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Abstract
There are two predominant theories for lumen formation in tissue morphogenesis; cavitation
driven by cell death, and membrane separation driven by epithelial polarity. To define the
mechanism of lumen formation in prostate acini we examined both theories in several cell lines
grown in 3D Matrigel culture. Lumen formation occurred early in culture and preceded the
expression of cell death markers for apoptosis (active caspase 3) and autophagy (LC-3). Active
caspase 3 was expressed by very few cells and inhibition of apoptosis did not suppress lumen
formation. Despite LC-3 expression in all cells within a spheroid, this was not associated with cell
death. However, expression of the prostate secretory protein coincided with lumen formation and
subsequent disruption of polarized fluid movement led to significant inhibition of lumen
formation. This work indicates that lumen formation is driven by the polarized movement of fluids
and proteins in 3D prostate epithelial models and not by cavitation.
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Introduction
The functional unit of glandular tissues such as the prostate, breast and lung is based on a
spherical unit of epithelia known as an acinus. A single or bilayer of polarized epithelia,
encircle a liquid filled lumen. The mechanisms controlling epithelial polarity and lumen
formation are poorly understood, however, three dimensional (3D) modelling of cells in
vitro has provided valuable insights. The most important studies have arisen from 3D culture
of MDCK (Madin-Derby canine kidney) cells in collagen 1 gels 1. Results from this work
have led to the proposal that epithelia are driven by an intrinsic programme to form 3
surfaces; a basal surface which interacts with the basement membrane through integrin
molecules, a lateral membrane where adjacent cells contact through E-cadherin, tight
junctions and desmosomes and an apical membrane which faces the lumen 2,3. The
establishment of epithelial polarity was followed by cellular proliferation and lumen
formation occurred as the apical membranes separated 3. Membrane separation was also the
proposed mechanism of lumen formation in zebrafish models and blastocoel formation in
embryos4, 5. Under the control of tcf2, Na+/K+ATPase expression generates an
electrochemical gradients which drives ion movement and therefore fluid movement and
accumulation leading to the formation and maintenance of an open luminal space in vivo.
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Using 3D Matrigel models to recapitulate breast acini there has been much important
research by the groups of Brugge and Bissel to understand breast epithelial morphogenesis
and lumen formation 6, 7. Breast epithelia form solid cell masses which then cavitate using a
mechanism similar to that seen in embryogenesis 8, 9. Cavitation occurred by a co-ordinated
mechanism of inner cell mass death by apoptosis, and basement membrane signalling of
survival of the cells lining the cavity 10. Autophagy has also been implicated in
developmental tissue remodeling and differentiation and has been proposed as a mechanism
of cell death in breast luminal cell clearance 9, 11. Autophagy is activated during situations
of cellular stress and starvation, resulting in autophagic vacuoles which engulf cellular
proteins, organelles or cytoplasm to recycle nutrients. This has led to autophagy becoming
known as a self-eating mechanism - however it is uncertain whether it can cause cell death
directly. Autophagy acts as a clearance mechanism after apoptotic cell death and autophagy
gene deficient embryoid bodies fail to cavitate, due to the failure of autophagic cells to clear
the cellular debris 12.

Therefore, two predominant theories exist for lumen formation; cavitation by cell death, and
membrane separation. There have been no studies to examine lumen formation in prostate
acini. Our unpublished observations from 3D modeling indicated that prostatic lumen form
early in culture and they developed slowly as the acinus grows in size, with little observable
cell death and or cavitation. To understand the mechanism of lumen formation in prostatic
acini we examined both theories of lumen formation in several prostatic cell lines and
primary cell cultures. We discovered that lumen formation was driven by the polarized
movement of fluids and proteins, and not by an apoptotic driven cavitation.

Results
Caspase dependent cell death is infrequent in Prostatic acini

Prostatic three-dimensional cultures form hollow and solid acinus-like spheroids. This
morphology is not dependent on the malignant status of the cell 13, 14. To investigate lumen
formation we examined 4 cell lines (RWPE-1, BPH-1, Shmac 5, PC-3) all known to form
acini with a lumen. Formation of prostatic luminal structures occurs early in culture,
between days 2 to 4 of culture (figure 1), this is similar to the MDCK cell line 15, but in
contrast to the breast cell line MCF10A which does not develop lumen in 3D until day 10 to
12 16. Figure 1 illustrates the growth of BPH-1 acini at days 2, 3, 4, 5 and 7 of culture.
Phase images indicate that lumen can be seen by day 3 of culture. This was typical of all the
cell lines (results not shown). Using confocal microscopy to transect the acini, and
expression of prostate specific antigen (PSA) to mark the area of the cell, lumen formation
was visible by day 3. Our previous observations of prostatic acini indicated very little cell
death and electron microscopy indicates that very little cellular debris exists in the middle of
prostatic acini (figure 1b). To assess the level of cell death occurring in 3D acini we labelled
acini for active caspase 3 or LC-3 (markers of apoptosis and autophagy respectively). To
compare the level of apoptosis in acini grown from different prostate cell lines we counted
the number of active caspase 3 positive cells as a percentage of the total number of cells in
an acinus (summarised in figure 2a). There is always heterogeneity in the architecture of
acini within a culture derived from primaries or cell lines 17, 18, therefore, we established
the median count of 10 random acini. Spheroids grown from Hela cells clearly showed
strong staining for both markers at day 7 of culture with no lumen formation (figure 1c),
whilst MCF-10A cells showed positive expression of caspase 3, but not LC-3 (figure 1d).
Spheroids were analysed at each day for the presence of active caspase 3 but only after 7
days growth did we detect consistent positive staining for 2% of the total cells within an
acinus (figures 1a and 2a). Positive cells were found in the central lumen (figure 1a).
Analysis of the other three cell lines confirmed that caspase 3 staining was not detected
before lumen formation (at days 2 or 3, results not shown). In contrast, Hela cells grown for
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7 days under the same culture conditions demonstrated that many more cells (7.5%) were
positive for active caspase 3 (figure 2a) and were also positive at day 4 (results not shown).

Primary cultures form lumen at varying rates between different patient samples. On average
we found that 35% of acini were hollow at day 5 and 56% at day 7. Importantly, analysis of
hollow acini grown from three different primary epithelial cell cultures also found that a low
(0-3%) percentage of cells expressed active caspase 3 (figure 2b).

To test whether caspase dependent cell death was a requisite for lumen formation in
prostatic acini we cultured both RWPE-1 and BPH-1 cells in the presence of a general
caspase inhibitor (Z-VAD-FMK). In the presence of inhibitor we found a large and
significant (p<0.001) reduction in the number of acini containing cells expressing active
caspase 3 (figure 3a) but there was little or no reduction in the number of acini which were
hollow at 7 days (figure 3b) or 4 days culture (results not shown). Analysis of the acini by
confocal microscopy indicated that whilst the acini maintained a lumen, the lumen
frequently contained more cells (figure 3c and S1).

Prostatic acini express the autophagic marker LC3
Autophagy has been proposed as an alternative cell death mechanism involved in lumen
formation due to cavitation8. To investigate the presence of autophagy in 3D cultures of
prostatic acini we looked for expression of the marker LC-3. After 7 days culture in
Matrigel, RWPE-1 cells showed strong and punctate expression of LC-3 by
immunohistochemistry (figure 4a). This pattern of staining was associated with the presence
of active autophagic vacuoles and was seen in all cells of the acini and all acini examined.
LC-3 expression was not seen in any cell line at day 3 or 4 (results not shown). BPH-1 cells
showed very weak expression of LC-3 staining (figure 4c), to confirm expression,
immuoblotting was performed on all cell lines grown in monolayer and 3D (figure 4e). All
cell lines in both culture conditions showed the expression of both LC-3 I (18kDa) and LC-3
II (16kDa). Conversion of LC-3 I to LC-3 II by proteolysis is indicative of autophagic
activity and therefore confirms active autophagy in all cell lines. Only RWPE-1 cells
showed punctuate expression of LC-3 at day 3 or 4, this was in 30% of all acini counted and
within all the cells of those acini (results not shown). Punctate expression of LC-3 was
observed in acini grown from primary epithelia (3/3 tissue cultures) and in the luminal cells
of adult prostate tissue (3/3 tissue samples). Therefore, autophagy is present and active in
vivo (figure 4b and d). Since we have demonstrated cavitation does not occur in prostate
acini and that the expression of LC-3 is seen within the growing cells of an acinus, the
results suggest that autophagy is not causing cell death but plays another role.

The expression of polarization markers and lumen morphogenesis
To better understand how luminal structures form in 3D culture we examined the
contribution of cellular polarization. We tracked the appearance of several polarization
markers over 7 days in 3D BPH-1 and RWPE-1 culture (results summarized in table 1 and
table S1). Basal membrane polarization was tracked using the expression of β1 and β4
integrin. Expression of E-cadherin was used to identify the organization of lateral membrane
domains, while expression of PSA was used to indicate establishment of secretory function.
Acini were able to secrete a basement membrane, this was monitored using antibodies
specific to human laminin. Lumen formation was clearly visible after 3- 4 days in culture
(figure 5). After one day in culture both E-cadherin and β4 integrin were expressed at the
cell membrane of single or doublet cells. After 2 days in culture acini have 2-5 cells and β4
integrin expression was polarised to the basal membrane, whilst E-cadherin remained
expressed on all cell membranes. By day 3-4 expression of E-cadherin became basolateral
and expression was lost from the apical membrane. β1 integrin and laminin were not
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strongly expressed until day 7 of culture, at which time both markers were basally expressed
(supplementary figure S2). PSA expression was apparent after three days of culture (figure
1a). Beyond 7 days no visible differences in culture morphology or phenotype were noted.
Similar findings were found for the RWPE-1 cell line (supplementary table S1). PSA was
the only marker found in both cell lines to co-express with lumen formation.

Inhibition of polarised fluid movement prevents lumen formation
The finding that secretory protein expression follows the same time course as lumen
formation strongly indicated that polarized fluid movement may provide a mechanism for
lumen formation in adult epithelial acini, using a mechanism recently identified in Zebrafish
models4 and human embryos5. To test this idea we inhibited the paracellular fluid
movement of polarised epithelia using ouabain to disrupt the electrochemical gradient
established by the Na+/K+ ATPase. Figure 6a indicates that 1 nM ouabain could
significantly inhibit the formation of single lumen containing acini in BPH-1 and RWPE-1
acini. BPH-1 cells were particularly sensitive to ouabain, in control conditions 84% of acini
contained single lumen, whilst after treatment with ouabain only 13% of acini contained
single lumen. At 1nM Ouabain was not toxic to the cells, and the acini could be maintained
for several more days in culture (results not shown). Similar results were found if Ouabain
was added before or after lumen formation (at 2 days or 5 days culture). If Z-VAD-FMK
was added in combination with ouabain, there was no further inhibition of lumen formation
(results not shown). Immunohistochemical analysis revealed that inhibition of Na+/K+
ATPase caused multiple lumen formation or complete loss of lumen (figure 6b and d). This
finding was identical to the response of MDCK cysts to ouabain4. Ouabain also inhibited
PSA expression in both cell lines and E-cadherin expression in BPH-1 acini (figure 6).
Quantification of immunohistochemical results indicated that 88% of BPH-1 acini lost both
hollow lumen and expression of PSA, whilst 82% lost both lumen and had decreased E-
cadherin expression. RWPE-1 cells were less sensitive to ouabain and 60% of acini lost
hollow lumen whilst, 79% lost PSA expression and 53% showed a loss or decreased E-
cadherin expression. Lumen formation was also significantly inhibited by inhibition of Na+/
K+ ATPase activity with a monoclonal antibody (figure 6c and 6d)19.

Discussion
Morphogenesis is driven by the co-ordinated regulation of polarity, apoptosis, migration,
proliferation and differentiation. The mechanisms connecting them all are unknown but
many similarities exist between different developing tissues suggesting a common
mechanism. Present knowledge suggests that the important mechanisms for luminal
morphogenesis include a) polarisation of cells and b) cavitation of central cells and cell
survival of cells in contact with the basement membrane. We propose that polarisation of
epithelia is the driving force of lumen formation in prostatic acini. Establishment of polarity
is followed by asymmetric fluid movement and its accumulation in apical spaces. This
results in membrane separation and the formation of a lumen. This mechanism was
previously identified in zebra fish, MDCK cysts4 and embryos5, now we reveal its
importance in human adult morphogenesis.

In prostate models, the cues to orientate the axis of polarity are likely to include E-cadherin
and β4 integrin and its interaction with the basement membrane. Early expression of E-
cadherin at cellular junctions during the development of acini and its loss from the luminal
surfaces during early lumen formation indicates an important role for E-cadherin in the
spatial cues for establishing membrane domains. Consistent with this idea, E-cadherin
mediated cell adhesion can provides signals to target proteins to basolateral and luminal
surfaces and initiate membrane domain organization during polarization 20, 21. In
agreement with our work, early ligation of β4 integrin is an important signal for the
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formation of mammary acini and contributes to the establishment of polarity and lumen 2,
22, 23. In addition, β4 integrin ligation via NFκB activation plays an important role in
conferring resistance to apoptosis of both malignant and non-malignant breast cells in
response to basement membrane 24.

Our results also demonstrated that disruption of polarity led to the loss of PSA expression,
demonstrating that epithelial polarisation is required for subsequent differentiation and
secretory function. How cellular polarization can specify lumen formation remains
unknown. Cellular polarity is under the control of evolutionary conserved protein complexes
linked by direct protein interactions. Of importance are the PAR/aPKC complex and the
Dlg/Lgl/SCRIB complex. These complexes are the central components of several significant
pathways controlling polarity, asymmetric division and proliferation and include those
involving E-cadherin, Erb2 and ß4 integrin (reviewed in Wodarz25 and Wodarz and Näthke
26). Further studies should address how E-cadherin and ß4 integrin interact with these
conserved complexes. The model presented here may prove useful for the further study of
this process in adult tissues.

Caspase dependent cell death was not responsible for prostate lumen development and a
cavitation event did not occur. Cells found within prostatic lumen which were positive for
active caspase 3 were most likely cells undergoing apoptosis after terminal differentiation,
or anoikis, once they had shed into the lumen, as discussed in Debnath et al., 8. 3D breast
epithelial cell cultures undergo a massive apoptosis of the central cells or cavitation event to
form luminal spaces within acini. Although apoptosis has been proposed as the mechanism
for lumen formation in several models systems, these studies have also found that it cannot
be the sole driving force, since inhibition of apoptosis only delays lumen formation 8, 9, 27,
28, 29. This may suggest a role for epithelial polarization in the lumen formation of breast
acini but other groups have also proposed that caspase independent cell death mechanisms,
such as autophagy, can compensate for lumen clearance 8, 9, 28. We found that autophagy
was active in human tissues and all the 3D models tested. However the expression of LC-3
by the majority of cells in an acinus, which are healthy and dividing, indicated its role is not
one of cell death but most likely as a clearance mechanism. Autophagic cells may act to
recycle cellular debris from the lumen, though this clearly needs further investigation.

The different mechanisms for lumen formation produced from the research of prostate and
breast models may reflect differences in the behaviour of epithelial cells from different
tissues and indicate they are controlled by different intrinsic and extrinsic signals for
differentiation. Considered from a developmental point of view the finding may reflect the
embryological origins of the different tissues. Mammary epithelia are ectodermal, whilst
prostate is endodermal in common with the gut of zebrafish models. Kidney (MDCK) cells
are derived from the mesoderm but share a common ureteric origin with the prostate.
Therefore prostate, gut and kidney may all share common pathways of morphological
differentiation, not shared by ectodermal tissues. The different mechanisms of lumen
formation could be due to the use of different cell culture conditions. Different prostate cell
lines develop into very different structures in Matrigel and this is not dictated by a cell being
tumour or non-tumour, but by the ability of a cell to respond to the differentiation signals
provided by Matrigel and its own intrinsic differentiation programme 12, 17,18. Culture
conditions also have an important impact on 3D architecture when cells are grown in
Matrigel. The addition of serum and EGF are important for lumen formation, whilst high
calcium concentrations decrease lumen formation and apoptosis 17, 18. Recent work, has
shown that the growth of acini from single cells or aggregates can dictate the development
of lumen 15. Acini grown from single cells develop lumen using membrane separation
mechanisms whilst acini grown from aggregates develop lumen by cavitation. It was
concluded that apoptosis can act as a control mechanism ensuring lumen clearance when
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polarization is delayed. The inherent complexities of 3D modeling with Matrigel as
discussed, indicate that experiments should be carried out on several cell lines to try and
eliminate false positives and provide robust results. The strength of the work presented here
is the use of several cell lines and primary cultures plated as single cells to model acinus-like
structures with lumen.

Our results clearly indicate that inhibition of the Na+/K+ ATPase could not inhibit lumen
formation in all acini. This result may reflect the heterogeneity of the acini within a culture
and implies that not all use fluid movement to driven by Na+/K+ ATPase to drive lumen
formation. It is likely that fluid movement is driven by alternative mechanisms or by
differences in the expression of polarization molecules such as Na+/K+ ATPase. In addition
the expression of tight junctions may affect the sensitivity of the cells to ouabain 4.
Alternative mechanisms for lumen formation have been reported elsewhere. Kirschner et al.,
27 and Yokoyama et al., 29 reported that whilst apoptosis inhibitors had little effect on
lumen formation CEACAM1-4s could restore normal morphology to mammary carcinoma
cells in 3D. Mirror symmetric cell division and inheritance of polarized proteins is a
powerful morphogenetic force in embryogenic lumen formation 30. During acinus
development, one could imagine the mirror symmetric inheritance of polarity complex
proteins, integrins or tight junction proteins might be important in adult epithelia 26. Recent
research in Drosophila has indicated that an apical matrix is deposited during early lumen
formation and acts as a supportive scaffold, it remains to be determined whether a similar
matrix exists in human adult epithelia 31, 32.

Understanding tissue morphogenesis is important to enhance our understanding of
differentiation but also to understand the breakdown of tissue architecture during disease
formation. The mechanisms of morphogenesis are also important to the field of tissue
engineering and to ensure representative 3D models of tissue can be designed in vitro. This
is the first time that fluid movement has been shown to be an important morphological event
in adult epithelia. Our results indicate that in adult prostate epithelial morphogenesis where
secretory function is paramount then the mechanism of lumen formation is driven by
membrane separation due to polarized fluid movement and apoptosis is secondary.

MATERIALS AND METHODS
Materials

General chemicals were purchased from Sigma (Poole, UK), tissue culture medium from
Invitrogen (Paisley, UK) and tissue culture plastic from Corning Costar Ltd (High
Wycombe, UK), unless otherwise stated.

Culture of cell lines
PC-3 cells (prostate carcinoma) were obtained from the European Collection of Animal Cell
Cultures (Porton Down, UK) and were routinely cultured in Hams F12 culture media
supplemented with 7 % foetal calf serum (PAA Laboratories, GmbH, Linz, Austria) and 2
mM glutamine. Hela (cervical carcinoma) and RWPE-1 (normal prostate epithelia) were
obtained from the American Type Culture Collection and were routinely cultured in DMEM
supplemented with 10% FCS or KSFM supplemented with 5 ng/ml epidermal growth factor,
25 μg/ml bovine pituitary extract and 2mM glutamine, respectively. BPH-1 (normal prostate
epithelia) were kindly provided by Prof Simon Hayward (Vanderbilt University Medical
Center, USA) and were routinely grown in RPMI 1640 supplemented with 5 % FCS and
2mM glutamine. Shmac 5 (prostate carcinoma) cells were derived in our laboratory14 and
were routinely cultured in keratinocyte serum free media supplemented with 2 % foetal calf
serum, 5 ng/ml epidermal growth factor and 25 μg/ml bovine pituitary extract.
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Primary prostatic epithelial cells were prepared as described before 16. All cells were
routinely cultured without antibiotics in a humidified atmosphere at 37°C and 5% CO2.

Three dimensional culture of cells in Matrigel
A 40 μl plug of Matrigel (growth factor reduced and phenol red free, Becton Dickinson,
Plymouth, UK) was plated to the well of an 8 well LabTek Chambered coverglass (Nunc,
Rochester, USA) and set at 37 °C for 30 minutes. On ice, epithelial cells were prepared at a
concentration of 5 000 cells/ml in KSFM supplemented with 5 ng/ml EGF, 2% (v/v) FCS,
4% (v/v) Matrigel. This media has been found to be optimal for prostate acinus formation
18. 0.2 ml of this cell solution was plated onto the Matrigel plug and incubated for 30
minutes at 37 °C, afterwhich 0.2 ml of growth media was added (KSFM supplemented with
5 ng/ml EGF, 2% (v/v) FCS). Cultures were fed every 2-3 days by removal of 200 μl of
spent media and the addition of 200 μl of fresh media.

Immunofluorescent analysis and imaging
Immunostaining was based the method by Debnath et al., 33 and carried out at room
temperature throughout. Cells grown in Matrigel were fixed directly using 4% (w/v)
paraformaldehyde for 20 minutes, followed by permeabilisation with 0.5% TX-100 (v/v).
Cultures were incubated with primary antibodies, as indicated in the supplementary table S2,
for 1 hour. Cultures were then incubated with Alexa 568 or 488 conjugated secondary
antibodies (Molecular Probes, Invitrogen, Paisley, UK) diluted 1/500 for 1 hour. Nuclei
were counterstained with 0.1 ug/ml DAPI for 5 minutes. Cells were imaged using a Zeiss
LSM 510 meta laser scanning confocal microscope on an Axiovert 200M fluorescent
microscope. All images were recorded at x20 magnification. Confocal images were taken at
mid-section through the acini to ensure the correct analysis of the lumen. Phase images were
observed with a Nikon TE300 inverted microscope, captured with a Hamamatsu video
camera and analysed using Velocity 4, (Improvision, Coventry, UK). Digitised images were
subsequently prepared using Adobe Photoshop 6. Specificity of the LC-3 antibody has been
demonstrated by Castino et al 2008 34.

Assessment of apoptosis and autophagy
Different cell lines produce spheroids of different cell sizes in Matrigel and are often
heterogeneous within a given culture. To compare the level of cell death between spheroids
grown from different cell lines we counted the total number of caspase 3 positive cells in a
spheroid and then determined what percentage this represented of the total number of cells
in a spheroid. This was performed by scanning a complete spheroid for positively stained
cells using confocal microscopy. The total number of cells in a spheroid was calculated from
the diameter of individual spheroids and cells (both of which can be measured during
microscopy) using one of the following calculations:

Total number of cells in a solid spheroid = volume of spheroid/ volume of single cell =
(4/3Πr1

3) / (4/3Πr2
3).

Total number of cells in a hollow spheroid (assuming a monolayer of cells) = surface area of
spheroid/ cross-sectional area of a single cell = (4Πr1

2) / (Πr2
2)

6-10 spheroids were analysed for each experiment and a median value was calculated.
Fisher’s exact test was used to compare to variables within individual experiments, whilst
the students t-test was used to compare the results between experiments..
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Caspase dependent cell death is an infrequent event in prostatic acini
A. BPH-1 cells were grown in Matrigel for the indicated number of days. Acini were fixed
and stained for active caspase 3 (green) or PSA (green), nuclei were counterstained with
DAPI. Representative images are shown that cross section through the middle of acini.
Arrows indicate the edge of the forming lumen. The experiments shown are representative
of a minimum of three replicates.
B. Transmission electron microscopy of a BPH-1 acinus grown in Matrigel for 7 days.
C. and D. Representative image of Hela (C) and MCF-10A 9 (D) cells grown in Matrigel for
7 days, fixed and stained for active caspase 3 (green) and LC-3 (red). Nuclei were
counterstained with DAPI (blue). All bars indicate 50 μm.
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Figure 2. Caspase dependent cell death in acini derived from cell lines and primary cells
Indicated cell lines (A) or primary cells (B) were grown in Matrigel for 7 days and then
fixed and stained for active caspase 3. The number of cells in an acinus which stained
positively for active caspase 3 was counted and calculated as a percentage of the total cells
present per acinus. The percentage of caspase 3 positive cells was calculated for 10 acini
selected at random. Each acini is represented as a single spot. Some spots represent multiple
points. The bar indicates the median value for each cell line. Primary cultures were derived
from patients (A, B or C).
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Figure 3. Inhibition of caspase dependent cell death in prostatic acini
Prostate cells were grown in Matrigel for 2 days and then grown in the presence of 100 μM
Z-VAD-FMK (open) or DMSO control (filled). Acini were grown for a further 4 days and
then fixed and stained for active caspase 3, nuclei were counterstained with DAPI. A
hundred acini were counted for the expression of active caspase 3 (A) or the presence of
lumen (B). The graphs indicate the results of 3 replicate experiments ± sem, * p<0.015
(students t-test). Representative images of RWPE-1 or BPH-1 cells grown with or without
caspase inhibitor, and nuclei were counterstained with DAPI are shown in (C). All bars
indicate 50 μm. Images are cross-sections through the middle of acini.
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Figure 4. Expression of autophagy markers by prostatic acini
A-D. Immunohistochemical expression of LC-3 in cell lines (A, RWPE-1; C, BPH-1) grown
in Matrigel for 7 days, primary cultures grown for 14 days (B) or normal prostate tissue (D).
Acini were fixed and stained for LC-3 (red) and nuclei were counterstained with DAPI.
Representative images are shown that cross-section through the middle of acini. All bars
indicate 50 μm.
E. Acini prepared as described above were immunoblotted for LC-3. Lanes are as follows: 1,
BPH-1 grown in monolayer culture; 2, BPH-1 grown in 3D Matrigel; 3, Shmac 5, in
monolayer; 4, Shmac 5 in 3D; 5, RWPE-1 in monolayer; 6, RWPE-1 in 3D; 7, PC-3 in
monolayer; 8, PC-3 in 3D; 9, Hela in monolayer; 10, primary prostate cells (patient D). ß
actin was used to indicate protein loading.
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Figure 5. Polarisation of E-cadherin and beta 4 integrin in BPH-1 epithelial acini
BPH-1 cells were grown in Matrigel for the indicated number of days. Acini were then fixed
and stained for E-cadherin (red) or beta 4 integrin (green), nuclei were counterstained with
DAPI. Representative images (of 3 independent experiments) are shown that cross section
through the middle of cells or developing acini. Images were taken at x20 magnification, the
bar indicates 50 μm.
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Figure 6. Ouabain and anti-Na+/K+ATPase inhibition of lumen formation in prostatic acini
A. RWPE-1 or BPH-1 cells were grown in 3D Matrigel culture for 4 days and then treated
with 1 nM ouabain (open) or DMSO control (filled). After 24 hours culture 50 acini were
counted for the presence of single lumen. B. Acini were stained for E-cadherin (red) and
PSA (green), nuclei were counterstained with DAPI. Images were taken at x20
magnification.
C. Cells were plated into 3D Matrigel and treated with 1/100 IgG1 control (filled) or 1/100
anti-Na+/K+ ATPase (open) for 6 days. 50 acini were counted for the presence of single
lumen. All graphs indicate the results of 3 replicate experiments ± sem, * p<0.05,
**p<0.0003 (students t-test). D. Acini were stained with DAPI and mid-section images were
taken at x20 magnification.
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