Gestational age (completed weeks)

  Mean ± SD 38.86 ± 1.72a 36.63 ± 3.92b

  <34 11,820 1.5 1,024 21.4 86.6

  34–36 44,754 5.6 805 16.8 18.0

  ≥37 731,841 92.3 2,946 61.5 4.0

  Missing 4,713 0.6 19 0.4 4.0

Birth weight (grams)

  Mean ± SD 3,355.01 ± 550.98c 2,882.14 ± 947.01d

  <2,500 46,131 5.8 1,558 32.5 33.8

  ≥2,500 745,530 94.0 3,225 67.3 4.3

  Missing 1,467 0.2 11 0.2 7.5

Multiple birth

  No 765,350 96.5 4,290 89.5 5.6

  Yes 27,778 3.5 504 10.5 18.1

Age at blood spot collection (hours)

  Median (IQR) 28.45 (24.67–42.72) 43.81 (25.73–72.77)

  ≤72 739,436 93.2 3,565 74.36 4.8

  >72 53,682 6.8 1,229 25.6 22.9

  Missing 10 0.0 0 0.0 —

Any total parenteral nutritione

  No 785,907 99.1 4,163 86.8 5.3

  Yes 6,172 0.8 629 13.1 101.9

  Missing 1,049 0.1 f — —

Neonatal deathg

  No 792,879 100.0 4,750 99.1 60.

  Yes 249 0.0 44 0.9 176.7

Table 1.  Characteristics of the study population and frequency of neonatal sepsis. IQR: inter-quartile range; 
SD: standard deviation. aMean (SD) within gestational age groups in full study population: <34 weeks: 31.2 
(1.97); 34–36 weeks: 35.4 (0.76); ≥37 weeks: 39.2 (1.15). bMean (SD) within gestational age groups in infants 
diagnosed with neonatal sepsis: <34 weeks: 30.3 (2.24); 34–36 weeks: 35.0 (0.84); ≥37 weeks: 39.3 (1.23). cMean 
(SD) within birth weight groups in full study population: <2,500 grams: 2,099 (278); ≥2,500 grams: 3,433 
(458). dMean (SD) within birth weight groups in infants diagnosed with neonatal sepsis: <2,500 grams: 1,731 
(475); ≥2,500 grams: 3,438 (522). eTotal parenteral nutrition alone or in combination with other infant feeding 
method. f<6 infants had missing information. The number has been combined with the ‘no’ category. gRate of 
neonatal death: without a diagnosis of neonatal sepsis: 0.3 per 1,000; with a diagnosis of neonatal sepsis: 9.2 per 
1,000.
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of the model beyond the predictive ability of the nested model containing clinical variables only, nor did the 
addition of other non-mass spectrometry derived newborn screening analytes in Model 3 (TSH or 17-OHP). The 
c-statistic adjusted for optimism in the final model (Model 4) was 0.667, only minimally different from the base-
line model (optimism-adjusted c-statistic 0.65) and of a magnitude indicating poor predictive ability. When we 
reanalyzed these models including early preterm infants who had received a transfusion, the adjusted c-statistic 
showed little change across the models (0.74 in Model 1 and 0.75 in Model 4).

Heat map analysis.  Supplementary Figs S1 through S6 present correlational heat maps for infants with 
and without a diagnosis of neonatal sepsis. Among term infants, with or without sepsis, the strongest positive 
correlation was between carnitine and acetylcarnitine (ρ = 0.8, Supplementary Figs S1 and S2), while the strong-
est negative correlation was between methylmalonylcarnitine and relative fetal-to-adult Hb level (ρ = −0.3, 
Supplementary Figs S1 and S2). The strongest positive and negative correlations among non-septic infants born 
at late preterm gestation were also among acyl-carnitines and of similar magnitude (Supplementary Fig. S3); 
however, among septic infants born at late preterm gestation, carnitine and acetylcarnitine (ρ = 0.9) and leu-
cine and TSH (ρ = −0.3) were the strongest positive and negative correlations (Supplementary Fig. S4). Among 
very preterm infants, the majority of correlations between pairs of analytes were negative, irrespective of sepsis 
(Supplementary Figs S5 and S6).

Discussion
Reducing the burden and harms associated with neonatal sepsis is an international priority warranting fur-
ther exploration of the potential for early detection of this condition28. In this large, population-based study we 
assessed whether analyte values from newborn screening samples taken close to the time of birth demonstrated 
the potential to identify infants at higher likelihood of developing sepsis during the neonatal period. Our results 
indicate that the newborn screening profiles of infants with neonatal sepsis are different from those of non-septic 
infants. In particular, a combination of baseline clinical variables and newborn screening analytes performed well 

Characteristics

Early preterm births (<34 
weeks’ gestation) n = 11,820

Late preterm births (34–36 
weeks’ gestation) n = 44,754

Term births (≥37 weeks’ gestation)

All n = 731,841
Term cohort 
subset n = 32,406

n % n % n % n %

All infants 11,820 100 44,754 100 731,841 100 32,406 100

Neonatal sepsis 1,024 86.6 a 805 18.0a 2,946 4.0a 2,946 —b

Infant sex

  Female 5,386 45.6 20,666 46.2 353,838 49.0 15,694 48.4

  Male 6,434 54.4 24,088 53.8 372,997 51.0 16,712 51.6

  Unknown 0 0.0 0 0.0 6 0.0 0 0.0

Birth weight (grams)

  Mean ± SD 1,730 ± 510.12 2,602.32 ± 482.02 3,426.38 ± 476.52 3,428.85 ± 485.75

  <2,500 11,106 94.0 18,940 42.3 15,972 2.2 733 2.4

  ≥2,500 704 6.0 25,779 57.6 714,784 97.7 31,593 97.5

  Missing 10 0.1 35 0.1 1,085 0.1 40 0.1

Multiple birth

  No 8,058 68.2 34,318 76.7 718,308 98.2 31,792 98.1

  Yes 3,762 31.8 10,436 23.3 13,533 1.8 614 1.9

Age at blood spot collection (hours)

  Median (IQR) 73.03 (36.17–118.38) 38.57 (26.13–60.42) 27.87 (24.63–40.92) 28.15 (24.65–
42.10)

  ≤72 5,828 49.3 36,319 81.2 693,981 94.8 30,561 90.65

  >72 5,991 50.7 8,435 18.8 37,851 5.2 1,845 5.7

  Missing c — 0 0.0 9 0.0 c —

Any total parenteral nutritiond

  No 8,214 69.5 43,438 97.1 729,557 99.7 32,227 99.4

  Yes 3,597 30.4 1,259 2.8 1,301 0.2 135 0.4

  Missing 9 0.1 57 0.1 983 0.1 44 0.1

Neonatal death

  No 11,751 99.4 44,725 99.9 731,692 100 32,391 100.0

  Yes 69 0.6 29 0.1 149 0.0 15 0.0

Table 2.  Characteristics of the study population by gestational age group. IQR: inter-quartile range; SD: 
standard deviation. aRate per 1,000 infants. bRate not reported for the term cohort subset, as the denominator 
size was fixed at a ratio of 1:10 for infants with and without sepsis, respectively. c<6 infants had missing 
information. The number has been combined with the ‘>72 hours’ category. dTotal parenteral nutrition alone or 
in combination with other infant feeding method.
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Model c-statistica,b
c-statistic 
adjusteda,b

Optimism 
correctiona,b

AIC 
(lower is 
better)

IDIc (95% 
CI)

NRId (95% 
CI)

Term births (≥37 weeks’ gestation)

Model 1e Infant sex, gestational age, birth weight, 
plurality, and TPN 0.579 0.577 0.002 19372 — —

Model 2 Model 1 variables + relative fetal-to-
adult Hb level 0.580 0.577 0.003 19372 0.000075 

(0, 0.0002)
0.010446 
(−0.0271, 
0.048)

Model 3 Model 2 variables + 17 − OHP + TSH 0.705 0.704 0.001 17977
0.063638 
(0.0584, 
0.0688)

0.55832 
(0.521, 
0.5957)

Model 4f

Model 3 variables + restricted cubic 
spline terms for the top five ranked 
analytes/analyte ratios + remaining 
analytes/analyte ratios until maximum 
number of parameters was reached 
(maximum number of parameters: 294)

0.848 0.848g —g 13788
0.21417 
(0.2046, 
0.2238)

0.97868 
(0.9443, 
1.013)

Top 10 analytes/analyte ratiosh

Tyrosine; Tyrosine:Relative fetal-to-adult Hb level; Malonylcarnitine:Relative 
fetal-to-adult Hb level; Tetradecenoyl carnitine:Relative fetal-to-adult Hb level; 
Dodecenoylcarnitine:Phenylalanine; Tetradecenoyl carnitine; Malonylcarnitine; 
Glutarylcarnitine:Alanine; Carnitine:Dodecenoylcarnitine; Tetradecenoyl 
carnitine:Alanine

Late preterm births (34–36 weeks’ gestation)

Model 1e Infant sex, gestational age, birth weight, 
plurality, and TPN 0.684 0.683 0.001 7722 — —

Model 2 Model 1 variables + relative fetal-to-
adult Hb level 0.687 0.685 0.002 7711

0.00042 
(0.0001, 
0.0007)

0.10901 
(0.04, 
0.178)

Model 3 Model 2 variables + 17 − OHP + TSH 0.727 0.725 0.002 7588
0.003943 
(0.0024, 
0.0055)

0.34868 
(0.279, 
0.4184)

Model 4f

Model 3 variables + restricted cubic 
spline terms for the top five ranked 
analytes/analyte ratios + remaining 
analytes/analyte ratios until maximum 
number of parameters was reached 
(maximum number of parameters: 80)

0.801 0.782 0.019 7086
0.016826 
(0.0146, 
0.019)

0.69197 
(0.6274, 
0.7565)

Top 10 analytes/analyte ratiosh

Dodecanoylcarnitine:Relative fetal-to-adult Hb level; Decanoylcarnitine; 
Dodecanoylcarnitine; Dodecenoylcarnitine:Relative fetal-to-adult Hb 
level; Dodecenoylcarnitine:Phenylalanine;  Decanoylcarnitine:Relative fetal-to-adult 
Hb level; Valerylcarnitine:Methylglutarylcarnitine; Malonylcarnitine:17-OHP; 
Methylglutarylcarnitine; Decanoylcarnitine:Phenylalanine

Early preterm births (<34 weeks’ gestation)

Model 1e Infant sex, gestational age, birth weight, 
plurality, and TPN 0.653 0.650 0.003 6696 — —

Model 2 Model 1 variables + relative fetal-to-
adult Hb level 0.653 0.649 0.004 6695

0.000258 
(−0.0002, 
0.0007)

0.079332 
(0.0166, 
0.142)

Model 3 Model 2 variables + 17 − OHP + TSH 0.658 0.654 0.004 6678
0.002719 
(0.0014, 
0.0041)

0.074809 
(0.0107, 
0.1389)

Model 4f

Model 3 variables + restricted cubic 
spline terms for the top five ranked 
analytes/analyte ratios + remaining 
analytes/analyte ratios until maximum 
number of parameters was reached 
(maximum number of parameters: 102)

0.701 0.667 0.034 6559
0.016748 
(0.0136, 
0.0199)

0.33787 
(0.2746, 
0.4011)

Top 10 analytes/analyte ratiosh

Methylglutarylcarnitine; Valerylcarnitine:Methylglutarylcarnitine; Tyrosine:Valine; 
Methylmalonylcarnitine:Phenylalanine; Dodecanoylcarnitine:Valine; 
Methylmalonylcarnitine:Valine; Dodecanoylcarnitine:17-OHP; 
Octadecenoylcarnitine:Arginine; Dodecanoylcarnitine:Phenylalanine; 
Hexadecanoylcarnitine:Arginine

Table 3.  Model performance comparing baseline clinical model (Model 1) and clinical model plus newborn 
screening analytes for prediction of neonatal sepsis. Abbreviations: AIC: Akaike Information Criterion; CI: 
confidence interval; Hb: hemoglobin; IDI: Integrated Discrimination Improvement; NRI: Net Reclassification 
Improvement; 17-OHP: 17-hydroxyprogesterone; TPN: total parenteral nutrition; TSH: thyroid stimulating 
hormone aC-statistic is equivalent to the area under the curve (AUC). bAdjusted c-statistic is based on internal 
validation results using 200 bootstrap samples. cIntegrated Discrimination Improvement (IDI) quantifies the 
impact of additional variables on the average sensitivity of the preceding nested model (e.g., the IDI shown for 
Model 2 compares Model 2 with Model 1, etc.). dNet Reclassification Improvement (NRI) quantifies the net 
increase/decrease in predicted values for the outcome compared to the preceding nested model (e.g., the NRI 
shown for Model 2 compares Model 2 with Model 1, etc.). eBaseline model containing only clinical variables. 
fFinal fitted model. gC-statistic is unadjusted due to non-convergence of optimism-corrected model. hRank 
ordered by absolute value of the regression parameter in Model 4.
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in identifying neonatal sepsis among late preterm and term infants. In these two gestational age groups, clinical 
variables alone or in combination with hemoglobin values were not strongly predictive of developing neonatal 
sepsis. However, the model fit improved considerably after adding markers of thyroid and adrenal dysfunction, 
along with acyl-carnitines, enzyme makers, and amino acids, with adjusted c-statistic values indicating a strong 
model for identifying cases of neonatal sepsis. However, among infants born at early preterm gestational ages (i.e., 
<34 weeks), clinical variables alone were markedly less predictive of neonatal sepsis and the addition of newborn 
screening analytes minimally altered the predictive ability of the model. These results provide insights into the 
pathophysiology of neonatal sepsis and may provide guidance for the identification of early biomarkers.

Different analyte patterns associated with neonatal sepsis in infants could reflect differences in underlying 
physiology that may predispose infants towards the condition. For example,various studies have suggested that ele-
vated fetal hemoglobin levels may predispose infants to adverse health outcomes, including neonatal sepsis29–31.  
Tighter oxygen binding capacity and thus inferior oxygen delivery to tissues may play a role in susceptibility to sepsis. 
However, in our models, the addition of fetal hemoglobin to baseline clinical characteristics had no impact on the 
model’s ability to identify infants with neonatal sepsis in any of the gestational age groups. We also hypothesized a 
priori that measures of thyroid and adrenal function (TSH and 17-OHP, respectively) could be associated with neo-
natal sepsis. A low level of cortisol is a marker of inadequate adrenal response to illness32,33, and links have previously 
been identified between levels of TSH and neonatal sepsis34. We found the addition of markers of thyroid and adrenal 
function did improve the model fit, but not as substantially as the addition of the acyl-carnitines and amino acids.

Alternatively, different analyte patterns associated with neonatal sepsis in infants could reflect the stress 
response to sepsis. Our analyses demonstrate that in late preterm and term infants, acyl-carnitines, enzyme 
markers, and amino acids are the newborn screening analytes most strongly associated with neonatal sepsis. 
Associations between acyl-carnitines and sepsis have been previously documented, with heightened analyte levels 
occurring among septic infants35,36 and positive correlations being reported between certain acyl-carnitine levels 
and 28-day mortality37. High acyl-carnitine levels have also been reported in other cases of injury35 and catabolic 
stress, which is likely the mechanism of their association with neonatal sepsis38–40. In cases of stress, fatty acid 
oxidation is disrupted, resulting in higher levels of circulating acyl-carnitines36. Abnormal carnitine metabo-
lism can then contribute to the development of septic shock and multi-system organ damage36. Our hypothesis 
that catabolic stress mediated the associations we observed also explains the model performing less well among 
early preterm infants, many of whom experience catabolic stress even in the absence of sepsis41. However, the 
changes in acyl-carnitines and amino acids we observed may also reflect differences in metabolic processes that 
could predispose infants towards neonatal sepsis. In several of the conditions screened for with newborn screen-
ing, such as medium-chain acyl-CoA dehydrogenase deficiency, an infectious stressor can result in metabolic  
decompensation42. The subtle alterations we observed may reflect milder changes in the same pathways that are 
altered in these conditions.

A strength of our study was the size of the cohort — after exclusions, we were able to analyze data from 
nearly 800,000 newborns, 4,800 of whom received a diagnosis of sepsis during the neonatal period. This large, 
population-based cohort provided substantial statistical power to perform the complex analyses needed to develop 
our models. Nevertheless, our study also had several important limitations. The exact timing of onset of clinical 
signs of neonatal sepsis was not documented in our data, and could have occurred prior to blood spot collection, 
which typically occurs between 24 and 72 hours after birth. In the hospitalization database, we were also unable to 
reliably distinguish between early- and late-onset sepsis. Since early- and late-onset disease may differ in their clin-
ical presentation and etiology3, it is possible that newborn screening analytes could also display distinct patterns 
according to the timing of onset. In addition, we did not capture diagnoses of late-onset sepsis after 28 days of age. 
Finally, the use of diagnostic codes in administrative databases to identify cases of neonatal sepsis is expected to 
generate some measurement error due to low sensitivity of the codes28. Although it is likely that many of the infants 
who received an ICD-10-CA code for sepsis (P36) in the hospitalization database had a confirmed diagnosis of 
sepsis based on blood culture, we could not distinguish these confirmed diagnoses from infants classified on the 
basis of possible sepsis. False-negative classification of neonatal sepsis owing to low sensitivity would be expected 
to dilute the strength of our findings. The low prevalence of neonatal sepsis could also result in more false-positive 
results despite the high specificity; however, we expect any false-positive classification of sepsis is likely identifying 
other serious neonatal illness also causing catabolic stress. To our knowledge, the diagnostic codes for sepsis have 
not been validated against medical record data, and this would be informative for future studies43.

Our findings have value in identifying future directions for the early detection of neonatal sepsis. Future stud-
ies should examine whether measurement of markers of catabolic stress soon after birth can help identify neona-
tal sepsis in infants who would otherwise not be considered at risk for the condition. Our findings complement 
those recently published by Sarafidis and colleagues44, whose study found substantial differences in the metabolic 
profiles of urine samples from septic and non-septic infants. As with our study, they also noted significantly 
heightened levels of several amino acids among late-onset neonatal sepsis cases, which the authors hypothesized 
may suggest disturbances in protein metabolism44.

Conclusion
In this study, we sought to assess whether there was any association between newborn screening analyte profiles 
and neonatal sepsis. Our models suggest potential utility in using a combination of clinical variables and newborn 
screening analytes to identify neonatal sepsis among infants born at term or late preterm gestational ages, among 
whom illness may not otherwise be suspected. Indications of catabolic stress in newborn screening analyte values 
can serve to prompt clinicians to further explore the possibility of sub-clinical or impending illness, potentially 
resulting in earlier diagnosis and treatment, and ultimately improved health outcomes.
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Methods
Ethical approval and data access.  This study was conducted at the Institute for Clinical Evaluative 
Sciences (ICES), a non-profit research organization with Prescribed Entity status under provincial privacy legis-
lation. ICES acts as a secure repository for Ontario’s newborn screening database and provincial health adminis-
trative databases, with the ability to deterministically link individual patient health information across databases 
using unique encoded identifiers to protect privacy and confidentiality. This study received approval from the 
institutional review board at Sunnybrook Health Sciences Centre, the ICES Privacy Office, the Ottawa Health 
Science Network Research Ethics Board, and the Children’s Hospital of Eastern Ontario Research Ethics Board. 
All procedures were performed in accordance with these institutions’ relevant guidelines and regulations. Given 
the Prescribed Entity status of ICES under Ontario’s privacy legislation, express consent was not required for the 
use of the anonymized health administrative data used in this study. The dataset from this study is held securely 
in coded form at ICES. While data sharing agreements prohibit ICES from making the dataset publicly available, 
access may be granted to those who meet pre-specified criteria for confidential access, available at www.ices.
on.ca/DAS. The full dataset creation plan is available from the authors upon request.

Study design, population and data sources.  We conducted a population-based retrospective cohort 
study of all live births in the province of Ontario between January 1, 2010 and December 30th, 2015 with com-
pleted newborn screening. Infants were identified using electronic screening records from Newborn Screening 
Ontario (NSO), a province-wide program that screens all infants for rare conditions using a panel of screening 
analytes obtained via heel prick blood spot, typically between 24 and 72 hours following birth. Each infant’s elec-
tronic screening record contained information on sex, gestational age (completed weeks), mode of feeding (i.e., 
breast, formula, total parenteral nutrition), timing of blood spot collection, transfusion of blood or blood prod-
ucts, and specific analyte values.

We excluded infants who screened positive for one or more disorders on the newborn screening panel, those 
with unsatisfactory sample quality, and those who were transfused prior to blood spot collection, as donor blood 
interferes with hemoglobin and galactosemia-related analytes. We additionally excluded those without contin-
uous eligibility for provincial health care benefits between birth and the end of the neonatal period (i.e., up to 
28 days of age). To ascertain the study outcome, we linked the study cohort to hospitalization records from the 
Canadian Institute for Health Information’s Discharge Abstract Database (DAD) using unique encrypted iden-
tifiers at ICES. For each admission of an infant to any Ontario hospital (including the birth hospitalization, any 
neonatal intensive care unit transfers/admissions or any other hospital admission), the DAD contains informa-
tion on up to 25 medical diagnoses (coded using the Canadian implementation of the International Classification 
of Diseases, 10th Revision [ICD-10-CA]45), medical interventions received, length of hospital stay and other data 
elements. Only hospitalizations with a date of admission within the neonatal period were included.

Variable measurement.  All newborn screening samples in Ontario are analyzed in one central labora-
tory using standardized biochemical assays and reported in specific measurement units for each analyte. The 49 
individual analytes used in our study (Table 4) included acyl-carnitines (n = 31), amino acids (n = 12), relative 
fetal-to-adult hemoglobin level (n = 1), endocrine markers (n = 2), and enzymes (n = 3). To minimize the impact 
of extreme analyte values in this screen-negative study population, we replaced the outliers (i.e., those below the 
0.001st percentile or above the 99.999th percentile) with the analyte value at those percentile levels. We computed 
analyte ratio combinations (n = 1,176) to capture the relative balance/imbalance between individual analytes after 
replacing any analyte value of zero with the next lowest positive value in the study population in order to have a 
mathematically valid denominator. We standardized all analytes to the standard normal distribution to render 
a unit change in each analyte comparable regardless of different measurement scales. This standardization was 
conducted by calendar week of birth of the screened infant to minimize variation due to any external factors, 
including changes in assays, seasonal effects, or other non-biological factors over the study period.

We defined neonatal sepsis cases as those infants with a diagnostic code for newborn sepsis (ICD-10-CA code: 
P36) recorded during any hospitalization initiated within the neonatal period (i.e., prior to 28 days of age), but we 
were unable to determine the exact time of onset or distinguish between early- or late-onset cases. A Canadian 
validation study of diagnostic codes for neonatal sepsis using administrative health data found sensitivity and 
specificity values of 38.4% and 99.7%, respectively, for the P36 code when validated against a clinical perinatal 
database28.

Statistical analyses.  We described baseline characteristics of the study population using frequency dis-
tributions and descriptive statistics, and calculated crude rates of neonatal sepsis per 1,000 screened infants. As 
gestational age is strongly correlated with both incidence of neonatal sepsis and with newborn screening analyte 
values46–49, we made an a priori decision to stratify all remaining analyses into subgroups defined by gestational 
age: <34 weeks (early preterm), 34–36 weeks (late preterm), and ≥37 weeks (term). To improve the statistical 
efficiency of predictive modelling within the large group of term infants, we subset the data by randomly selecting 
10 non-septic infants for every infant diagnosed with sepsis.

To avoid over-fitting and conserve degrees of freedom in our gestational age-specific models, a priori, we 
determined the maximum number of model parameters that could be accommodated in the analysis for each ges-
tational age group, based on a requirement of 10 sepsis cases per parameter. We then used several steps to reduce 
the number of analytes and analyte ratios prior to modeling. First, we computed crude Spearman’s rank correla-
tion coefficients between sepsis and each individual standardized analyte value and standardized analyte ratio. We 
then computed partial Spearman’s correlations between sepsis and all individual standardized analytes, as well as 
the top 100 ranked standardized analyte ratios based on crude Spearman’s correlation (top 50 ranked standard-
ized analyte ratios for the late preterm birth group owing to the low number of sepsis cases in that gestational age 
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stratum), adjusted for infant sex, gestational age, birth weight, plurality, and mode of feeding. We then prioritized 
variables for inclusion in multivariable modelling in order of magnitude of partial Spearman’s correlation, and 
the constraint requiring at least 10 sepsis cases for every parameter included in the model. Variables modelled 
categorically, or using restricted cubic splines required additional degrees of freedom and thus represented more 
than one regression parameter.

The models were developed using multivariable logistic regression with sepsis as the binary dependent vari-
able. We chose models based on both pathophysiological parameters as well as mechanism of measurement. We 
began with a baseline model (Model 1) containing only the following clinical factors: infant sex (male vs. female), 
continuous gestational age (weeks), continuous birth weight (grams), plurality (singleton vs. twin or higher-order 
multiple), and mode of feeding (total parenteral nutrition vs. other). To this baseline clinical model, we then 
added the relative fetal-to-adult hemoglobin (Hb) level (Model 2), which represents a marker of oxygen delivery 
to tissues and is measured using high performance liquid chromatography. Next, markers of endocrine function 
and analytes measurable using non-mass spectrometry methods were added in Model 3 (thyroid stimulating 
hormone [TSH] and 17-hydroxyprogesterone [17-OHP]). In the final model (Model 4), we added the remaining 
analytes/analyte ratios (acyl-carnitines, enzyme markers, and amino acids) according to rank order based on 
Spearmans’s correlation until the maximum number of parameters was reached. We used restricted cubic spline 
terms to model the top five ranked analytes/analyte ratios to capture non-linear associations. The decision of how 
many analytes to model using splines was made post-hoc by inspection of the ranked partial Spearman’s correla-
tions, and using splines to model a small number of the top analytes if there was a sharp drop-off in correlation 
after the first few ranked analytes. In a sensitivity analysis of the early preterm subgroup, we re-ran the models 
while including infants with a documented transfusion of blood or blood products, and adjusted for transfusion 
in the first nested model containing only clinical variables (Model 1) as well as all subsequent models.

We assessed model discrimination using the area under the receiver operating characteristic curve (AUC) and 
used the Integrated Discrimination Improvement (IDI)50 to quantify the impact of additional groups of analytes 
on the average sensitivity of the preceding nested model. We also computed the Net Reclassification Improvement 
(NRI) to quantify the net increase/decrease in predicted values for the outcome compared to the preceding nested 
model50. Since we were unable to partition our dataset into random subsamples for validation purposes owing 
to the low prevalence of sepsis, we internally validated our model performance using a bootstrap approach as 
described by Harrell et al.51. We drew repeated samples with replacement to produce 200 bootstrap samples, each 
the same size as the original dataset. The average difference in c-statistic values between the original model and 
each bootstrap sample was used to calculate an optimism-adjusted c-statistic51 and we additionally report the 

Acyl-carnitines (n = 31)

C0 (carnitine) C16 (hexadecanoylcarnitine)

C2 (acetylcarnitine) C18 (octadecanoylcarnitine)

C3 (propionylcarnitine) C18:1 (octadecenoylcarnitine)

C4 (butyrylcarnitine) C18:2 (octadecadienylcarnitine)

C5 (valerylcarnitine) C4OH (hydroxybutyrylcarnitine)

C5:1 (Tiglylcarnitine) C5DC (glutarylcarnitine)

C6 (hexanoylcarnitine) C5OH (hydroxyvalerylcarnitine)

C8 (octanoylcarnitine) C6DC (methylglutarylcarnitine)

C8:1 (octenoylcarnitine) C14:OH (3-hydroxytetradecanoylcarnitine)

C10 (decanoylcarnitine) C16:OH (hydroxyhexadecanoylcarnitine)

C10:1 (decenoylcarnitine) C16:1OH (hydroxyhexadecenoylcarnitine)

C12 (dodecanoylcarnitine) C18OH (3-hydroxystearoylcarnitine)

C12:1 (dodecenoylcarnitine) C18:1OH (hydroxyoctadecenoylcarnitine)

C14 (tetradecanoylcarnitine) C3DC (malonylcarnitine)

C14:1 (tetradecenoyl carnitine) C4DC (methylmalonylcarnitine)

C14:2 (tetradecadienylcarnitine)

Amino acids and related markers (n = 12)

Arginine Tyrosine

Phenylalanine Glycine

Alanine Argininosuccinate

Leucine Methionine

Ornithine Valine

Citrulline Succinylacetone

Relative fetal-to-adult hemoglobin (Hb) level 
(n = 1)

Fetal hemoglobin (HbF + HbF1)/(Fetal hemoglobin (HbF + HbF1) + Adult 
hemoglobin (HbA))

Endocrine markers (n = 2)
17-hydroxyprogesterone (17-OHP)

Thyroid stimulating hormone (TSH)

Enzyme markers (n = 3)

Biotinidase (BIOT)

Galactose-1-Phosphate Uridyltransferase (GALT)

Immunotripsinogen (IRT)

Table 4.  Newborn screening analytes used in model development.
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Akaike Information Criterion (AIC) for each model, which is a metric that rewards model goodness of fit, but 
includes a penalty against a large number of parameters to reduce overfitting. Lower AIC values are indicative 
of improved model fit, relative to preceding nested models. We generated correlation heat maps to visualize the 
relationships between analytes and differences in correlation patterns between infants with and without neonatal 
sepsis. Analyses were conducted with SAS version 9.4 (SAS Institute, Inc., Cary, North Carolina) and with R/R 
Studio using the RMS and HMISC packages.
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