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ABSTRACT Streptomyces sp. strain Mg1 is a Gram-positive soil bacterium capable of
causing cell lysis and degradation of Bacillus subtilis colonies. Here, we report the
48,481-bp genome of Streptomyces sp. Mg1 siphophage Sitrop. With 77 predicted
protein-coding genes and one tRNA, Sitrop shares 77% nucleotide sequence identity
with the Streptomyces phage Verse.

S treptomyces sp. strain Mg1 is a Gram-positive, saprotrophic bacterium predomi-
nantly found in soil (1, 2). This filamentous organism is known to produce the anti-

biotic chalcomycin A, which plays a role in competition with and inhibition of Bacillus
subtilis (2). Streptomycetes produce several useful secondary metabolites, including
approximately 80% of today’s antibiotics (3). Studying the genomes of phages of
industrially important bacterial species, such as Streptomyces sp. Mg1 siphophage
Sitrop, may be useful for improving bioproduction technologies.

Bacteriophage Sitrop was isolated in February 2019 from a soil sample taken from
Lincoln, Nebraska. Sitrop was plaque purified as described elsewhere (4) using
Streptomyces sp. Mg1 as its host and cultured at 30°C on nutrient broth or agar supple-
mented with 10mM MgCl2, 8mM Ca(NO3)2, and 0.5% glucose. Sitrop was found to be
chloroform sensitive. DNA was purified using a modified Wizard DNA clean-up kit
(Promega) protocol (5) and prepared as Illumina TruSeq libraries. Sequencing was per-
formed on an Illumina iSeq 100 instrument with paired-end 300-bp reads using a TruSeq
Nano DNA kit. Quality control of the 254,194 resulting sequence reads was done using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and trimmed manually
with FastX 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html). The genome
was assembled into a single contig at 109.8-fold coverage using SPAdes v3.5.0 (6) and
closed by PCR and Sanger sequencing of the resulting product using primers
GGACGTTGAACTTGTTGAGGA (forward) and GTCCTCCAGGTGTGAAGAAG (reverse).
Structural annotations of protein-coding genes were initially predicted by
GLIMMER v3 (7) and MetaGeneAnnotator v1.0 (8), while tRNAs were found using
ARAGORN v2.36 (9). Conserved domains, sequence similarity, and transmembrane
domains were found using InterProScan v5.33 (10), BLAST v2.9.0 (11), and TMHMM
v2.0 (12), respectively, to predict gene function. BLAST similarity searches used a 0.001
maximum expectation value cutoff against the NCBI nonredundant, Swiss-Prot, and
TrEMBL databases (13) (accessed 8 April 2020). The DNA sequence similarity of the entire
genome was calculated with progressiveMauve v2.4 (14). Annotation tools used in
Galaxy and Web Apollo are hosted at https://cpt.tamu.edu/galaxy-pub (15) by the
Center for Phage Technology. Phage virion morphology was visualized as 2% (wt/vol)
uranyl acetate negatively stained samples by transmission electron microscopy at the
Texas A&M Microscopy and Imaging Center and determined to be a siphovirus (data not
shown). All tools were run with default parameters unless otherwise specified.

Sitrop is a siphophage with a genome of 48,481 bp and a G1C content of 65.6%,
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compared to 72.17% of its host. The genome was composed of 1 tRNA gene and 77
predicted protein-coding genes, 41 being assigned putative functions, with a total cod-
ing density of 89.7%. Sitrop is most closely related to Streptomyces phage Verse
(GenBank accession number KT186229.1), having 76.93% nucleotide identity and 67
shared proteins (16). Sitrop also shared close similarity to other Streptomyces phages
within the Camvirus genus. Most of the protein-coding genes predicted to be tail pro-
teins appear to be novel, sharing significant amino acid sequence similarity only with
Streptomyces phages Alsaber (MG298964.1) and Saftant (MN204498.1), two novel
phages with close similarity to Sitrop overall. There were four genes predicted to be
involved in lysis, including an endolysin endopeptidase, a holin, and a separated two-
component spanin complex gene (17).

Data availability. The genome of Sitrop is available in GenBank under accession
number MT701598.1. The associated BioProject, SRA, and BioSample accession num-
bers are PRJNA222858, SRR11558341, and SAMN14609631, respectively.
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